
A. Cholkar 1

A Web-based Distributed Network Simulation Framework using
CORBA IDL-based APIs

Arjun Cholkar
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213.

ABSTRACT

Web-based network simulation frameworks are becoming highly portable and extensible.

However, they still lack the degree of language and platform independence required for large-scale

deployment on the World Wide Web. Our approach to enabling large-scale deployment uses a set of

standard CORBA-IDL based programming interfaces, a publisher-subscriber model for

communication, and dynamic composition of all simulation entities (simulated network hosts and

links). A prototype application for testing distributed computing policies has demonstrated that the

CORBA components not only provide language and platform-independence, but also provide the

ability for developers to write their own objects and connect them to a third-party network simulation.

By using a uniform messaging approach to all simulation events, objects can be reassigned to

different simulation entities without requiring source-code modifications or re-compilation. The

support for dynamic loading and unloading of objects during a simulation run facilitates fault

simulation, simulation entity polymorphism, and generation of dynamic topologies. A link scheduling

example application demonstrates our approach, its extensibility and flexibility.

KEYWORDS: General Applications; CORBA-based simulation, network simulation; Web-based

tools, applications and environments.

A. Cholkar 2

1. INTRODUCTION

The World Wide Web (WWW) and the underlying Internet provide a potentially huge distributed

computing infrastructure, which can be extended to host distributed simulation services [5]. With

recent developments in web-based simulation technology, the portability and versatility of simulation

tools has increased dramatically [13]. The ubiquity of web access has also created a promising

medium for large-scale deployment of such simulation tools.

Achieving large-scale deployability on the web poses some interesting challenges. Web-based

simulation tools need to be portable across a variety of computing platforms. These simulation tools

also need to be as flexible as traditional tools, where users typically have the ability to extend the tool

as desired by writing their own objects. Furthermore, this flexibility should not compromise on user-

convenience issues such as using a familiar implementation language. Therefore, web-based

simulation tools need to provide a portable and extensible infrastructure with interoperability support

for distributed simulation objects written in a variety of languages.

The current trend towards building web-based network simulation frameworks is to use platform-

independent object-oriented (OO) technologies such as Java [1] and RMI/Enterprise Java Beans [18].

These frameworks are portable and extensible but require that all simulation objects be developed in

one language, Java. This approach limits the ability to re-use existing code and limits the

deployability of the framework to only those users who are comfortable with the Java language.

This paper proposes a web-based network simulation framework that effectively uses the Common

Object Request Broker Architecture (CORBA) [3] technology to provide a flexible, extensible,

platform-independent and language-independent simulation environment that is suitable for large-

scale deployment. The framework uses standard CORBA Interface Definition Language (IDL) [3] -

based Application Programming Interfaces (APIs) and a CORBA Object Request Broker (ORB) [3]

to provide the necessary location transparency and language independence. These CORBA

components enable developers to write their own objects on their own platforms, and have their

A. Cholkar 3

objects participate from their platforms in a remote-simulation being hosted by a third party.

All simulation entities (simulated hosts and links) in the framework are composed using stock and

user-written objects. To facilitate communication among these objects, a mechanism based on the

publisher-subscriber [14] model is used. All interactions within the framework are message-based and

have a uniform message format. This enables loosely coupled interaction between objects in a

simulation entity and facilitates relocation of objects to different simulation entities with ease.

The IDL-based APIs in the framework also include support for dynamic loading and unloading of

modules (user-written objects and stock objects). This enables modules to load or unload other

modules dynamically during the simulation run. This facility is useful for simulating faults, changing

the behavioral aspects of simulation entities (simulation entity polymorphism) and generating

dynamic topologies. This adds tremendous flexibility to the simulation framework and makes it well

suited to simulate real-world scenarios found in wired and wireless networks.

A prototype application for network simulation frameworks was also implemented using this

framework. The application includes networking-specific tools for visualization, debugging and post-

simulation data analysis. These tools aid in rapid composition and analysis of a simulated network.

The efforts undertaken by researchers so far and our approach to the problem are discussed in

Section 2. Based on that discussion, Section 3 presents our architecture and discusses the CORBA

IDL-based APIs. Section 4 describes the prototype application. We present a link scheduling example

application in Section 5 and demonstrate that our APIs are applicable and sufficient to implement

Resource Priority Multiplexing (RPM) [7] modules. We conclude our discussion in Section 6 and

present some future possibilities for similar frameworks.

