79

Architectural Opportunities
For Future Stack Engines

Philip Koopman, Jr.

Harris Semiconductor
2525A Wexford Run Rd.
Wexford, PA 15090

Abstract

The next generation of stack computer designs must address
the changing realities of the marketplace. Embedded real time
control will become the primary application area, forcing design
tradeoffs that are different from those made by other processors.
Important issues that must be addressed by stack computer desig-
ners include: support for the C programming language, living with
memory bandwidth limitations, and making the best possible use
of large numbers of transistors.

Introduction

Today’s marketplace will no longer accept a stack-based
processor that is sold as a general-purpose CPU designed to run
only Forth software. Times are changing. RISC processors have
matured, and are starting a second generation. C is invading the
domain of embedded control. Processor speeds are now faster
than affordable memory. And, transistors are cheap enough that
the compactness of a stack processor is not always an overwhelm-
ing advantage.

It is quite possible for stack-based processors to capture a
significant share of the crowded CPU market. However, theywon't
do it by following strategies used in earlier days. Problems of
competition from RISC systems, adequate support for C, faster
memory speeds, and the availability of plentiful transistors are all
changing the rules of the game. Future stack processors must
address these issues, or be relegated to niches where ability to run
Forth software quickly is a compelling advantage.

Embedded Real Time Control
as an Application Area

Stack-based processors are not used in the major PCs or
workstations. That is just as well, because today’s stack CPUs make
tradeoffs away from performance as general purpose processors
in favor of the requirements of embedded real time control. With
the dominance of first- and second-generation RISC processors
for new workstation and PC designs (except those systems
shackled to software compatibility with previous CPU genera-
tions), it would be a mistake to compete head-on with RISC and
CISC processors. Instead, most applications for stack processors
will be based on embedded real time control.

Common requirements for embedded real time control ap-
plications include strict limits on size, weight, power, cooling,
reliability, and cost while demanding a high performance that has
both determinacy and predictability [KOOP90a]. Stack proces-
sors are able to meet these requirements at low cost and with high
performance [KOOP90b]. Therefore, we shall focus on em-
bedded real time control as the application area of interest for the
rest of this discussion.

Since embedded real time control favors design tradeoffs made
to reduce overall system complexity, future stack machine designs
will continue to support increased system integration and maxi-



80

Proceedings of the 1990 Rochester Forth Conference

mum performance with minimum hardware resources. Most im-
portantly, common hardware-intensive tradeoffs used in RISC
processors to increase speed will be avoided by stack processor
designers. For example, support for dynamically managed cache
memories will continue to be omitted. Also, Harvard architectures
that increase memory fetch and store speed at the cost of doubling
the amount of required processor pin bandwidth will be avoided.

Architectural Support for C Compilers

Assembly language used to be the premier language of em-
bedded systems. However, that is changing. Today, one of the first
questions asked by customers (even those currently using assembly
language) is “how well does it run C?” The question is not “does it
have a C compiler?” — the existence of C support is taken for
granted. Any stack processor that does not have good support for
C is simply not a contender.

At the architectural level, the C execution environment must
be supported efficiently. As a minimum, this requires a dedicated
frame pointer register that points to C activation records (i.e., a
register pointing to the memory-resident stack used for local vari-
able storage by C). This frame pointer register is used frequently
to read and write memory using base register plus offset address-
ing. Therefore, a quick way to read and write memory must be
provided that uses the frame pointer plus a short literal value as
the memory address.

Conventional wisdom dictates the use of a reasonably large
register file for efficient execution of C programs. This wisdom is
based on the fact that current C compiler technology uses inter-
mediate code based on pseudo-register assignments. Also, ad-
vanced compiler technology (developed primarily for RISC
processors) is able to use efficiently a large register file to reduce
memory traffic to and from the activation record area in memory.
So, one way to support C is to add a register set to the processor.
The problem with this is that such registers cannot be as efficient
as registers on a RISC machine, since stack machines do not
typically allow for more than one literal that could be used as a
register number in any instruction. Therefore, a register-to-
register add that can be performed in one clock by a RISC machine
could take three clock cycles on a stack machine with an auxiliary
register set. At the same time, these registers reduce the ad-
vantages of stack computers by increasing the context to be saved
on context switches.

