
Robustness Testing of A Distributed Simulation Backplane

Masters Thesis

Kimberly Fernsler

Advisor: Philip Koopman

Department of Electrical & Computer Engineering

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

kf@andrew.cmu.edu

May 3, 1999

Robustness Testing of a Distributed Simulation Backplane 2/40

Robustness Testing of A Distributed Simulation Backplane

Abstract

Creating robust software requires quantitative measurement in addition to careful specification and

implementation. The Ballista software robustness testing service provides exception handling measure-

ments for a variety of application domains. This thesis describes Ballista testing of the High Level Archi-

tecture Run-Time Infrastructure (HLA RTI), a general-purpose distributed simulation backplane

developed by the Defense Modeling and Simulation Office that has been specifically designed for robust

exception handling. While more robust than off-the-shelf POSIX operating systems, the RTI had normal-

ized robustness failure rates as high as 10.2%. Non-robust testing responses included exception handling

errors, hardware segmentation violations, “unknown” exceptions, and task hangs. Additionally, testing

repeatedly crashed one version of the RTI client through an RTI service function call. Results obtained

from testing the same version of the RTI on two different Unix operating system platforms demonstrate

some difficulties in providing comparable exception handling coverage across platforms, suggesting that

the underlying OS can have a significant effect on the way robustness failures manifest. Results obtained

from testing the same RTI interface specification produced by two different development teams illustrate

common robustness failures that programmers can overlook. Testing the RTI led to scalable extensions of

the Ballista architecture for handling exception-based error reporting models, testing object-oriented soft-

ware structures (including callbacks, pass by reference, and constructors), and operating in a state-rich, dis-

tributed system environment. Robustness testing has been demonstrated to be a useful adjunct to high-

quality software development processes, and is being considered for adoption by the HLA RTI verification

facility. The results of this testing yield insights into the types of robustness problems that can occur with

an application specifically designed to be highly robust.

Robustness Testing of a Distributed Simulation Backplane 3/40

1. Introduction
Robustness in software is becoming essential as critical computer systems increasingly pervade our

daily lives. It is not uncommon (and although annoying, usually not catastrophic) for desktop computing

applications to crash on occasion. However, as more and more software applications become essential to

the everyday functioning of our society, we are entering an era in which software crashes are becoming

unacceptable in an increasing number of application areas.

Careful specification and implementation are required to create robust software (i.e., software that

responds gracefully to overload and exception conditions [IEEE90]). In particular, it is thought by some

that exception handling is a significant source of operational software failures [Cristian95]. However,

cost, time, and staffing constraints often limit software testing to the important area of functional correct-

ness, while leaving few resources to determine a software system’s robustness in the face of exceptional

conditions.

The Ballista software robustness testing service provides a way for software modules to be automati-

cally tested and characterized for robustness failures due to exception handling failures. This service pro-

vides a direct, repeatable, quantitative method to evaluate a software system’s robustness. Ballista works

by performing tests on the software based on traditional “black box” testing techniques (i.e., behavioral

rather than structural testing) to measure a system’s responses when encountering exceptional parameter

values (overload/stress testing is planned as future work). Previously the focus of Ballista was on testing

the robustness of several implementations of the POSIX [IEEE93] operating system C language Applica-

tion Programming Interface (API), and found a variety of robustness failures that included repeatable,

complete system crashes that could be caused by a single line of source code [Kropp98].

This paper explores whether the Ballista testing approach works on an application area that is signifi-

cantly different than an operating system API, testing the hypothesis that Ballista is a general-purpose test-

ing approach that is scalable across multiple domains. The new application area selected for testing is the

Department of Defense’s High Level Architecture Run-Time Infrastructure (HLA RTI). The RTI is a

Robustness Testing of a Distributed Simulation Backplane 4/40

general-purpose simulation backplane system used for distributed military simulations, and is specifically

designed for robust exception handling. The RTI was chosen as the next step in the development of Bal-

lista because it not only has a significantly different implementation style than a C-language operating sys-

tem API, but also because it has been intentionally designed to be very robust. HLA has been designed to

be part of a DoD-wide effort to establish a common technical framework to facilitate the interoperability

and reuse of all types of models and simulations, and represents the highest priority effort within the DoD

modeling and simulation community [DMSO99]. Because RTI applications are envisioned to consist of

large numbers of software modules integrated from many different vendors, robust operation is a key con-

cern.

Extending the Ballista architecture to test the RTI involved stretching the architecture to address excep-

tion-based error reporting models, testing object-oriented software structures (including callbacks), incor-

porating necessary state-setting “scaffolding” code, and operating in a state-rich distributed system

environment. Yet, this expansion of capabilities was accomplished with minimal changes to the base Bal-

lista architecture.

Beyond demonstrating that the Ballista approach applies to more than one domain, the results of RTI

testing themselves yield insights into the types of problems that can occur even with an application

designed to be highly robust. Testing the RTI revealed a significant number of unhandled exception con-

ditions, unintended exceptions, and processes that can be made to “hang” in the RTI. Additionally, prob-

lems were revealed in providing equivalent exception handling support when the RTI was ported to

multiple platforms, potentially undermining attempts to design robust, portable application programs.

In the remainder of this paper, Section 2 discusses how Ballista works and what extensions were

required to address the needs of RTI testing. Section 3 presents the experimental methodology. Section 4

presents the testing results, while Section 5 provides conclusions and a discussion of future work.

Robustness Testing of a Distributed Simulation Backplane 5/40

2. Extending Ballista for RTI testing
Ballista testing works by bombarding a software module with combinations of exceptional and accept-

able input values. The reaction of the system is measured for either catastrophic failure (generally involv-

ing a machine reboot), a task “hang” (detected by a timer), or a task “abort” (detected by observing that a

process terminates abnormally). The current implementation of Ballista draws upon lists of heuristic test

values for each data type in a function call parameter list, and executes combinations of these values for

testing purposes. In each test case, the function call under test is called a single time to determine whether

it is robust when called with a particular set of parameter values.

2.1. Prior Work

The Ballista testing framework is based on several generations of previous work in both the software

testing and fault-tolerance communities. The Crashme program and the University of Wisconsin Fuzz

project are both prior examples of automated robustness testing. Crashme works by writing random data

values to memory and then attempts to execute them as code by spawning a large number of concurrent

processes [Carette96]. The Fuzz project injects random noise (or “fuzz”) into specific elements of an OS

interface [Miller98]. Both methods find robustness problems in operating systems, although they are not

specifically designed for a high degree of repeatability, and Crashme in particular is not generally applica-

ble for testing software other than operating systems. While robustness under stressful environmental con-

ditions is indeed an important issue, a desire to attain highly repeatable results has led the Ballista project

to consider robustness issues in a single invocation of a software module from a single execution thread.

Approaches to robustness testing in the fault tolerance community are usually based on fault injection

techniques, and include Fiat, FTAPE, and Ferrari. The Fiat system modifies the binary image of a process

in memory [Barton90]. Ferrari, on the other hand, uses software traps to simulate specific hardware level

faults, such as errors in data or address lines [Kanawati92]. FTAPE uses hardware-dependent device driv-

ers to inject faults into a system running with a random load generator [Tsai95]. These approaches have

Robustness Testing of a Distributed Simulation Backplane 6/40

produced useful results, but were not intended to provide a scalable, portable quantification of robustness

for software modules.

There are several commercial tools such as Purify [Pure Atria], Insure++ [Parasoft], and Bound-

sChecker [Numega] that test for robustness problems by instrumenting software and monitoring execution.

They work by detecting exceptions that arise during development testing of the software. However, they

are not able to find robustness failures in situations that are not tested. Additionally, they require access to

source code, which is not necessarily available. In contrast, Ballista testing works by sending selected

exceptional and acceptable input combinations directly into already-compiled software modules at the

module testing level. Thus, Ballista is different from (and potentially complementary to) instrumentation-

based robustness improvement tools.

The Ballista approach has been used to compare the robustness of off-the-shelf operating system robust-

ness by automatically testing each of 15 different implementations of the POSIX[IEEE93] operating sys-

tem application programming interface (API). The results demonstrated that there is significant

opportunity for increasing robustness within current operating systems [DeVale99]. Questions left unan-

swered from the operating system studies were whether other APIs might be better suited to robust imple-

mentations, and whether the Ballista approach would work well in other application domains. This paper

seeks to contribute to answering those questions.

2.2. General Ballista Robustness Testing

Ballista actively seeks out robustness failures by generating combinational tests of valid and invalid

parameter values for system calls and functions. Rather than base testing on the behavioral specification of

the function, Ballista instead uses only data type information to generate test cases. Because in many APIs

there are fewer distinct data types than functions, this approach tends to scale test development costs sub-

linearly with the number of functions to be tested. Additionally, an inheritance approach permits reusing

test cases from one application area to another.

Robustness Testing of a Distributed Simulation Backplane 7/40

As an example of Ballista operation, Figure 1 shows the actual test values used to test the RTI function

rtiAmb.subscribeObjectClassAttributes, which takes parameters specifying an

RTI::ObjectClassHandle (which is type-defined to be an RTI::ULong), an

RTI::AttributeHandleSet, and an RTI::Boolean. The fact that this particular RTI function

takes three parameters of three different data types leads Ballista to draw test values from three separate

test objects, each established for one of the three data types. For complete testing, all combinations of test

values are used, in this case yielding 25 ULongs * 14 AttributeHandleSets * 12 Booleans = 4200 tests for

this function (statistical sampling of combinations can be used for very large test sets, and has been found

to be reasonably accurate in finding failure rates compared to exhaustive testing).

Robustness Testing of a Distributed Simulation Backplane 8/40

A robustness failure is defined within the context of Ballista to be a test case which, when executed, pro-

duces a non-robust reaction such as a “hang”, a core dump, or generation of an illegal/undefined exception

within the software being tested. In general, this corresponds to an implicit functional specification for all

software modules being tested of “doesn’t crash the computer, doesn’t hang, and doesn’t abnormally ter-

minate.” This very general functional specification is the key to minimizing the need for per-function test

development effort, because all functions are considered to have a single identical functional specification

-- the actual computation performed by any particular function is ignored for robustness testing purposes.

Figure 1: A Ballista example RTI test case for a function that allows the federate to subscribe to
a set of object attributes.