A. Cholkar 4

2. PREVIOUS WORK

Simulation tools can be primarily divided into two classes, generic simulators and simulation

frameworks. Generic simulators are relatively simple and can be used as building blocks for more

complex and specialized simulators. Simulation frameworks, on the other hand, include a specialized

set of tools that aid in time-efficient and cost-effective development of domain-specific simulations.

For example, various routing mechanisms can be developed and evaluated more efficiently and

effectively by using a network simulation framework rather than a generic discrete event simulator.

Therefore, simulation frameworks may be preferable to generic simulators.

The CORBA-based simulation facility developed at Bellcore [17] for generic discrete-event

simulation provides a location-transparent and language-independent mechanism for generic

simulations, and is suitable for remote simulation. However, this work is targeted solely for generic

simulations and would have to be extended to be applicable to domain-specific contexts.

Mature network simulation frameworks such as REAL [9], ns-2 [19], INSANE [8] and x-Sim [2]

provide rich APIs and tools and have been extensively used by researchers. However, even with

support for web-based simulation in REAL, their flexibility is limited because they do not provide

simulation support for user-written objects in their web-based mode. This limits their utility for large-

scale deployment over the Web.

With the recent demand for web-based network simulations, frameworks such as NetSimQ [11]

have been developed. NetSimQ provides an extensible simulation environment and a rich graphical

user-interface. Additionally, it is highly portable because it is written in Java, but this comes at the

price of a single-language implementation approach.

The network simulation framework discussed in this paper builds upon the work done in both the

simulation and distributed computing communities to create a result that combines the best of both

worlds. It draws ideas from the CORBA-based approach for generic simulators, and formulates a

CORBA-based approach for the network simulation context. This allows remote user-written objects

A. Cholkar 5

to cooperate in a simulation, distributed on several machines, in a language-independent and

platform-independent fashion. To our knowledge, this degree of flexibility is novel for a network

simulation framework. Additionally, our framework offers a set of networking specific tools for

composition and analysis of the simulation. By allowing objects to cooperate in a simulation in a

language-independent fashion, our framework does not impose the single-language environment of

NetSimQ.

Our framework stresses providing flexibility by dynamically composing simulation entities. The

publisher-subscriber model used for communication in the framework along with a uniform message-

format aids us in achieving this goal. This communication model is similar to the anonymous

communication model [12] used in the distributed computing community and facilitates relocation of

objects to different simulation entities during a simulation run.

The Defense Modeling and Simulation Office’s (DMSO) High Level Architecture (HLA) [4] also

supports such language-independent and platform-independent composition of a simulation.

However, the HLA differs from our framework in that it is generic rather than networking-specific.

Hence, it does not include any tools for synthesizing and analyzing network simulations. The HLA

does provide reasonable underlying mechanisms for future versions of our framework, but was not

ready in time to be used on the current project described in this paper.

A. Cholkar 6

3. NETWORK SIMULATION FRAMEWORK

The architecture of the network simulation framework is derived from a top-down Object Oriented

(OO) view of a network. To produce an extensible foundation for the framework, we identified the

core components present in all communication networks and built their software representations.

These core components are modeled as abstract classes, where each abstract class heads a hierarchy

of a particular type of components. Components get more specialized and embody additional features

and properties with each successive level in the hierarchy. In addition, all components were built

using well-established OO design patterns [6] to make them highly re-usable.

3.1. OBJECT HIERARCHY

All hardware components are derived from an abstract base class called Entity. This abstract class

encapsulates method definitions that are common to all hardware components (Figure 1).

Two classes were derived from Entity, called Node and Channel to model the fundamental concept

of a communication network in which a set of nodes exchange messages over some communication

medium. Another level of class inheritance was used to construct the Host and Link classes. A Host,

which is derived from a Node, has a Central Processing Unit (CPU) and input/output (I/O) ports,

while a Link, which is derived from a Channel, could be a simplex, half-duplex or full duplex link.