1 favor a different approach to C support for stack machines.
Rather than use existing compiler technology (which was
developed for register-rich RISCs), we must develop new compiler
technology that keeps values on the data stack whenever possible.
Preliminary experiments at Harris show that analysis similar to that
performed by optimizing RISC compilers can be used to compile
C code into code that resembles hand-written Forth programs for
RTX processors. How efficient this code is compared to Forth
remains to be seen, and it will no doubt be quite a while before this
compiler technology is ready for general use. Nonetheless, the
prospect of a C compiler that can optimally use the resources ofa
stack processor has great appeal compared to burdening an effi-
cient stack architecture with a retrofitted register set.

There are several other minor issues for supporting C. Most
Forth systems use the value -1 as a true flag, whereas C specifies a
value of 1. Also, most Forth systems have used unsigned byte
operators (e.g., €@, C!) whereas the default for C is sign-extended

characters. Stack architectures and compilers must somehow find
compromises on these issues that do not significantly reduce
system performance.

It is not likely that a stack processor can be faster at C than a
RISC processor in the general case. The challenge is to give stack
processors better C performance than a RISC system of
comparable cost and complexity, and then excel on issues of
interrupt performance, context switching speed, code size, better
integration level, increased performance when using Forth as

assembly language for inner loops, and application-specific
concerns.

The Memory Bandwidth Problem

Memory bandwidth limitations seldom receive the attention
they deserve. Increasing clock speeds cause problems with memory
response times in two ways. At a first level, faster clock speeds
mean that memory chips must be faster to have the same cycle time
as the processor. As memory speeds edge down toward the 10 ns
threshold, a secondary effect takes place: delays for driving addres-
ses and data over pins become significant. With a 4 MHz part (250
ns memory cycle time), a 10 ns delay for driving an address bus is
a minor consideration. With a 40 MHz part (25 ns memory cycle
time), a 10 ns delay accounts for 40% of the bus cycle time! Great
pains have been taken to optimize RISC processors to require a
new instruction from memory on every clock cycle, putting relent-
less demands on the memory subsystem for instructions and data.

RISC processors are dealing with the memory bandwidth prob-
lem in two ways. First, they use a memory hierarchy that places
most data in relatively slow and inexpensive DRAM chips. A
comparatively small amount of high-speed cache memory (small
for a RISC — typically 64K bytes) is then used to reduce average
access time to memory. These cache chips must be a bit faster than
the CPU’s operating frequency in order to deliver one datum per
clock cycle. This hierarchical approach reduces the amount of fast
memory needed, and therefore system cost, at the expense of
giving up execution time determinacy.

The second way RISC processors deal with the memory
bandwidth probiem is by using brute force. Harvard architectures,
which use separate data paths to instruction and data caches,
double the bandwidth to cache memory in exchange for better
performance. With or without a Harvard architecture, the cache
memory chips must be fast enough to keep up with the processor,
and chip-to-chip signal propagation delays must be kept to a
minimum. Therefore, some newer RISC chips use ECL RAM
chips and pin driving circuitry. ECL is known for being extremely
fast in both transistor switching speed and pin driving speed. It is
also known for consuming large amounts of power and chip area.

Embedded applications are not likely to use ECL memories
anytime soon. They are simply too expensive, power-hungry, and
hot. Therefore, RISC manufacturers are introducing stripped-
down versions of their processors that run on TTL-level SRAM
and DRAM chips. In many cases, the SRAM chips used will be
slower than cache-grade SRAM chips because of cost constraints.
These stripped-down RISC processors then have a severe memory
bandwidth problem. And, to make matters worse, any on-chip
cache memory that would alleviate the problem must be disabled
to gain determinacy for many applications.

Stack processors will also use TTL-level SRAM and DRAM
chips for embedded control. Therefore, the question becomes onc



Embedded Systems

81

of how stack processors can gain a speed advantage with limited
memory bandwidth. One simple technique that works on any stack
processor is to make more effective use of a statically allocated
bank of fast memory. The smaller program size of a stack processor
increases the likelihood that an entire application will fit into a
single bank of fast SRAMs, whereas a RISC processor would need
to keep much of the program in slower DRAMS. Also, even for
larger programs, quick subroutine calls allow stack processors to
keep critical code sections in fast memory while other sections are
in slow memory.