API

TESTING
OBJECTS

rtiAmb.subscribeObjectClassAttributes(
 ObjectClassHandle theClass,
 AttributeHandleSet& theAttributes,
 Boolean active)

TEST
VALUES

TEST CASE

RTI::Ulong
TEST OBJECT

RTI::AttributeHandleSet
TEST OBJECT

RTI::Boolean
TEST OBJECT

INT_SAMPLE
INT_ZERO
INT_ONE
INT TWO
INT_FOUR
INT_EIGHT
INT_SIXTEEN
INT_64
INT_15
INT_17
INT_31
INT_33
INT_127
INT_129
INT_255
INT_257
INT_65535
INT_65537
INT_UMAXINT
INT_UMAXINTX
INT_NEGMAXINT
INT_2POW31_1
INT_2POW31
INT_NEG_ONE
INT_SIX

_

AHS_VALID
AHS_NO_CREATE
AHS_CREATE_ONE
AHS_CREATE_ALOT
AHS_CREATE_NEG
AHS_DELETE
AHS_XMEMB_EMPTY
AHS_XVALID
AHS_XNO_CREATE
AHS_XCREATE_ONE
AHS_XCREATE_ALOT
AHS_XCREATE_NEG
AHS_XDELETE
AHS_XMEMB_EMPTY

BOOL_ZERO
BOOL_ONE
BOOL_TWO
BOOL_THREE
BOOL_FOUR
BOOL_FIVE
BOOL_SIX
BOOL_SEVEN
BOOL_EIGHT
BOOL_NINE
BOOL_TEN
BOOL_NEG_ONE

rtiAmb.subscribeObjectClassAttributes(
 INT_65535, AHS_NO_CREATE, BOOL_ZERO)

Robustness Testing of a Distributed Simulation Backplane 9/40

2.3. Enhancements for RTI testing

The previously tested POSIX operating systems represent only a small fraction of the types and varia-

tions of COTS software that could potentially benefit from robustness testing. So, a big question in the

past has been whether a testing methodology initially developed using an example application of operating

system testing would actually work in a different domain. Testing the RTI with Ballista did in fact require

extensions to incorporate exception-based error reporting models, testing object-oriented software struc-

tures (including callbacks, passing objects by reference, class data types, private class member data, and

constructors), addition of test scaffolding code, and operating with a state-rich, distributed software frame-

work.

 In previous Ballista testing, any call which resulted in a signal being thrown was considered a robust-

ness failure by the test harness. However, the RTI throws an RTI-defined exception rather than using the

POSIX strategy of return codes. This was readily accommodated by including a place for user-defined

exception handling to be added to the general Ballista testing harness.

Because the RTI is a distributed system, a certain amount of setup code must be executed to set the dis-

tributed system state before a test can be executed. While in the operating system testing all such “scaf-

folding” was incorporated into constructors and destructors for each test value instance (such as creating a

file for a read or write operation), in the RTI there were some function-specific operations required to cre-

ate reasonable test starting points. While at first it seemed that distinct scaffolding would be required to

test each and every RTI function, it turned out that we were able to group the RTI functions into 10 equiv-

alence classes, with each class able to share the same test scaffolding code. This was incorporated into

Ballista by inserting optional user-configurable setup and shutdown code to be applied before and after

each test case, enabling clean set up and shutdown of the RTI environment for each specific test per-

formed. While such scaffolding code was required for testing the RTI, its development effort was small

relative to the number of software modules being tested.

Robustness Testing of a Distributed Simulation Backplane 10/40

The RTI spec requires that some RTI function calls be able to support a defined callback function. In a

typical RTI simulation execution, there are many other simulation processes which need to communicate

and share data with each other. For this reason, callbacks are necessary so that other simulation programs

know when updates to data occur and so that the RTI can alert all simulations of certain global actions tak-

ing place. Testing the RTI showed that the Ballista framework is flexible enough to support the RTI call-

backs without interfering with the testing process.

 In addition, the RTI contains object oriented features such as passing by reference, user-defined class

data types, constructors, and private class member data. In general these were able to be handled in rela-

tively simple ways. Perhaps the most difficult situation that arose was how to test a function that took a

pass-by-reference parameter of a class rather than an actual object. This problem was resolved by creating

a pointer to the class as the data type, and modifying Ballista slightly to accommodate this approach. In

general, all the problems that had previously seemed to be large obstacles by the development team and

external reviewers alike compared to testing operating systems were resolved with similarly simple adjust-

ments.

3. Experimental Methodology
The current Ballista implementation uses a portable testing client that is downloaded and run on a devel-

oper’s machine along with the module under test. The client connects to the Ballista testing server at Car-

negie Mellon that directs the client’s testing of the module under test. This service allows software

modules to be automatically and rapidly tested and characterized for robustness failures, and was particu-

larly useful for testing RTI robustness on multiple platforms. In order to test the RTI on Digital Unix and

SunOS, it was only necessary to recompile the Ballista client on each target machine, avoiding the need to

port the server-side software.

3.1. Interfacing to the RTI for Testing

The HLA is a general-purpose architecture designed to provide a common technical framework to facil-

itate the reuse and interoperability of all types of software models and simulations. An individual software

Robustness Testing of a Distributed Simulation Backplane 11/40

simulation or set of simulations developed for one purpose can be applied to another application under the

HLA concept of the federation: a composable set of interacting simulations. While the HLA is the architec-

ture, the runtime infrastructure (RTI) software implements federate services to coordinate operations and

data exchange during a runtime execution. Access to these services is defined by the HLA, which provides

a specification of the functional interfaces between federates and the RTI. The RTI provides services to

federates in a way that is analogous to how a distributed operating system provides services to applica-

tions.

RTI is a distributed system (Figure 2) that includes

two global processes, the RTI Executive (RtiExec)

and the Federation Executive (FedExec). The

RtiExec’s primary purpose is to manage the creation

and destruction of federation executions. A FedExec

is created for each federation to manage the joining

and resigning of federates and perform distribution of

reliable updates, interactions, and all RTI internal con-

trol messages. The Library (libRTI) implements the

HLA API used by C++ programs, and is linked into

each federate, with each federate potentially executing

on a separate hardware platform.

3.2. RTI Testing Approach

A typical RTI function performs some type of data management operation involving either an object,

ownership of that object, distribution of an object, a declaration, time management, or management of the

federation itself. These function calls typically use complex structures, such as classes, as parameters,

making testing the RTI functions more complex than simple operating system calls. Testing the RTI func-

tion calls involved creating a very simple application composed of a federation containing only one feder-

Figure 2: The HLA services are performed via
communication between the 2 RTI processes,
RtiExec and FedExec, and the federates

RTI Components

 . . .

RtiExec FedExec

libRTI libRTI

Federate

Inter-Process Communications

RTI Provided Federate Provided

Federate

(simulation programs).

Robustness Testing of a Distributed Simulation Backplane 12/40

ate that was linked, along with the RTI libraries, to the Ballista testing client. However, setting up even

this relatively simple system required creating a federation, creating a federate, having the federate join the

federation, and so on. In fact, for every test run on every RTI function call, it was necessary to go through

the following nine steps:

1. Ensure that the RTI server (RtiExec) was running

2. Create a federation: registers task with the RtiExec and starts up the FedExec process

3. Join the federation (the testing task executes as a federate)

4. Perform any setup functions associated with the current “scaffolding” equivalence class

5. Test the actual function

6. Free any memory that was allocated in the setup functions

7. Resign from the joined federation

8. Destroy the previously created federation to de-register from the RtiExec

9. Shut down the RtiExec if this is the last test or if an error occurred

3.3. Evaluating Test Results

Ballista seeks to determine instances in which exceptional parameter values produce a non-robust

response, and is not focussed on the issue of correctness in normal operating conditions. In other words, it

tests robustness in exceptional conditions, and is not concerned with whether the result of a function is

“correct” (except insofar as the result should be a graceful response to an exceptional situation).

As part of the adaptations for testing the RTI, the previously used “CRASH” scale [Kropp98] had to be

modified to account for the fact that the RTI API uses exceptions instead of error return codes used by

operating systems, and that the RTI has an internal exception handler that attempts to catch hardware-gen-

erated signals and perform a “clean” shutdown rather than a raw core dump. The results for RTI testing

fall into the following categories, loosely ranked from best to worst in terms of robustness (only the “Pass”

categories are considered to be completely robust responses):

Robustness Testing of a Distributed Simulation Backplane 13/40

• Pass - The function call executed and returned normally, indicating that a nonexcep-

tional combination of parameters happened to be generated.

• Pass with Exception - The function call resulted in a valid, HLA-defined exception

being thrown, indicating a gracefully caught and handled exceptional condition.

• RTI Internal Error - The “RTI Internal Error” exception was thrown and caught, per-

mitting the federate to free memory, resign from, and destroy the federation cleanly.

However, the application did not have enough information to perform corrective action.

This was a hardware segmentation violation successfully caught by the RTI.

• Unknown Exception - An unknown exception was thrown and caught internally to the

RTI by a catch-all condition (as opposed to a hardware signal). It behaved similarly to

the RTI Internal error, but was software-created instead of hardware-triggered.

• Abort - An error occurred that was not caught and the code exited immediately. No

memory cleanup, resigning or destroying of the federation was allowed to take place,

requiring a manual restart of the entire federation to resume operation.

• Restart - The function call did not return after an ample period of time (a “hang”).

• Catastrophic - The system was left in a state requiring rebooting the operating system

to resume testing. This was experienced in some situations on Digital Unix with RTI

1.0.3, but was apparently due to testing conditions that were not deterministic enough to

be tracked down to a particular function call by Ballista testing.

4. Testing Results
Testing was performed on four different versions of the RTI:

• Version 1.0.3 (an early version) for Digital Unix 4.0 on an Alphastation 21164

• Version 1.3.5 (current version) for Digital Unix 4.0 on an Alphastation 21164

Robustness Testing of a Distributed Simulation Backplane 14/40

• Version 1.3.5 (current version) for SunOS 5.6 on a Sparc Ultra-30

• Version 1.3NG (commercial version in beta test) for SunOS 5.6 on a Sparc Ultra-30

Overall a total of 88,296 data points was collected. This number depends on several factors: 1) the num-

ber of functions to be tested, 2) the number of parameters in each function, 3) the data types of the argu-

ments, and 4) sampling for functions with very large test sets. Significant changes were made to the RTI

functions in going from version 1.0.3 to 1.3.5, including adding functions and changing the parameter lists

taken by existing functions. In addition, since the RTI 1.3 NG version was not developed by the DMSO as

the other RTI versions were, there are likely to be several implementation differences.