Each entity consists of a module manager, which encapsulates an API, known as the ‘Module

Plug-in API’ (MPA). The ModuleManager class is an abstract base class that heads a hierarchy of

more sophisticated module managers. Module managers are also refined using multiple levels of

inheritance, and there is always one and only one module manager associated with each entity. These

inheritance hierarchies are shown in the class diagram of Figure 1. (All notations in figures are per

the Object Modeling Technique (OMT) [15, 16])

A. Cholkar 7

Figure 1. Class diagram depicting the inheritance hierarchy of simulation entities.

Even with additional components, all entities have a well-defined and finite set of behavioral

properties. Therefore, one or more intelligent modules are assigned to each entity to enhance

behavior. For example, a system might consist of a host, which functions as a hub because a

forwarding module has been assigned to it. This approach of assigning modules to existing entities, as

opposed to creating more sophisticated entities, favors object composition over class inheritance.

This preserves encapsulation and is likely to result in fewer implementation dependencies [6].

Additionally, because object composition is defined at run-time, it can provide a significantly higher

degree of flexibility than class inheritance, especially when entities need to exhibit polymorphic

behaviors.

To support flexible object composition, entities need a standard way to reference all modules

without having to know the actual class of a particular module. Hence, all modules are derived from

A. Cholkar 8

an abstract base class, Module, which exports an interface known as the Module Callback Interface

(MCI). The MCI contains methods for module initialization, message processing and module

shutdown, which the entity invokes as needed. The inheritance hierarchy for a module is shown in the

class diagram of Figure 2 where ModuleX and ModuleY are example concrete classes that are

derived from the abstract base class Module.

Figure 2. Class Diagram for depicting the inheritance hierarchy of modules.

Figure 3. Class diagram for a typical host and link configuration.

A typical host or link consists of a number of modules assigned to it and an appropriate module

manager. As mentioned earlier, a host also contains a CPU and a number of I/O Ports, while a link

A. Cholkar 9

may or may not possess any additional properties over a channel. These configurations are shown in

Figure 3.

3.2. CORBA-IDL BASED APIs

The Module Plug-in API (MPA) and the Module Callback Interface (MCI) provide standard

interfaces and semantics for modules and the simulation entities to refer to each other without having

to know the actual concrete classes of each other. This is helpful when simulation entities need to be

composed dynamically.

The flexibility provided by the MPA and the MCI is extended further by defining them in CORBA

IDL and using a CORBA ORB to provide necessary middleware services. This allows modules

written in a variety of languages and distributed on a variety of platforms to be dynamically

reassigned to different simulation entities while cooperating in a single simulation. This location

transparency and language independence provided by CORBA eliminates writing complicated inter-

process communication code in a potentially unfamiliar language. In addition, it also makes our API

highly portable and our framework widely deployable.

3.2.1. THE MODULE PLUG-IN API

Figure 4. The core Module Plug-in API.

A. Cholkar 10

The CORBA-IDL based Module Plug-in API (MPA) is shown in Figure 4. Note that only the

core API calls have been shown. An illustration of how the API would be used is presented later in

the paper.

There are a couple of things worth noting in the MPA. First, the MPA uses a uniform message

format, AmMessage, for all calls. This feature, along with the publisher-subscriber communication

model, facilitates relocation of modules to different simulation entities.

Secondly, the MPA includes methods for dynamic loading and unloading of modules. These

requests are generated by other cooperating modules desiring to dynamically alter the behavior of the

simulation entity without user intervention. This feature enables a developer to simulate faults

dynamically, change entity behaviors dynamically, and change the topology of the simulated network

on-the-fly. For example, loading a routing and forwarding module on a host would change its

behavior from an end-host to a router. Similarly, by having a module unload all other modules on a

host acting as a router, a router failure can be simulated, which would then cause routes to change on

the neighboring routers. This provides a dynamically customizable simulation environment with an

added advantage of simulating a large number of scenarios with only a handful of modules. However,

this advantage comes at the price of more complexity in the modules. Such modules have to include

code that can react to different stimuli provided in different scenarios. Therefore, the size vs.

complexity tradeoff should be carefully evaluated before implementing such modules.

The MPA also provides methods for accessing certain information and output services hosted by

the framework. These services provided by the MPA can be classified into the information service,

the time service, the logging service and the data display service. These services provide informative

and output facilities to a module.