With the coming of 32-bit stack processors, another method
becomes available for improving the amount of work done given
a limited memory bandwidth. A 32-bit instruction is typically big
enough to hold two or more stack machine instructions. The RTX
4000 design performs two separate operations with most instruc-
tion formats [KOOP89]. The ShBoom design holds between one
and four operations in each instruction word [PTAC90]. A stack
processor that executes more than one operation for each instruc-
tion word fetch can be optimized to perform multiple clock cycles
per memory access, whereas RISC systems are optimized for a
single clock cycle per memory access. Thus, if memory bandwidth
is the limiting factor to system performance, it is possible for a stack
machine to execute significantly more instructions per second than
a RISC processor.

Making Use of Cheaper Silicon

Recently we have seen the introduction of several RISC and
CISC processors with more than one million transistors on a chip.
These gargantuan CPUs are quite expensive compared to a stack
processor, yet they remain popular. Why?

The key to the maximum acceptable size of a chip is the cost of
the CPU relative to total system cost. Large, expensive CPU chips
are acceptable in a workstation design where CPU costs account
for only one-tenth of the system cost. In such systems, CPU costs
are dwarfed by the cost of DRAM, which typically accounts for
one-half the system cost [HENN90]. In embedded systems,
memory requirements and the costs for other components are
often smaller, and CPU costs are often a significant portion of total
system costs. Therefore, CP'U die size and cost becomes an impor-
tant issue in embedded control systems, favoring the use of smatl,
inexpensive CPU chips.

On the other hand, there is no doubt that an increased number
of transistors will become available for stack computer chips in the
future. Because defect rates are exponential with die size, there is
a knee in the yield curve below which smaller die size is not
particularly advantageous for improving yield. For very small chips,
the number of bonding pads and packaging costs can easily become
dominant factors in chip cost. If useful functions can be added to
the CPU chip while keeping the die size small enough, significant
system cost savings can be realized.

The best features to add to an embedded control CPU chip are
not simply brute-force techniques to increase speed. The best
features reduce overall system complexity while improving system
performance. The best additions improve the integration level of
the system. Adding timers, counters, 1/O devices, and memory
control logic to the CPU chip can reduce the number of the
components on the system significantly. Application-specific ver-
sions of a CPU can replace custom hardware on a circuit board
with on-chip logic, often reducing complexity while increasing

system speed. These techniques are already being used by the
Harris RTX 2000 processor family, and will be emphasized even
more in the future.

As a last resort, memory can be added to the CPU to improve
available memory bandwidth for executing programs. This is not
the first thing to use chip area for, however, because RAM takes
up a lot of chip space, and the effectiveness of on-chip RAM is
limited if the entire application program will not fit on the CPU
chip. One attractive alternative is to provide on-chip ROM for
application-specific versions of a CPU. ROM is much denser than
RAM, so reasonable amounts of ROM can be placed on a 16-bit
processor chip. This ROM would either execute an entire applica-
tion program, or contain a toolbox of routines that execute quickly.

Conclusions

Stack computers still have a bright future in embedded real
time control applications. There are several important develop-
ments required to make this potential a reality. The performance
of C on stack machines must be improved through a combination
of architectural adjustments and better compiler technology. Ar-
chitectures must be tuned to take advantage of the restricted
memory bandwidth available on low-end systems. And, newly
available “cheap silicon” must be used wisely to improve overall
system cost-effectiveness and performance. Current and future
Harris RTX chips incorporate features to exploit advantages in all
these areas to maintain their edge for embedded real time control.

References

{HENN90] Hennessy, J., Patterson, D., Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers, San
Mateo CA, 1990.

[KOOP90a] Koopman, P., “Design constraints on embedded
real time control systems,” Majithia (Ed.), Systems Design &
Networks Conference, Microprocessor Track, May 8-10, 1990,
Santa Clara, CA, pp. 71-77.

[KOOP90b} Koopman, P., “Modern stack computer
architecture,” Majithia, (Ed.), Systems Design & Networks
Conference, Microprocessor Track, May 8-10, 1990, Santa
Clara, CA, pp. 153-164.

[KOOP89] Koopman, P., VanNorman, R., “RTX 4000,”
Proceedings of the 1989 Rochester Forth Conference, pp.
84-86.

[PTAC89] P.T. Acquisitions, ShBoom Microprocessor
Applications Manual, System Insights, Austin TX, 1989.