4.1. Normalized Failure Rates

Table 1 reports the directly measured robustness failure rates. While it is tempting to simply use the raw

number of tests that fail as a comparative metric, this approach is problematic. Versions 1.0.3 and 1.3.5

contain several completely different functions with different numbers and types of parameters. In addition,

a single RTI function with a large number of test cases could significantly affect both the number of fail-

ures, and the ratio of failures to tests executed. Similarly, an RTI function with few test cases would have

minimal effect on raw failure rates even if it demonstrated a large percentage of failures. Thus a normal-

ized failure rate metric is reported in the last column of Table 1.

The normalized failure rate [Kropp98] first determines the proportion of robustness failures across tests

for each function within each system being tested, then produces a uniformly weighted average across all

the functions, permitting comparisons of the three implementations according to a single normalized met-

ric. If one of the RTI implementations were being tested with a specific simulation program running,

weightings would be used to reflect the dynamic frequency of calling each function to give an exposure

metric that is potentially more accurate. In the absence of a particular workload, and given our experience

that weighted failure rates vary dramatically depending on the workload (but were in some cases as high as

29% for the POSIX API), it is inappropriate for us to simply take an arbitrary application operating profile

and use it here. However, as a simple common-sense check on these results, functions with high robust-

Robustness Testing of a Distributed Simulation Backplane 15/40

ness failure rates do in fact include commonly used features such as registering an object, publishing data,

subscribing to data, and determining attribute ownership.

4.2. RTI 1.0.3 for Digital Unix

The types of robustness failures that were detected in RTI version 1.0.3 were RTI Internal Error and

Unknown exceptions. Some of the RTI service functions have the ability to throw the exception “RTIin-

ternalError : Caught unknown exception.” However, in speaking with one of the develop-

ers, we learned that this is not supposed to ever occur. A more specific exception should have been thrown

instead, rather than making the “RTIinternalError” exception serve as a “catch all” condition or default

handler. This type of failure accounted for a 1.4% normalized failure rate, while the Unknown exceptions

accounted for a 5.0% normalized failure rate.

As can be seen from Figure 3, the three functions RTI::AttributeHandleSet->setUnion,

RTI::AttributeHandleSet->removeSetIntersection, and RTI::AttributeHan-

dleSet->setIntersection responded the least robustly to our tests. All three of these functions

took as their sole parameter an RTI::AttributeHandleSet class, and all three failed on exactly the

same input parameters. In fact, all but one RTI 1.0.3 function we tested that had a failure rate of more than

20% took an RTI::AttributeHandleSet class as a parameter (labeled with “*” in Figure 3). The

Table 1: Directly measured robustness failure rates.
Fu

nc
tio

ns
 te

st
ed

Fu
nc

ti
on

s
w

ith

R
T

I
In

te
rn

al
 E

rr
or

E

xc
ep

tio
n

Fa
ilu

re
s

Fu
nc

ti
on

s
w

ith

U
nk

no
w

n
E

xc
ep

tio
n

fa
ilu

re
s

Fu
nc

ti
on

s
w

ith

A
bo

rt

fa
ilu

re
s

Fu
nc

ti
on

s
w

ith

no
 f

ai
lu

re
s

N
um

be
r

of
te

st
s

ru
n

N
um

be
r

of

R
T

I
In

te
rn

al
 E

rr
or

E
xc

ep
tio

n
fa

ilu
re

s

N
um

be
r

of

U
nk

no
w

n
E

xc
ep

tio
n

fa
ilu

re
s

N
um

be
r

of

A
bo

rt
fa

ilu
re

s

N
or

m
al

iz
ed

(s
um

 a
ll

 a
bo

rt
s)

ra
te

RTI 1.0.3
Dunix 76 19 18 0 41 40291 136 2611 0 6.41%

RTI 1.3.5
Dunix 86 20 32 0 43 22757 1255 1965 0 10.20%

RTI 1.3.5
SunOS 86 0 0 45 41 14291 0 0 2289 10.05%

RTI 1.3NG
SunOS 84 4 0 43 40 10957 41 0 1444 8.44%

Robustness Testing of a Distributed Simulation Backplane 16/40

lower failure rates of the two functions with a “*” at 20% were due to masking by a successful second

exceptional parameter check before the RTI::AttributeHandleSet parameter was touched by the

function.

An additional problem discovered while testing was the RTI client process crashing through an RTI ser-

vice function call. This would occur randomly and the direct cause was never determined. While running

a simulation, the following error would occur “RTIinternalError: Invalid mutex object

in RTIlocker::RTIlocker 14001” for any RTI service function call made. Once in this error

state it was impossible to run a federation execution until the machine was rebooted. This error is particu-

larly nasty because it not only forces the user to quit the currently running federation execution without

performing any memory clean up or shutdown code, but also requires rebooting the machine before any

other RTI function can be executed. This particular problem was not encountered in the two RTI 1.3.5 ver-

sions.

4.3. RTI 1.3.5 for Digital Unix and SunOS

The types of robustness failures detected in the two RTI 1.3.5 versions were quite different in manifes-

tation, but similar in profile (Figures 4 and 5). For the robustness failures that were detected in the Digital

Figure 3: RTI 1.0.3 experienced failures of types RTI Internal Error and Unknown exceptions.
Functions marked with “*” all took an RTI::AttributeHandleSet class as a parameter and all got
failure rates greater than 20%.

P
er

-F
un

ct
io

n
F

ai
lu

re
 R

at
e

RTI::AttributeHandleSet->setUnion
RTI::AttributeHandleSet->removeSetInteraction

RTI::AttributeHandleSet->setInteraction

rtiAmb.publishObjectClass

rtiAmb.subscribeObjectClassAttribute

cout << RTI::AttributeHandleSet

*

*

*

Robustness Testing of a Distributed Simulation Backplane 17/40

Unix port, RTI Internal Errors accounted for a 2.6% normalized robustness failure rate, Unknown excep-

tions accounted for a 6.5% normalized robustness failure rate, Restarts obtained a 1.1% normalized

robustness failure rate, and one test (0.02% normalized robustness failure rate, counted as an Abort), pro-

duced an exception system infinite loop failure which printed out the following 3-line message and termi-

nated execution:

“Exception system exiting dues [sic] to multiple internal errors:

 exception dispatch or unwind stuck in infinite loop

 exception dispatch or unwind stuck in infinite loop” .

In comparison, the robustness failures seen in RTI 1.3.5 for SunOS did not include RTI Internal Error or

Unknown exceptions. Instead, two different reactions to exceptional inputs were seen. The first was a

segmentation fault that would cause the federate process to exit immediately without properly resigning

from and destroying the federation and cleaning up memory. This would result in a “zombie” federate reg-

istered with the federation executive. The presence of such zombies caused the subsequently joining fed-

erate (the next automatic test case in our situation) to hang in the

rtiAmb.joinFederationExecution service. To remedy this it was necessary to manually resign

from the federation by killing the FedExec and RtiExec processes. The other reaction to an exceptional

input that was observed in the SunOS testing was similar to that segmentation fault, except instead of print-

ing out “Segmentation fault” the following message would be displayed followed by execution termina-

tion:

“Run-time exception error; current exception: RTI internal error

 Unexpected exception thrown.”

Robustness Testing of a Distributed Simulation Backplane 18/40

which appears to indicate an incomplete implementation of an RTI Internal Error. Both of these errors

were considered to be Aborts, and accounted for an 8.9% normalized robustness failure rate. Restart fail-

ures accounted for a 1.1% normalized robustness failure rate.

P
er

-F
un

ct
io

n
F

ai
lu

re
 R

at
e

RTI::AttributeHandleValuePairSet->getValueLength

RTI::ParameterHandleValuePairSet->getValueLength

rtiAmb.registerObjectInstance

rtiAmb.registerObjectInstance

rtiAmb.requestFederationSave

rtiAmb.queryFederateTime
rtiAmb.queryLBTS

rtiAmb.queryMinNextEventTime
rtiAmb.queryLookahead

Figure 4: In addition to RTI Internal Error and Unknown Exceptions, RTI 1.3.5 for Digital Unix also
had one function that experienced multiple restarts, and one function trigger the “stuck in infinite
loop” error message.

Figure 5: The RTI 1.3.5 for SunOS obtained Abort failures in the form of segmentation faults instead
of RTI Internal Errors or Unknown exceptions.

P
er

-F
un

ct
io

n
F

ai
lu

re
 R

at
e

RTI::AttributeHandleValuePairSet->getValueLength

RTI::ParameterHandleValuePairSet->getValueLength

rtiAmb.registerObjectInstance

rtiAmb.registerObjectInstance

rtiAmb.requestFederationSave

rtiAmb.queryFederateTime
rtiAmb.queryLBTS

rtiAmb.queryMinNextEventTime

rtiAmb.queryLookahead

Robustness Testing of a Distributed Simulation Backplane 19/40

4.3.1. Segmentation Faults vs. RTI Internal Error Exception

Comparing the two RTI 1.3.5 graphs shows that the robustness failure rates are essentially the same.

However, in the SunOS port, any unanticipated signal apparently leaked through and was seen as a seg-

mentation fault instead of being caught as an RTI Internal Error as in Digital Unix. The RTI Internal Error

seen in the Digital Unix version allows recovery and cleanup, unlike a raw segmentation fault, which

aborts the code. The SunOS version’s inability to catch and handle segmentation faults could significantly

disrupt the currently running federation execution because, due to the RTI design, other federates will not

be informed properly that one federate has left. And, we can only speculate as to what might happen to the

data that federate was sharing, and consequent effects on the rest of the distributed simulation. This exam-

ple serves to illustrate possible problems in porting robust applications across platforms with different

exception handling support.

4.3.2. Restart Failures

In both implementations, the Restart failures all occurred for the single-parameter function:

rtiAmb.requestFederationSave. On both Digital Unix and SunOS, 50 of 52 tests hung. As an

experiment, we let the rtiAmb.requestFederationSave function run for 8 hours, but it remained

hung. It is interesting to note that both the two-parameter rtiAmb.requestFederationSave func-

tion of RTI 1.3.5 and the rtiAmb.requestFederationSave function in RTI version 1.0.3 did not

have any Restarts, although there were significant changes in this function from version 1.0.3 to version

1.3.5.