A. Cholkar 11

3.2.2. THE MODULE CALLBACK INTERFACE

Figure 5. The Module Callback Interface.

The CORBA-IDL based Module Callback Interface is shown in Figure 5. It can be seen that it has

three methods amInit, amProcessMessage, and amDestroy, which are invoked for module-

initialization, message-delivery and module-shutdown respectively. In addition, as seen from Figure

5, all methods accept only one argument, which has a uniform format. As mentioned earlier, this

enables module relocation to different simulation entities with ease.

3.3 INTER-MODULE COMMUNICATION

All inter-module communication in the framework is message-based and is built upon a publisher-

subscriber model that is functionally similar to the anonymous communication model.

 Messages are published on named software buses called message-channels. These message-

channels are dynamically created by an entity in response to requests from modules to either publish

on, or listen to, non-existent message-channels. Message-channel names serve as unique identifiers

and their scope is limited to each entity. A database of names for existing message-channels is kept

by the entity and can be queried by a module to decide on a unique name for its new message-

channel. Message distribution is handled by the entity transparently using message-channel names.

Thus, an entity acts only as a message-distribution agent for all inter-module messages and essentially

has no knowledge of their contents. This complements our design goal of “simple entities” and

“intelligent modules”.

A. Cholkar 12

To illustrate the communication mechanism, consider an example in which the two classes,

SenderModule and ReceiverModule, shown in Figure 6, are derived from Module. Both these classes

inherit the MCI and provide the necessary implementations for the methods in the MCI. Also,

consider the object diagram of Figure 7. The instance hostA of class Host comprises of an instance

hostModuleManager of class HostModuleManager, which provides the necessary implementations

for methods in the MPA. The instance hostA, also has three modules assigned to it, namely sender,

which is an instance of class SenderModule and receiver1 and receiver2, which are both instances of

class ReceiverModule. As their names suggest, sender acts as a publisher and desires to publish

messages on a new message-channel ‘XYZ’. receiver1 and receiver2 on the other hand act as

subscribers and desire to receive all messages published on message-channel ‘XYZ’. Thus, all

messages published by sender would be received by modules receiver1 and receiver2.

Figure 6. Class diagram for modules SenderModule and ReceiverModule.

Figure 7. Object diagram for Host hostA.

A. Cholkar 13

The sequence of events using this communication model for the example configuration is shown in

the sequence diagram of Figure 8. For clarity, API calls have been simplified and arguments have not

been encapsulated via the AmMessage message format.

Three features provided by this model are noteworthy. First, if no subscribers had subscribed to

message-channel ‘XYZ’, publisher sender could have still published messages. Second, the message

distribution service in hostA does not care about the contents of a message, and just delivers the

message to all the registered subscribers. Finally, all publishers and subscribers can subscribe and

unsubscribe whenever they choose. Thus, these features provide a loosely coupled communication

mechanism that is useful for dynamic inter-module communication and module reassignment.

Figure 8. Sequence diagram for an example scenario of inter-module communication.

A. Cholkar 14

4. PROTOTYPE OVERVIEW

The prototype framework was implemented using a traditional two-tier client server model with a

portable user interface that requests simulation services from a remote, compiled simulation kernel.

This system partitioning provides portability to the framework without compromising on model

execution speed.1 Additionally, our approach reduces startup costs such as download latencies.

Figure 9. System Architecture of the prototype.

The prototype consists of a simulation kernel implemented in C++ and a user-interface written in

Java. A CORBA ORB is used to provide remote object invocations and facilitates communication

between the user-interface and the simulation kernel. A CORBA name service is used for providing

the appropriate object references at run-time. In addition, a Relational Database Management System

(RDBMS) is used to provide the necessary logging facilities. This system architecture is illustrated in

Figure 9.

1 This simulation framework was developed to test strategies for implementing network management policies. Because

network management messages are infrequent compared to regular network traffic, this efficiency argument is based on an
underlying assumption that the communication traffic between the user-interface and the simulation kernel is not a dominant
factor in the overall workload.