4.3.3. Clusters of Similar Results

In both implementations of RTI 1.3.5 we see clusters of results where the normalized failure rates

appear to be exactly the same. For example, the four sequential functions seen in both Figures 4 and 5,

rtiAmb.queryFederateTime, rtiAmb.queryLBTS, rtiAmb.queryLookahead, and

rtiAmb.queryMinNextEventTime all have failure rates of approximately 12%. These four func-

tions all took an RTI::FedTime class as their only parameter. Eight tests were run on each of these

Robustness Testing of a Distributed Simulation Backplane 20/40

functions, and of these 8 the same test, DECODE_NEG, failed in the same way for all four of these func-

tions on both implementations. By their names alone we can tell that these four functions are very similar

- they all query-something. It is likely that they all use very similar code if not the exact same parent code.

One fix to that code to check for the DECODE_NEG condition might eliminate these 4 functions as

robustness problems. However, from a user/robustness point of view, we measure susceptibility to robust-

ness failures rather than attempt to predict defect densities, so it is reasonable to charge all four functions

with having robustness problems.

4.4. RTI Version 1.3NG for SunOS

Ballista robustness testing was also performed on the RTI 1.3NG (Next Generation). RTI 1.3NG is

built to the same interface specification as RTI 1.3.5 and attempts to provide all of the services defined by

the HLA 1.3 Interface Specification, However RTI 1.3NG was written by a group of commercial develop-

ers and not by the government labs (DMSO) that built all the other RTIs. This group of commercial devel-

opers includes Science Applications International Corp. (SAIC), Virtual Technology Corporation (VTC),

Object Sciences Corporation (OSC), and Dynamic Animation Systems (DAS). RTI 1.3NG is in beta test

at this time, which increases the potential benefit from Ballista testing.

RTI 1.3NG is currently only available on a limited number of platforms. We tested the SunOS 5.6

implementation which, interestingly, provides us with two implementations of the RTI 1.3 on the same

platform built by two separate development teams. The types of robustness failures that were detected in

RTI 1.3NG were RTI Internal Error exceptions, which accounted for a 1.1% normalized failure rate, and

Abort failures in the form of segmentation faults which accounted for an 7.1% normalized failure rate.

Right off the bat we see that these results are different than the DMSO’s RTI 1.3.5 version because the

NG version produced RTI Internal Errors whereas the DMSO’s version did not. In addition, no Restarts

were encountered in RTI 1.3NG. For the most part, the results of testing RTI 1.3 NG were very similar to

the DMSO’s RTI 1.3.5 for SunOS. However, as can be seen in Figure 6, there were a few functions which

exhibited quite different behavior.

Robustness Testing of a Distributed Simulation Backplane 21/40

4.4.1. RTI Internal Error Exception Sighting

The major difference seen in the results from testing RTI 1.3NG and the DMSO’s RTI 1.3.5 is that

while in RTI 1.3.5 robustness failures manifested themselves as segmentation fault Aborts, the RTI 1.3NG

displayed the ability to also throw the RTI Internal Error exception which was not seen in the SunOS ver-

sion of RTI 1.3.5. The function rtiAmb.getInteractionRoutingSpaceHandle threw this

exception in almost 50% of the tests performed on it. However it appears that there may be some confu-

sion in throwing this exception because when it occured for this function it is labelled as an “Unex-

pected Exception!” and displays the following message:

“RTIinternalError: "/vobs/rting/rti/priv/pkg/presMgt/priv/src/

RtiAmbassador2.cpp", line 2152: Unexpected exception! Interac-

tionClassNotKnown: "/vobs/rting/rti/priv/pkg/fedDatabase/priv/

src/RtiFedDatabase.cpp", line 1417:”

It is unclear why this function did not simply throw the “InteractionClassNotKnown” excep-

tion instead since there was enough information to include reference to it in its output message. In addi-

Robustness Failures of RTI 1.3.5NG for Sun OS 5.6

0

10

20

30

40

50

60

70

80

90

100

RTI Functions (in alphabetical order)

Restart

Abort

Unknown exception

RTI Internal Error exception

 ^ ^----- can no longer be tested

rtiAmb.getInteractionRoutingSpaceHandle
rtiAmb.destroyFederationExecution

rtiAmb.requestFederationSave

new RTI::Exception

P
er

-F
u

n
ct

io
n

 F
ai

lu
re

 R
at

e

Figure 6: The RTI 1.3NG for SunOS obtained RTI Internal Error exceptions and Abort failures in the
form of segmentation faults. Two functions can no longer be tested due to changes in the implemen-
tation.

Robustness Testing of a Distributed Simulation Backplane 22/40

tion, the function rtiAmb.destroyFederationExecution got an RTI Internal Error exception for

almost 40% of the tests performed on it. In every case this was due to an empty string being passed to the

function which resulted in the following message being displayed:

RTIinternalError: "/vobs/rting/rti/priv/pkg/presMgt/priv/src/

RtiAmbassador.cpp", line 255: Sorry, the use of a empty federation

name is not supported.

In this case, a simple check for an empty string could easily eliminate the robustness failures. Another

function which also threw the RTI Internal Error exception in response to a null pointer being passed into

the function being tested indicated that the cause was indeed due to a null pointer. Based on these exam-

ples of the occurence of the RTI Internal Error exception it is clear that enough information is available to

determine the cause of and eliminate several robustness failures.

4.4.2. The “Save” Function and No Restarts

The only function in any of our previous tests which got Restart failures was the rtiAmb.request-

FederationSave function which occurred in both of the RTI 1.3.5 versions. In the RTI 1.3NG version

we see that this function does not get any Restart failures. Executing this function exactly the same way on

both RTI 1.3.5 and RTI 1.3NG produces very dissimilar results and indicates a robustness improvement in

the NG version which can most likely be attributed to the fact that this function was reworked for the RTI

1.3NG version.

4.4.3. Changes in the Implementation

In the course of testing, a few differences in the two RTI 1.3 implementations have become apparent.

The main difference observered affects the two constructor functions for the RTI::Exception class. In

RTI 1.3NG these two functions can no longer be directly tested because two pure virtual functions were

added to this class making it an abstract class. We are still able to test these functions indirectly by testing

the functions from another class which inherits functionality from the base RTI::Exception class.

However this represents a change in the RTI 1.3 implementation.

Robustness Testing of a Distributed Simulation Backplane 23/40

4.5. Comparison to Operating System Results

The results obtained from RTI testing are

much more robust than those we obtained

testing POSIX operating systems, which

typically had a robustness failure rate

between 10.0% to 22.7% [Koopman99],

compared to the RTI implementations

which got between 6.4% and 10.2%. Sev-

eral of the operating systems had cata-

strophic errors occur, which are failures that

occur when the entire OS becomes corrupted or the machine crashes or reboots. In addition, almost every

OS of the 15 tested encountered several functions that had Restart failures, whereas only one function in

RTI 1.3.5 had Restart failures. We anticipated the results of Ballista testing of the RTI would indicate a

lower failure rate than previous testing of operating systems primarily because the RTI, as well as the

HLA, were specifically designed for robust operation.

The average number of functions per RTI implementation that had no robustness failures is 49.8%. (In

other words, about half of the functions were failure-free). This is similar to the operating system result of

48.3% functions being robustness failure-free. A breakdown of this is shown in Table 2.

Comparing Ballista Robustness Results of
RTI with Typical Operating Systems

0% 5% 10% 15% 20% 25%

Typical Operating Systems

RTI 1.0.3 for Digital Unix

RTI 1.3.5 for Digital Unix

RTI 1.3.5 for Sun OS

RTI 1.3NG for SunOS

Robustness Failure rates

Figure 7: Overall comparison of failure rates of 4 imple-
mentations of the RTI to operating systems (OS failure
rates ranged from 10.0% to 22.7%).

Robustness Testing of a Distributed Simulation Backplane 24/40

 If we take a closer look at the data, we see that with the RTI functions there were typically a handful of

functions, 5 or 6 depending on which implementation, which responded poorly (failure rate above 30%)

and the rest had robustness failure levels down around 10-20%. In contrast, the OSes typically had more of

a consistent distribution of failures across the functions with, taking Digital Unix 4.0 as a typical example,

around 22% of the functions having failure rates above 30%. Thus we know that RTI has overall more

robust functions and, for example, if the six least robust functions in RTI 1.3.5 for Digital Unix are

removed from the calculation, the failure rate of RTI 1.3.5 for Digital Unix would go down from 10.2% to

4.88%.

4.6. Operational Profiling?

It is common in software reliability work to use an operational profile for weighting the severity of var-

ious problems encountered according to the expected execution frequency of functions (e.g., [Musa96]).

System Fns.
Tested

Fns.
With No
Failures

% Fns.
With No
Failures

RTI 1.0.3 Digital Unix 4.0 76 41 54%
RTI 1.3.5 Digital Unix 4.0 86 43 50%
RTI 1.3.5 SunOS 5.6 86 41 48%
RTI 1.3NG SunOS 5.6 84 40 48%
AIX 4.1 186 108 58%
FreeBSD 2.2.5 175 77 44%
HPUX 9.05 186 98 53%
HPUX 10.20 185 92 50%
IRIX 5.3 189 90 48%
IRIX 6.2 225 131 58%
Linux 2.0.18 190 104 55%
Lynx 2.4.0 222 114 51%
NetBSD 1.3 182 83 46%
Digital Unix 3.2 232 96 41%
Digital Unix 4.0 233 109 47%
QNX 4.22 203 75 37%
QNX 4.24 206 77 37%
SunOS 4.13 189 85 45%
SunOS 5.5 233 129 55%

Table 2: Percent of RTI and operating system functions with no failures.

Robustness Testing of a Distributed Simulation Backplane 25/40

Unfortunately, for the RTI, and indeed many general-purpose APIs, this type of profiling data is highly

dependent which federation program(s) are running. While we did not have access to realistic RTI pro-

grams because that environment itself is still new, data on previous operating system testing showed that

operational profile weightings still resulted in significant (10% or more) weighted robustness failure rates

[Koopman99]. Additionally there is the issue that an operational profile for a normally running program is

not necessarily applicable to exceptional situations (which are, by definition, abnormal). Thus we do not

give detailed weighted failure rate results here, because to do so would risk inviting unwarranted, general-

ized conclusions by readers drawn from what would be very specific data.

5. Conclusions & Future Directions
This paper provides the results of Ballista robustness testing of the High Level Architecture Run-Time

Infrastructure (HLA RTI), a general-purpose distributed simulation backplane which was specifically

designed for robust exception handling. Testing the RTI required significant extensions of Ballista capa-

bilities that were thought by some to be improbable to accomplish, including handling exception-based

error reporting models, testing object-oriented software structures (including callbacks), incorporating nec-

essary state-setting “scaffolding” code in a scalable manner, and operating in a state-rich distributed sys-

tem environment. Moreover, these extensions were accommodated through small, natural evolutions of

the basic Ballista architecture. This bodes well for extending Ballista to other application areas as well,

according to the project goal of creating a general-purpose, scalable testing framework.

Robustness testing was performed on four different versions of the RTI, with a total of 88,296 data

points collected. With a 6.4% to 10.2% normalized robustness failure rate, RTI appears to be significantly

more robust than off-the-shelf POSIX operating systems, which had 10% to 22.7% normalized failure

rates. As with operating system testing results, certain types of functions were robustness “bottlenecks,”

having significantly higher failure rates than most other functions. Thus, these testing results should aid in

deciding how to allocate developer resources to improve robustness.

Robustness Testing of a Distributed Simulation Backplane 26/40

The particular robustness problems observed in four version/platform RTI pairs were internal exception

handling errors (actually, a gracefully caught segmentation violation) ranging from a 1.1% to a 2.6% nor-

malized failure rate, unknown exceptions (an exception handling software defect) found only on the two

Digital Unix ports, with 5.0% to 6.5% normalized failure rates, and segmentation faults (exceptions that

evaded the exception handlers) found only on the two SunOS ports, ranging from a 7.1% to a 8.9% nor-

malized failure rate. Additionally, the Digital Unix port of RTI 1.3.5 suffered “multiple internal errors” on

one particular function that required killing the testing task. Similarities in results obtained from testing

the RTI 1.3.5 for SunOS with its commercial counterpart RTI 1.3NG for SunOS demonstrated common

robustness failure traps that programmers can fall into. Unlike any other version tested, the RTI 1.3NG

encountered both internal exception handling errors and segmentation faults. Finally, the Digital Unix port

of RTI 1.0.3 could fail in a way that required rebooting the system to correct. All problems except for the

RTI 1.0.3 reboot issue and the one “multiple internal errors” result were readily reproducible and were

automatically reduced to simple “bug report” programs by the Ballista server.

These results indicate that it can be a difficult task to create “bullet-proof” code, even when that is a spe-

cifically stated development goal. Additionally, the problem with the SunOS port not catching segmenta-

tion faults indicates that it can be difficult to provide comparable exception handling capabilities for the

same API across multiple platforms. One piece of good news, however, is that (except for the SunOS

problem just mentioned), we did not find significant differences in exception handling coverage across

platforms. This suggests, but certainly does not prove, that underlying variations in operating system

robustness might not percolate up through well-written exception handling facilities to cause exception

handling differences across platforms that would further complicate the task of writing portable, robust

applications.

In the future, we are working to make Ballista part of the standard verification suite for RTI develop-

ment. Additionally, we plan to explore issues of concurrent testing to find potentially more subtle bugs

related to timing and resource sharing. However, even with a relatively straightforward static, single-

Robustness Testing of a Distributed Simulation Backplane 27/40

thread execution model, Ballista testing has been demonstrated to find exception handling problems in

software specifically written to be highly robust.

6. Acknowledgements
This research was sponsored by DARPA contract DABT63-96-C-0064.

7. References

[Barton90] Barton, J., Czeck, E., Segall, Z., Siewiorek, D., “Fault injection experiments using

FIAT,” IEEE Transactions on Computers, 39(4): 575-82, April 1990.

[Carette96] Carette, G., “CRASHME: Random input testing,” (no formal publication available)

http://people.delphi.com/gjc/crashme.html, accessed 4/23/99.

[Cristian95] Cristian, Flaviu, "Exception Handling and Tolerance of Software Faults," In: Soft-

ware Fault Tolerance, Michael R. Lyu (Ed.). Chichester: Wiley, 1995. pp. 81-107, Ch. 4.

[DMSO99] Defense Modeling and Simulation Office (DMSO). HLA Homepage General Infor-

mation. http://hla.dmso.mil/hla/general/, accessed 4/1/99.

[HLA_IS98] U.S. Department of Defense, High Level Architecture, Interface Specification ver-

sion 1.3, April 2, 1998. Available at http://hla.dmso.mil/hla/tech/ifspec/ifspec-d01-

body.pdf.

[HLA_IS97] U.S. Department of Defense, High Level Architecture, Interface Specification ver-

sion 1.1, Feb. 12, 1997. Available at http://hla.dmso.mil/hla/tech/ifspec/ifsp11.pdf.

[HLA_Prog98] Department of Defense, High Level Architecture, Run-Time Infrastructure, Pro-

grammer’s Guide, RTI 1.3 Version 5, Dec. 16, 1998, DMSO, MITRE, SAIC, Virtual Tech-

nology Corporation.

Robustness Testing of a Distributed Simulation Backplane 28/40

[HLA_Prog97] Department of Defense, High Level Architecture, Run-Time Infrastructure, Pro-

grammer’s Guide, RTI 1.0 Version 3, Nov. 14, 1997, DMSO, MITRE, SAIC, Virtual Tech-

nology Corporation.

[HLA_RefA98] High Level Architecture, RTI 1.3 Version 5, RTIambassador [API] Reference

Manual, Dec. 16, 1998. Available at http://www.dmso.mil/cgi-bin/hla_dev/hla_cat.pl.

[HLA_RefC98] High Level Architecture, RTI 1.3 Version 5, Supporting Classes Reference Man-

ual, Dec. 16, 1998. Available at http://www.dmso.mil/cgi-bin/hla_dev/hla_cat.pl.

[IEEE90] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990,

IEEE Computer Soc., Dec. 10, 1990.

[IEEE93] IEEE Standard for Information Technology - Portable Operating System Interface

(POSIX) Part 1: system Application Program Interface (API) Amendment 1: Realtime

Extension [C language], IEEE Std 1003.1b-1993, IEEE Computer Society, 1994.

[Kanawati92] Kanawati, G., Kanawati, N. & Abraham, J., “FERRARI: a tool for the validation of

system dependability properties,” 1992 IEEE Workshop on Fault-Tolerant Parallel and

Distributed Systems. Amherst, MA, USA, July 1992, pp. 336-344.

[Koopman99] Koopman, P. & DeVale, J., “The Exception Handling Effectiveness of POSIX

Operating Systems,” submitted to IEEE Transactions on Software Engineering.

[Kropp98] Kropp, N., Koopman, P. & Siewiorek, D., “Automated Robustness Testing of Off-the-

Shelf Software Components,” 28th Fault Tolerant Computing Symposium, pp. 230-239,

June 23-25, 1998.

[Miller98] Miller, B., Koski, D., Lee, C., Magnanty, V., Murthy, R., Natarajan, A. & Steidl, J.,

Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and Services, Com-

puter Science Technical Report 1268, Univ. of Wisconsin-Madison, May 1998.

Robustness Testing of a Distributed Simulation Backplane 29/40

[Musa96] Musa, J., Fuoco, G., Irving, N. & Kropfl, D., Juhlin, B., “The Operational Profile”, in:

Lyu, M.(ed.), Handbook of Software Reliability Engineering, McGraw-Hill/IEEE Com-

puter Society Press, Los Alamitos CA, 1996, pp. 167-216.

[Numega] Numega. BoundsChecker. http://www.nemega.com/products/vc/vc.html.

[Parasoft] Parasoft. Insure++. http://www.parasoft.com/insure/index.html.

[Pure Atria] Pure Atria. Purify. http://www.pureatria.com/products/purify/index.html.

[Tsai95] Tsai, T., & R. Iyer, “Measuring Fault Tolerance with the FTAPE Fault Injection Tool,”

Proceedings eighth International Conference on Modeling Techniques and Tools for Com-

puter Performance Evaluation, Heidelberg, Germany, Sept. 20-22 1995, Springer-Verlag,

pp. 26-40.

8. Appendices

• Appendix A contains a full listing of the results of testing RTI 1.0.3.

• Appendix B contains a full listing of the results of testing RTI 1.3.5 for Digital Unix.

• Appendix C contains a full listing of the results of testing RTI 1.3.5 for Sun OS.

• Appendix D contains a full listing of the results of testing RTI 1.3NG.