A. Cholkar 15

Access to the simulation kernel is via a simulation server, which spends most of its time waiting

for simulation requests. Simulation requests are generated by user interfaces when a user decides to

start a new simulation. Upon receiving a simulation request, the simulation server spawns a process

called a Simulation Executive. The simulation executive takes over the task of managing the

simulation and coordinating interactions between different entities in the simulation. Each user

interface has exactly one simulation executive assigned to it. The simulation executive handles the

scheduling events and checking for breakpoints. Each host or link is encapsulated in a HostExecutive

or LinkExecutive class respectively. These classes act as wrappers for the corresponding entities and

present an API that other components in the system use for startup and shutdown of the encapsulated

entity, event delivery, instrumentation and injecting asynchronous inputs. These executives are

derived from a base class called EntityExecutive that includes all the common functionality.

Figure 10. Sequence Diagram for a typical startup scenario.

A. Cholkar 16

Typical sequences of interactions that take place between the various components in the system

are shown in the sequence diagram in Figure 10. On startup, the user interface first contacts the

SimulationService and requests the creation of a new SimulationExecutive. Next, an input

specification provided by the user is sent to the Simulation-Executive. This specification is then

parsed and the appropriate HostExecutives and LinkExecutives are instantiated. The specification

also contains identifiers for modules that need to be loaded (recall that for a host or link to exhibit a

desired set of behavioral properties, modules must be assigned to it). Thus, each HostExecutive or

LinkExecutive instantiates its modules. These modules then interact with the entity encapsulated in

the executive through the MPA and drive the simulation.

A simulation normally consists of a large number of stock modules and a few user-written

modules. Stock modules are pre-defined to help provide a variety of facilities such as routing abilities

for a Host or statistical message corruption for a Link. User-written modules could be modules

written by the user or could be third-party modules conforming to the MPA. In order to bootstrap

these modules into a simulation, an activation daemon is included in the code shipped with the user

interface.

A. Cholkar 17

5. EXAMPLE APPLICATION

To test the applicability of the MPA and the MCI, it was necessary to implement and test the

behavior of modules that were reasonably complex. Hence, we decided to implement and test

Resource Priority Multiplexing (RPM) [7] modules for scheduling network traffic. We found that

implementing RPM schedulers as modules in our framework was readily done, and that the

simulation results matched theoretical behavior predictions.

RPM is a probabilistic method for sharing resources among competing tasks, and is normally used

for scheduling network traffic from flows that compete for access to a specific network link. RPM

involves two components – the RPM scheduler and the RPM equation solver. To keep the discussion

simple, we only talk about the RPM scheduler. The RPM scheduler is made up of a marker that

assigns priorities to packets and the actual scheduling mechanism that transmits these packets. The

marker has a built-in state machine that has one state per competing flow. The time spent in each state

is decided by the RPM equation solver. These times depend on the task mix and the service levels

required by each task. (The terms task and flow are used interchangeably throughout this section,

because the RPM scheduler sees the manifestation of a task as a flow of packets that the task

produces.)

The implementation for the methods in the MCI for the RPM scheduler is shown in Figure 11(a)

through 11(c). Only the necessary code to explain the concepts and illustrate the use of the MCI and

MPA has been included.

Figure 11(a) shows the initialization sequence for the RPM scheduler module. Initially, the module

parses the input parameters, which can be specified using a configuration file by the user or can be

specified by a module dynamically at run-time. The input parameters contain information about

queue sizes and other configuration options. On parsing the input parameters, the module registers as

a subscriber to a message-channel named “XMIT_REQUEST”. This message-channel is used to

receive messages from other modules on the entity that want to send packets out on the network.

A. Cholkar 18

(a) Initialization

(b) Message Processing

(c) Shutdown.

Figure 11. Implementations of methods in the MCI for the RPM scheduler.

Figure 11(b) shows the implementation of the amProcessMessage method, containing the decision

process of the RPM module. Packets are first classified and marked with the appropriate priority,

which depends on the state of the state-machine in the marker. This takes place in the

amClassifyPacket method. After marking, the packets are enqueued and scheduled for transmission.

If the queues get full, the scheduler in the amSchedulePacket method starts dropping packets with the

lowest priorities until there is enough space in the queues to enqueue the new packet.

Figure 11(c) shows the amDestroy method of the module. Because there is neither any shared state

between the RPM module and other modules nor any persistent state in the RPM module, the module

A. Cholkar 19

does not have any cleanup work to perform. Therefore, the method is empty.