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

30/40

A
ppendix A

: R
esults for R

T
I 1.0.3

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

cout << R
T

I::A
ttributeH

andleS
et

1
16

62.50
0.00

0.00
37.50

0.00
0.00

cout << R
T

I::B
oolean

1
12

100.00
0.00

0.00
0.00

0.00
0.00

cout << R
T

I::F
ederateS

tateT
ype

1
7

100.00
0.00

0.00
0.00

0.00
0.00

cout << R
T

I::F
ederationS

tateT
ype

1
12

100.00
0.00

0.00
0.00

0.00
0.00

cout << R
T

I::O
rderT

ype
1

7
100.00

0.00
0.00

0.00
0.00

0.00
cout << R

T
I::T

im
eM

anagem
entS

tateT
ype

1
12

100.00
0.00

0.00
0.00

0.00
0.00

cout << R
T

I::T
ransportT

ype
1

7
100.00

0.00
0.00

0.00
0.00

0.00
new

 R
T

I::E
xception

1
17

88.24
0.00

0.00
11.76

0.00
0.00

new
 R

T
I::E

xception
1

52
98.08

0.00
0.00

1.92
0.00

0.00
new

 R
T

I::E
xception

2
1248

98.08
0.00

0.00
1.92

0.00
0.00

new
 R

T
I::R

egionN
otK

now
n

1
17

88.24
0.00

0.00
11.76

0.00
0.00

new
 R

T
I::R

egionN
otK

now
n

1
52

98.08
0.00

0.00
1.92

0.00
0.00

new
 R

T
I::R

egionN
otK

now
n

2
1248

98.08
0.00

0.00
1.92

0.00
0.00

R
T

I::A
ttributeH

andleS
et->add

1
22

86.36
13.64

0.00
0.00

0.00
0.00

R
T

I::A
T

tributeH
andleS

et->
decode

1
11

90.91
0.00

0.00
9.09

0.00
0.00

R
T

I::A
T

tributeH
andleS

et->
encode

1
51

94.12
0.00

0.00
5.88

0.00
0.00

R
T

I::A
T

tributeH
andleS

et->
getH

andle
1

24
4.17

95.83
0.00

0.00
0.00

0.00
R

T
I::A

T
tributeH

andleS
et->

isM
em

ber
1

9
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

T
tributeH

andleS
et->

rem
oveS

etIntersection
1

16
31.25

0.00
0.00

68.75
0.00

0.00
R

T
I::A

T
tributeH

andleS
et->

setIntersection
1

16
31.25

0.00
0.00

68.75
0.00

0.00
R

T
I::A

T
tributeH

andleS
et->

setU
nion

1
16

31.25
0.00

0.00
68.75

0.00
0.00

R
T

I::A
ttributeH

andleS
etF

actory::create
1

24
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->add
3

2015
69.13

28.19
0.00

2.68
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->getH
andle

1
24

4.17
83.33

0.00
12.50

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getV

alue
3

18367
3.90

83.61
0.00

12.49
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->m
oveF

rom
2

216
1.85

63.43
0.00

34.72
0.00

0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->next

1
24

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->valid

1
24

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeS

etF
actory::create

1
24

66.67
33.33

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
etF

actory::create
1

24
66.67

33.33
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleV

alueP
airS

et->add
1

22
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleV

alueP
airS

et->getH
andle

1
24

4.17
95.83

0.00
0.00

0.00
0.00

R
T

I::P
aram

eterS
etF

actory::create
1

24
66.67

33.33
0.00

0.00
0.00

0.00
rtiA

m
b.changeA

ttributeO
rderT

ype
3

2016
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.changeA

ttributeT
ransportT

ype
3

840
1.19

98.81
0.00

0.00
0.00

0.00
rtiA

m
b.changeInteractionO

rderT
ype

2
154

6.49
93.51

0.00
0.00

0.00
0.00

rtiA
m

b.changeInteractionT
ransportT

ype
2

154
6.49

93.51
0.00

0.00
0.00

0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

31/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.createF
ederationE

xecution
1

11
36.36

45.45
18.18

0.00
0.00

0.00
rtiA

m
b.dequeueF

IF
O

asynchronously
1

12
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.destroyF

ederationE
xecution

1
52

0.00
96.15

3.85
0.00

0.00
0.00

rtiA
m

b.flushQ
ueueR

equest
1

10
90.00

10.00
0.00

0.00
0.00

0.00
rtiA

m
b.getA

ttributeH
andle

2
1144

0.00
98.78

1.22
0.00

0.00
0.00

rtiA
m

b.getA
ttributeN

am
e

2
484

6.40
93.60

0.00
0.00

0.00
0.00

rtiA
m

b.getInteractionC
lassH

andle
1

52
0.00

96.15
3.85

0.00
0.00

0.00
rtiA

m
b.getInteractionC

lassN
am

e
1

22
50.00

50.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lassH

andle
1

52
0.00

96.15
3.85

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lassN

am
e

1
22

31.82
68.18

0.00
0.00

0.00
0.00

rtiA
m

b.getP
aram

eterH
andle

2
1144

0.00
98.60

1.40
0.00

0.00
0.00

rtiA
m

b.getP
aram

eterN
am

e
2

484
7.44

92.56
0.00

0.00
0.00

0.00
rtiA

m
b.nextE

ventR
equest

1
10

90.00
0.00

10.00
0.00

0.00
0.00

rtiA
m

b.nextE
ventR

equestA
vailable

1
10

90.00
0.00

10.00
0.00

0.00
0.00

rtiA
m

b.pauseA
chieved

1
52

32.69
63.46

3.85
0.00

0.00
0.00

rtiA
m

b.publishInteractionC
lass

1
22

50.00
50.00

0.00
0.00

0.00
0.00

rtiA
m

b.publishO
bjectC

lass
2

352
20.17

59.38
7.95

12.50
0.00

0.00
rtiA

m
b.registerO

bject
2

528
13.64

86.36
0.00

0.00
0.00

0.00
rtiA

m
b.requestA

ttributeO
w

nershipA
cquisition

3
624

2.72
97.28

0.00
0.00

0.00
0.00

rtiA
m

b.requestA
ttributeO

w
nershipD

ivestiture
4

664
15.81

82.83
1.36

0.00
0.00

0.00
rtiA

m
b.requestC

lassA
ttributeV

alueU
pdate

2
264

31.82
68.18

0.00
0.00

0.00
0.00

rtiA
m

b.requestF
ederationS

ave
1

52
96.15

0.00
3.85

0.00
0.00

0.00
rtiA

m
b.requestF

ederationS
ave

2
520

38.65
59.81

1.54
0.00

0.00
0.00

rtiA
m

b.requestID
3

3168
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.requestO

bjectA
ttributeV

alueU
pdate

2
120

100.00
0.00

0.00
0.00

0.00
0.00

rtiA
m

b.requestP
ause

1
52

96.15
0.00

3.85
0.00

0.00
0.00

rtiA
m

b.requestR
estore

1
52

0.00
96.15

3.85
0.00

0.00
0.00

rtiA
m

b.sendInteraction
4

2860
21.12

78.53
0.35

0.00
0.00

0.00
rtiA

m
b.setLookahead

1
10

90.00
10.00

0.00
0.00

0.00
0.00

rtiA
m

b.setT
im

eC
onstrained

1
12

100.00
0.00

0.00
0.00

0.00
0.00

rtiA
m

b.subscribeInteractionC
lass

1
22

50.00
50.00

0.00
0.00

0.00
0.00

rtiA
m

b.subscribeO
bjectC

lassA
ttribute

2
352

20.17
59.38

7.95
12.50

0.00
0.00

rtiA
m

b.tick
2

100
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.tim

eA
dvanceR

equest
1

10
90.00

10.00
0.00

0.00
0.00

0.00
rtiA

m
b.tim

eA
dvanceR

equestA
vailable

1
10

90.00
10.00

0.00
0.00

0.00
0.00

rtiA
m

b.unpublishInteractionC
lass

1
22

36.36
50.00

13.64
0.00

0.00
0.00

rtiA
m

b.unpublishO
bjectC

lass
1

22
22.73

68.18
9.09

0.00
0.00

0.00
rtiA

m
b.unsubscribeInteractionC

lass
1

22
50.00

50.00
0.00

0.00
0.00

0.00

rtiA
m

b.unsubscribeO
bjectC

lassA
ttribute

1
22

31.82
68.18

0.00
0.00

0.00
0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

32/40

A
ppendix B

: R
esults for R

T
I 1.3.5 for D

igital U
nix

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

new
 R

T
I::E

xception
1

59
98.31

0.00
0.00

1.69
0.00

0.00
new

 R
T

I::E
xception

2
174

85.63
0.00

0.00
14.37

0.00
0.00

new
 R

T
I::R

egionN
otK

now
n

1
2

100.00
0.00

0.00
0.00

0.00
0.00

new
 R

T
I::R

egionN
otK

now
n

2
1182

98.14
0.00

0.00
1.86

0.00
0.00

R
T

I::A
ttributeH

andleS
et->add

1
25

72.00
28.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
et->getH

andle
1

24
4.17

95.83
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleS

et->isM
em

ber
1

25
92.00

0.00
0.00

8.00
0.00

0.00
R

T
I::A

ttributeH
andleS

et->rem
ove

1
25

72.00
28.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
etF

actory::create
1

24
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->add
3

1605
79.94

0.00
0.00

20.06
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->getH
andle

1
24

4.17
83.33

0.00
12.50

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et-> getO

rderT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getR

egion
1

25
0.00

100.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getT

ransportT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getV

alue
3

1907
4.04

83.27
0.00

12.69
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getV

alueLength
1

25
12.00

0.00
0.00

88.00
0.00

0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->m

oveF
rom

2
225

1.78
63.56

0.00
34.67

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->next

1
24

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->valid
1

24
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeS
etF

actory::create
1

24
70.83

29.17
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->add
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->getH
andle

1
25

4.00
96.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->isM

em
ber

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->rem

ove
1

24
4.17

95.83
0.00

0.00
0.00

0.00

R
T

I::F
ederateH

andleS
etF

actory::create
1

24
54.17

45.83
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterH

andleV
alueP

airS
et-

>getV
alueLength

1
25

12.00
0.00

0.00
88.00

0.00
0.00

R
T

I::P
aram

eterH
andleV

alueP
airS

et->
rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterS

etF
actory::create

1
24

70.83
29.17

0.00
0.00

0.00
0.00

rtiA
m

b.attributeO
w

nershipA
cquisition

3
1248

6.65
72.20

4.09
17.07

0.00
0.00

rtiA
m

b.changeA
ttributeO

rderT
ype

3
384

3.13
78.39

2.08
16.41

0.00
0.00

rtiA
m

b.changeA
ttributeT

ransportationT
ype

3
2217

0.72
86.02

0.59
12.67

0.00
0.00

rtiA
m

b.changeInteractionO
rderT

ype
2

576
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.changeInteractionT

ransportation
2

576
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.deleteO

bjectInstance
3

1573
3.56

84.30
0.13

12.02
0.00

0.00
rtiA

m
b.deleteO

bjectInstance
2

1072
4.01

95.99
0.00

0.00
0.00

0.00
rtiA

m
b.destroyF

ederationE
xecution

1
52

0.00
100.00

0.00
0.00

0.00
0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

33/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.flushQ
ueueR

equest
1

9
88.89

0.00
0.00

11.11
0.00

0.00
rtiA

m
b.getA

ttributeH
andle

2
676

0.00
95.41

4.59
0.00

0.00
0.00

rtiA
m

b.getA
ttributeN

am
e

2
625

4.48
95.52

0.00
0.00

0.00
0.00

rtiA
m

b.getA
ttributeR

outingS
paceH

andle
2

385
4.42

95.58
0.00

0.00
0.00

0.00
rtiA

m
b.getInteractionC

lassH
andle

1
52

0.00
94.23

3.85
0.00

0.00
0.00

rtiA
m

b.getInteractionC
lassN

am
e

1
24

50.00
50.00

0.00
0.00

0.00
0.00

rtiA
m

b.getInteractionR
outingS

paceH
andle

1
25

56.00
44.00

0.00
0.00

0.00
0.00

rtiA
m

b.getO
bjectC

lass
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lassH

andle
1

52
0.00

96.15
3.85

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lassN

am
e

1
25

28.00
72.00

0.00
0.00

0.00
0.00

rtiA
m

b.getO
bjectInstanceH

andle
1

7
14.29

85.71
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectInstanceN
am

e
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

rderingH
andle

1
61

1.64
95.08

3.28
0.00

0.00
0.00

rtiA
m

b.getO
rderingN

am
e

1
25

20.00
80.00

0.00
0.00

0.00
0.00

rtiA
m

b.getP
aram

eterH
andle

2
178

0.00
94.38

5.62
0.00

0.00
0.00

rtiA
m

b.getP
aram

eterN
am

e
2

70
10.00

90.00
0.00

0.00
0.00

0.00
rtiA

m
b.getT

ransportationH
andle

1
61

1.64
95.08

3.28
0.00

0.00
0.00

rtiA
m

b.getT
ransportationN

am
e

1
25

28.00
72.00

0.00
0.00

0.00
0.00

rtiA
m

b.isA
ttributeO

w
nedB

yF
ederate

2
373

0.80
99.20

0.00
0.00

0.00
0.00

rtiA
m

b.m
odifyLookahead

1
9

88.89
0.00

0.00
11.11

0.00
0.00

rtiA
m

b.negotiatedA
ttributeO

w
nershipD

ivestiture
3

810
5.56

74.32
3.70

16.42
0.00

0.00
rtiA

m
b.nextE

ventR
equest

1
9

88.89
0.00

0.00
11.11

0.00
0.00

rtiA
m

b.nextE
ventR

equestA
vailable

1
9

88.89
0.00

0.00
11.11

0.00
0.00

rtiA
m

b.publishInteractionC
lass

1
24

54.17
45.83

0.00
0.00

0.00
0.00

rtiA
m

b.publishO
bjectC

lass
2

400
17.50

63.00
7.00

12.50
0.00

0.00
rtiA

m
b.queryA

ttributeO
w

nership
2

625
0.80

99.20
0.00

0.00
0.00

0.00

rtiA
m

b.queryF
ederateT

im
e

1
8

87.50
0.00

0.00
12.50

0.00
0.00

rtiA
m

b.queryLB
T

S
1

8
87.50

0.00
0.00

12.50
0.00

0.00
rtiA

m
b.queryLookahead

1
8

87.50
0.00

0.00
12.50

0.00
0.00

rtiA
m

b.queryM
inN

extE
ventT

im
e

1
8

87.50
0.00

0.00
12.50

0.00
0.00

rtiA
m

b.registerF
ederationS

ynchronization
2

415
90.36

0.00
9.64

0.00
0.00

0.00
rtiA

m
b.registerO

bjectInstance
1

25
4.00

24.00
72.00

0.00
0.00

0.00
rtiA

m
b.registerO

bjectInstance
2

1300
2.54

23.00
74.46

0.00
0.00

0.00
rtiA

m
b.requestC

lassA
ttributeV

alueU
pdate

2
400

17.50
63.00

7.00
12.50

0.00
0.00

rtiA
m

b.requestF
ederationR

estore
1

52
96.15

0.00
3.85

0.00
0.00

0.00
rtiA

m
b.requestF

ederationS
ave

1
52

0.00
0.00

3.85
0.00

0.00
96.15

rtiA
m

b.requestF
ederationS

ave
2

63
88.89

0.00
0.00

11.11
0.00

0.00
rtiA

m
b.requestO

bjectA
ttributeV

alueU
pdate

2
400

87.50
0.00

0.00
12.50

0.00
0.00

rtiA
m

b.sendInteraction
3

892
0.00

89.01
0.00

10.99
0.00

0.00
rtiA

m
b.subscribeInteractionC

lass
2

288
54.17

45.83
0.00

0.00
0.00

0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

34/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.subscribeO
bjectC

lassA
ttributes

3
219

16.44
63.47

5.48
14.61

0.00
0.00

rtiA
m

b.tick
2

100
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.tim

eA
dvanceR

equest
1

9
88.89

0.00
0.00

11.11
0.00

0.00

rtiA
m

b.tim
eA

dvanceR
equestA

vailable
1

9
88.89

0.00
0.00

11.11
0.00

0.00
rtiA

m
b.unconditionalA

ttributeO
w

nershipD
ivestiture

2
400

2.50
84.00

1.00
12.50

0.00
0.00

rtiA
m

b.unpublishInteractionC
lass

1
24

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.unpublishO
bjectC

lass
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.unsubscribeInteractionC

lass
1

25
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.unsubscribeO

bjectC
lass

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

35/40

A
ppendix C

: R
esults for R

T
I 1.3.5 for Sun O

S

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

new
 R

T
I::E

xception
1

52
98.08

0.00
0.00

0.00
1.92

0.00
new

 R
T

I::E
xception

2
1300

98.08
0.00

0.00
0.00

1.92
0.00

new
 R

T
I::R

egionN
otK

now
n

1
52

98.08
0.00

0.00
0.00

1.92
0.00

new
 R

T
I::R

egionN
otK

now
n

2
402

97.51
0.00

0.00
0.00

2.49
0.00

R
T

I::A
ttributeH

andleS
et->add

1
25

72.00
28.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
et->getH

andle
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleS

et->isM
em

ber
1

25
88.00

0.00
0.00

0.00
12.00

0.00
R

T
I::A

ttributeH
andleS

et->rem
ove

1
25

72.00
28.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
etF

actory::create
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->add
3

1017
79.74

0.00
0.00

0.00
20.26

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->getH
andle

1
25

4.00
84.00

0.00
0.00

12.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et-> getO

rderT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getR

egion
1

25
0.00

100.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getT

ransportT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getV

alue
3

2070
3.72

84.83
0.00

0.00
11.45

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getV

alueLength
1

25
8.00

0.00
0.00

0.00
92.00

0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->m

oveF
rom

2
225

3.56
63.56

0.00
0.00

32.89
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->next

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->valid
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeS
etF

actory::create
1

25
72.00

28.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->add
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->getH
andle

1
25

4.00
96.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->isM

em
ber

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00

R
T

I::F
ederateH

andleS
etF

actory::create
1

25
56.00

44.00
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterH

andleV
alueP

airS
et-

>getV
alueLength

1
25

12.00
0.00

0.00
0.00

88.00
0.00

R
T

I::P
aram

eterH
andleV

alueP
airS

et->
rem

ove
1

25
0.00

100.00
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterS

etF
actory::create

1
25

72.00
28.00

0.00
0.00

0.00
0.00

rtiA
m

b.attributeO
w

nershipA
cquisition

3
606

2.15
84.32

0.00
0.00

13.53
0.00

rtiA
m

b.changeA
ttributeO

rderT
ype

3
630

0.63
87.30

0.00
0.00

12.06
0.00

rtiA
m

b.changeA
ttributeT

ransportationT
ype

3
999

0.90
86.69

0.00
0.00

12.41
0.00

rtiA
m

b.changeInteractionO
rderT

ype
2

62
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.changeInteractionT

ransportation
2

62
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.deleteO

bjectInstance
3

689
3.48

84.47
0.00

0.00
12.05

0.00
rtiA

m
b.deleteO

bjectInstance
2

130
9.23

90.77
0.00

0.00
0.00

0.00
rtiA

m
b.destroyF

ederationE
xecution

1
52

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.flushQ
ueueR

equest
1

9
88.89

0.00
0.00

0.00
11.11

0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

36/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.getA
ttributeH

andle
2

130
0.00

96.15
0.00

0.00
3.85

0.00
rtiA

m
b.getA

ttributeN
am

e
2

625
4.48

95.52
0.00

0.00
0.00

0.00
rtiA

m
b.getA

ttributeR
outingS

paceH
andle

2
44

4.55
95.45

0.00
0.00

0.00
0.00

rtiA
m

b.getInteractionC
lassH

andle
1

52
0.00

96.15
0.00

0.00
3.85

0.00
rtiA

m
b.getInteractionC

lassN
am

e
1

25
56.00

44.00
0.00

0.00
0.00

0.00
rtiA

m
b.getInteractionR

outingS
paceH

andle
1

25
56.00

44.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lass

1
25

4.00
96.00

0.00
0.00

0.00
0.00

rtiA
m

b.getO
bjectC

lassH
andle

1
52

0.00
96.15

0.00
0.00

3.85
0.00

rtiA
m

b.getO
bjectC

lassN
am

e
1

25
28.00

72.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectInstanceH
andle

1
52

0.00
96.15

0.00
0.00

3.85
0.00

rtiA
m

b.getO
bjectInstanceN

am
e

1
25

4.00
96.00

0.00
0.00

0.00
0.00

rtiA
m

b.getO
rderingH

andle
1

52
0.00

96.15
0.00

0.00
3.85

0.00
rtiA

m
b.getO

rderingN
am

e
1

25
20.00

80.00
0.00

0.00
0.00

0.00
rtiA

m
b.getP

aram
eterH

andle
2

129
0.00

96.12
0.00

0.00
3.88

0.00
rtiA

m
b.getP

aram
eterN

am
e

2
63

11.11
88.89

0.00
0.00

0.00
0.00

rtiA
m

b.getT
ransportationH

andle
1

52
0.00

96.15
0.00

0.00
3.85

0.00
rtiA

m
b.getT

ransportationN
am

e
1

25
28.00

72.00
0.00

0.00
0.00

0.00
rtiA

m
b.isA

ttributeO
w

nedB
yF

ederate
2

62
1.61

98.39
0.00

0.00
0.00

0.00
rtiA

m
b.m

odifyLookahead
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.negotiatedA

ttributeO
w

nershipD
ivestiture

3
166

2.41
83.73

0.00
0.00

13.86
0.00

rtiA
m

b.nextE
ventR

equest
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.nextE

ventR
equestA

vailable
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.publishInteractionC