A simple two-host network was simulated to test the RPM modules, in which one host was the

sender and the other the receiver. Three modules were written to model three tasks that generate

traffic bound from the sender to the receiver. The traffic profiles for the tasks are shown in Table 1.

The notation used for the high and low profiles denotes the amount of time the task is in a

particular state (high or low) and the traffic it generates. For example, the task A generates 5Mbps of

traffic, 95% of the time and 20Mpbs of traffic, the other 5% of the time. An RPM scheduler was also

assigned to the sender and was used to schedule packets from the three modules. The bandwidth of

the link connecting the two hosts was set to 30Mbps.

The last column in Table 1 indicates the assurance level required by each task for the duration of

its session. An assurance level for a task is defined as the fraction of the amount of traffic generated

by the task, that is successfully delivered to its intended receiver, expressed as a percentage.

Therefore, an assurance level of 99% required by task A implies that it cannot tolerate a loss of more

than 1% of its packets. The session length for all three tasks was set to be 600 seconds.

Task ID Low Profile Specs. High Profile Specs. Assurance Level

A 95%@5Mbps 5%@20Mbps 99%

B 85%@2Mbps 15%@18Mbps 99%

C 90%@7Mbps 10%@12Mbps 98%

Table 1. Task Profiles for the RPM scheduler example on a 30Mpbs link.

The results obtained for the network simulation problem are shown in Figure 12(a) and 12(b).

Figure 12(a) shows the observed traffic generated by the three tasks. It can be seen that this traffic

confirms to the traffic profiles of Table 1.

A. Cholkar 20

(a) Traffic generated by tasks.

(b) Service characteristics of tasks including assurance levels.

Figure 12. Traffic and service characteristics of tasks in the example simulation.

t2t1

A. Cholkar 21

The traffic profiles shown in Table 1, indicate that there are modes of operation for the task-set

where the sum of the total traffic generated by the three tasks exceeds the 30Mbps capacity of the

link. For example, even if just task A or task B enters its ’high-profile’ mode the total traffic

generated by the three tasks is equal to 32Mbps or 33Mbps respectively. Figure 12(a) shows such an

instance, ‘t1’, where tasks B and C are in their ‘high-profile’ modes and the total traffic generated at

the sender is 35Mbps (5Mpbs for task A + 18Mbps for task B + 12Mbps for task C). This additional

traffic is first enqueued to smooth out small bursts. However with finite queue sizes large bursts result

in queue overflows and eventually dropping of packets. Additionally, if all three tasks enter their

respective ‘high-profile’ modes at the same time, as shown by instance ‘t2’ in Figure 12(a), the drop

rate could be as high as 20Mbps worth of packets. In such situations, guaranteeing an assurance-level

of 99%, 99% and 98% for the three tasks becomes a non-trivial exercise.

The delivered traffic at the receiver and the delivered assurance-levels for the tasks are shown in

Figure 12(b). It can be seen that initially the assurance level for Task A goes below its probabilistic

guarantee and drops down to 95.62%. This is a result of all three tasks switching to their high profile

modes in the initial stages of their respective sessions. This surge of traffic causes many packets to be

dropped in the system. This impacts the assurance levels of all tasks because the traffic generated in

the initial stages of the session accounts for most of the traffic. Although, all tasks loose packets, Task

A is penalized the most because during that interval the RPM marker happens to be in a mode where

task A has the lowest priority. However, as the session progresses, all three tasks get equal to or

greater than the assurance levels they desire. The values that were actually obtained were 99.16%,

99.28% and 99.58% for tasks A, B and C respectively.

Thus, because the RPM module implementation delivered the expected results we could conclude

that our MPA and MCI were applicable and sufficient to implement even modules as complex as

RPM schedulers.

A. Cholkar 22

6. CONCLUSIONS & FUTURE WORK

The concurrent need to provide portability and extensibility to web-based simulation frameworks

while providing complete language-independence and platform-independence for large-scale

deployment mandates a careful choice of distributed object technologies along with a good design.

Current, web-based, network simulation frameworks fall short of providing complete language and

platform independence and hence have limited deployability.