lass
1

25
56.00

44.00
0.00

0.00
0.00

0.00
rtiA

m
b.publishO

bjectC
lass

2
40

17.50
60.00

0.00
0.00

22.50
0.00

rtiA
m

b.queryA
ttributeO

w
nership

2
62

1.61
98.39

0.00
0.00

0.00
0.00

rtiA
m

b.queryF
ederateT

im
e

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.queryLB
T

S
1

8
87.50

0.00
0.00

0.00
12.50

0.00
rtiA

m
b.queryLookahead

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.queryM
inN

extE
ventT

im
e

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.registerF
ederationS

ynchronizationP
oint

2
397

90.43
0.00

0.00
0.00

9.57
0.00

rtiA
m

b.registerO
bjectInstance

1
25

4.00
24.00

0.00
0.00

72.00
0.00

rtiA
m

b.registerO
bjectInstance

2
1300

2.46
23.00

0.00
0.00

74.54
0.00

rtiA
m

b.requestC
lassA

ttributeV
alueU

pdate
2

40
17.50

60.00
0.00

0.00
22.50

0.00
rtiA

m
b.requestF

ederationR
estore

1
52

96.15
0.00

0.00
0.00

3.85
0.00

rtiA
m

b.requestF
ederationS

ave
1

52
0.00

0.00
0.00

0.00
3.85

96.15
rtiA

m
b.requestF

ederationS
ave

2
468

85.68
0.00

0.00
0.00

14.32
0.00

rtiA
m

b.requestO
bjectA

ttributeV
alueU

pdate
2

40
85.00

0.00
0.00

0.00
15.00

0.00
rtiA

m
b.sendInteraction

3
408

0.00
88.24

0.00
0.00

11.76
0.00

rtiA
m

b.subscribeInteractionC
lass

1
25

56.00
44.00

0.00
0.00

0.00
0.00

rtiA
m

b.subscribeO
bjectC

lassA
ttributes

3
479

16.91
63.88

0.00
0.00

19.21
0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

37/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.tick
2

100
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.tim

eA
dvanceR

equest
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.tim

eA
dvanceR

equestA
vailable

1
9

88.89
0.00

0.00
0.00

11.11
0.00

rtiA
m

b.unconditionalA
ttributeO

w
nershipD

ivestiture
2

40
0.00

85.00
0.00

0.00
15.00

0.00
rtiA

m
b.unpublishInteractionC

lass
1

25
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.unpublishO

bjectC
lass

1
25

4.00
96.00

0.00
0.00

0.00
0.00

rtiA
m

b.unsubscribeInteractionC
lass

1
25

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.unsubscribeO
bjectC

lass
1

25
0.00

100.00
0.00

0.00
0.00

0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

38/40

A
ppendix D

: R
esults of testing R

T
I 1.3N

G

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

new
 R

T
I::E

xception
1

X
X

X
X

X
X

X
new

 R
T

I::E
xception

2
X

X
X

X
X

X
X

new
 R

T
I::R

egionN
otK

now
n

1
52

98.08
0.00

0.00
0.00

1.92
0.00

new
 R

T
I::R

egionN
otK

now
n

2
130

97.69
0.00

0.00
0.00

2.31
0.00

R
T

I::A
ttributeH

andleS
et->add

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
et->getH

andle
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleS

et->isM
em

ber
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleS

et->rem
ove

1
25

4.00
96.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleS
etF

actory::create
1

25
88.00

12.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->add
3

1688
80.04

0.00
0.00

0.00
19.96

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->getH
andle

1
25

4.00
84.00

0.00
0.00

12.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et-> getO

rderT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getR

egion
1

25
0.00

100.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getT

ransportT
ype

1
25

0.00
100.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->getV

alue
3

1091
3.67

84.23
0.00

0.00
12.10

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et-
>getV

alueLength
1

25
20.00

0.00
0.00

0.00
80.00

0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->m

oveF
rom

2
225

3.56
63.56

0.00
0.00

32.89
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->next

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::A
ttributeH

andleV
alueP

airS
et->rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeH
andleV

alueP
airS

et->valid
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::A

ttributeS
etF

actory::create
1

25
72.00

28.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->add
1

25
100.00

0.00
0.00

0.00
0.00

0.00
R

T
I::F

ederateH
andleS

et->getH
andle

1
25

4.00
96.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->isM

em
ber

1
25

100.00
0.00

0.00
0.00

0.00
0.00

R
T

I::F
ederateH

andleS
et->rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00

R
T

I::F
ederateH

andleS
etF

actory::create
1

25
72.00

28.00
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterH

andleV
alueP

airS
et-

>getV
alueLength

1
25

12.00
0.00

0.00
0.00

88.00
0.00

R
T

I::P
aram

eterH
andleV

alueP
airS

et->
rem

ove
1

25
4.00

96.00
0.00

0.00
0.00

0.00
R

T
I::P

aram
eterS

etF
actory::create

1
25

72.00
28.00

0.00
0.00

0.00
0.00

rtiA
m

b.attributeO
w

nershipA
cquisition

3
501

46.11
13.77

0.00
0.00

40.12
0.00

rtiA
m

b.changeA
ttributeO

rderT
ype

3
51

0.00
88.24

0.00
0.00

11.76
0.00

rtiA
m

b.changeA
ttributeT

ransportationT
ype

3
998

0.00
88.48

0.00
0.00

11.52
0.00

rtiA
m

b.changeInteractionO
rderT

ype
2

54
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.changeInteractionT

ransportationT
ype

2
54

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.deleteO
bjectInstance

3
725

0.00
88.69

0.00
0.00

11.31
0.00

rtiA
m

b.deleteO
bjectInstance

2
193

5.18
92.23

0.00
0.00

2.59
0.00

rtiA
m

b.destroyfederationE
xecution

1
52

0.00
57.69

38.46
0.00

3.85
0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

39/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.flushQ
ueueR

equest
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.getA

ttributeH
andle

2
121

0.00
96.69

0.00
0.00

3.31
0.00

rtiA
m

b.getA
ttributeN

am
e

2
91

7.69
92.31

0.00
0.00

0.00
0.00

rtiA
m

b.getA
ttributeR

outingS
paceH

andle
2

92
29.35

70.65
0.00

0.00
0.00

0.00
rtiA

m
b.getInteractionC

lassH
andle

1
50

0.00
98.00

0.00
0.00

2.00
0.00

rtiA
m

b.getInteractionC
lassN

am
e

1
25

52.00
48.00

0.00
0.00

0.00
0.00

rtiA
m

b.getInteractionR
outingS

paceH
andle

1
25

52.00
0.00

48.00
0.00

0.00
0.00

rtiA
m

b.getO
bjectC

lass
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

bjectC
lassH

andle
1

52
0.00

98.08
0.00

0.00
1.92

0.00
rtiA

m
b.getO

bjectC
lassN

am
e

1
25

24.00
76.00

0.00
0.00

0.00
0.00

rtiA
m

b.getO
bjectInstanceH

andle
1

52
0.00

98.08
0.00

0.00
1.92

0.00
rtiA

m
b.getO

bjectInstanceN
am

e
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.getO

rderingH
andle

1
52

0.00
98.08

0.00
0.00

1.92
0.00

rtiA
m

b.getO
rderingN

am
e

1
25

16.00
84.00

0.00
0.00

0.00
0.00

rtiA
m

b.getP
aram

eterH
andle

2
121

0.00
96.69

0.00
0.00

3.31
0.00

rtiA
m

b.getP
aram

eterN
am

e
2

50
8.00

92.00
0.00

0.00
0.00

0.00
rtiA

m
b.getT

ransportationH
andle

1
52

0.00
98.08

0.00
0.00

1.92
0.00

rtiA
m

b.getT
ransportationN

am
e

1
25

16.00
84.00

0.00
0.00

0.00
0.00

rtiA
m

b.isA
ttributeO

w
nedB

yF
ederate

1
93

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.m
odifyLookahead

1
9

88.89
0.00

0.00
0.00

11.11
0.00

rtiA
m

b.negotiatedA
ttributeO

w
nershipD

ivestiture
3

534
0.00

86.70
0.00

0.00
13.30

0.00
rtiA

m
b.nextE

ventR
equest

1
9

88.89
0.00

0.00
0.00

11.11
0.00

rtiA
m

b.nextE
ventR

equestA
vailable

1
9

88.89
0.00

0.00
0.00

11.11
0.00

rtiA
m

b.publishInteractionC
lass

1
25

52.00
48.00

0.00
0.00

0.00
0.00

rtiA
m

b.publishO
bjectC

lass
2

171
2.34

78.95
2.92

0.00
15.79

0.00
rtiA

m
b.queryA

ttributeO
w

nership
2

92
0.00

100.00
0.00

0.00
0.00

0.00

rtiA
m

b.queryF
ederateT

im
e

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.queryLB
T

S
1

8
87.50

0.00
0.00

0.00
12.50

0.00
rtiA

m
b.queryLookahead

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.queryM
inN

extE
ventT

im
e

1
8

87.50
0.00

0.00
0.00

12.50
0.00

rtiA
m

b.registerF
ederationS

ynchronizationP
oint

2
215

93.95
0.00

0.00
0.00

6.05
0.00

rtiA
m

b.registerO
bjectInstance

1
25

4.00
96.00

0.00
0.00

0.00
0.00

rtiA
m

b.registerO
bjectInstance

2
324

4.01
92.28

1.23
0.00

2.47
0.00

rtiA
m

b.requestC
lassA

ttributeV
alueU

pdate
2

52
7.69

67.31
0.00

0.00
25.00

0.00
rtiA

m
b.requestF

ederationR
estore

1
51

98.04
0.00

0.00
0.00

1.96
0.00

rtiA
m

b.requestF
ederationS

ave
1

52
98.08

0.00
0.00

0.00
1.92

0.00
rtiA

m
b.requestF

ederationS
ave

2
463

33.05
54.21

0.00
0.00

12.74
0.00

rtiA
m

b.requestO
bjectA

ttributeV
alueU

pdate
2

173
53.76

16.76
0.00

0.00
29.48

0.00

rtiA
m

b.sendInteraction
3

416
0.00

87.26
0.00

0.00
12.74

0.00
rtiA

m
b.subscribeInteractionC

lass
1

54
44.44

55.56
0.00

0.00
0.00

0.00

R
obustness T

esting of a D
istributed Sim

ulation B
ackplane

40/40

F
unction

number of parameters

number of tests run

% of tests that
passed clean

% of tests that passed
with an exception

% of tests that got RTI
Internal Error exception

% of tests that got
Unknown exception

% of tests that
got Aborts

% of tests that
got Restarts

rtiA
m

b.subscribeO
bjectC

lassA
ttributes

3
479

13.15
68.27

0.00
0.00

18.58
0.00

rtiA
m

b.tick
2

63
100.00

0.00
0.00

0.00
0.00

0.00
rtiA

m
b.tim

eA
dvanceR

equest
1

9
88.89

0.00
0.00

0.00
11.11

0.00

rtiA
m

b.tim
eA

dvanceR
equestA

vailable
1

9
88.89

0.00
0.00

0.00
11.11

0.00
rtiA

m
b.unconditionalA

ttributeO
w

nershipD
ivestiture

2
217

0.92
84.33

0.00
0.00

14.75
0.00

rtiA
m

b.unpublishInteractionC
lass

1
25

0.00
100.00

0.00
0.00

0.00
0.00

rtiA
m

b.unpublishO
bjectC

lass
1

25
4.00

96.00
0.00

0.00
0.00

0.00
rtiA

m
b.unsubscribeInteractionC

lass
1

25
0.00

100.00
0.00

0.00
0.00

0.00
rtiA

m
b.unsubscribeO

bjectC
lass

1
25

4.00
96.00

0.00
0.00

0.00
0.00