Our approach to enabling large-scale deployment uses CORBA-IDL based APIs, a publisher-

subscriber communication model, and dynamic composition of all simulation entities. The CORBA

components provide language and platform-independence. In addition, they allow developers to write

their own objects on their own platforms and have their objects participate from their platforms in a

remote-simulation. We used a uniform message format to enable module reassignment to different

simulation entities without requiring source-code modifications or recompilation. Our APIs also

include support for dynamic loading and unloading of modules, which facilitates simulation of faults,

simulation entity polymorphism and dynamic topologies. We also demonstrated the applicability and

sufficiency of the APIs to model real world networking mechanisms through an example application.

Despite the flexibility and suitability of our framework for large-scale deployment, an

implementation based on it has to address issues such as security, protection and fault-tolerance, if it

is to be deployed on the World Wide Web. For example, in order to achieve secure communications,

users need to be authenticated and messages may have to be encrypted. We envision using SSL-based

[10] CORBA ORBs for this in the future.

The work presented herein demonstrates that it is possible to attain a web-based network

simulation framework suitable for large-scale deployment without sacrificing extensibility or

flexibility. The prototype described in this paper is being used to evaluate distributed computing

policies, and is being itself executed as a simulation on distributed computers. It is envisioned that

other such naturally distributable simulations will benefit from a similar approach.

A. Cholkar 23

ACKNOWLEDGEMENTS

This research was sponsored by DARPA under contract N66001-97-C-8527 (the Amaranth project),

and made use of hardware donated by Intel Corporation.

REFERENCES

[1] K. Arnold and J. Gosling. 1996. The Java Programming Language. Addison Wesley.

[2] L. Brakmo, A. Bavier, L. Peterson, and V. Raghavan. 1997. x-Sim User’s Manual (V. 1.0).

[3] The Common Object Request Broker Architecture: Architecture and Specification – Revision

2.2. February 1998. Object Management Group.

[4] J. Dahmann, R. Fujimoto, and R. Weatherly. The Department of Defense High Level

Architecture. Proc. of 1997 Winter Simulation Conf., pp. 142-149.

[5] Paul A. Fishwick. December 1996. Web-Based Simulation: Some Personal Observations. Proc.

1996 Winter Simulation Conf., pp. 772-779.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, pp. 17-18.

[7] J. Hansen. 1999. Resource Priority Multiplexing. To be published in INFOCOMM 2000.

[8] INSANE. http://www.ca.sandia.gov/~bmah/ Software/Insane/index.html, accessed 03/21/1999.

[9] S. Keshav. 1988. REAL: A Network Simulator. UCB CS Tech Report 88/472.

[10] Netscape Communications Corporation. The SSL Protocol – Version 3.0. March 1996. IETF -

Internet Draft.

[11] NetSimQ. http://eewww.eng.ohio-state.edu/ drcl/grants/middleware97/netsimQ.html, accessed

03/21/1999.

[12] B. Oki, M. Pfluegl, A. Siegel, D. Skeen. 1993. The Information Bus - An Architecture for

Extensible Distributed Systems. ACM Symposium on Operating System Principles.

A. Cholkar 24

[13] E. H. Page, S. P. Griffin, and S. L. Rother. April 1998. Providing Conceptual Framework

Support for Distributed Web-Based Simulation within the High Level Architecture. Proc. of

SPIE: Enabling Technologies for Simulation Science II, pp. 287-292.

[14] R. Rajkumar, M. Gagliardi, L. Sha. 1995. The Real-Time Publisher/Subscriber Inter-Process

Communication Model for Distributed Real-Time Systems: Design and Implementation.

Proceedings of the 1995 IEEE Real-time Technology and Applications Symposium.

[15] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. 1991. Object Oriented

Modeling and Design. Prentice Hall.

[16] J. Rumbaugh. 1994. The Life of an Object Model: How the Object Model Changes During

Development. Journal of Object-Oriented Programming. pp. 7(1):24-32.

[17] C. C. Shen. December 1996. A CORBA Facility for Network Simulation. Proc. of the 1996

Winter Simulation Conf., pp. 613-619.

[18] A. Thomas. 1998. Enterprise Java Beans Technology: Server Component Model for the Java

Platform. White Paper, Sun Microsystems.

[19] UCB/LBNL/VINT Network Simulator. http://www-mash.cs.berkeley.edu/ns/ns.html, accessed

03/21/1999.

