Forth-83

TESTING
TOOLKIT

PHIL KOOPMAN, JR. - WEXFORD, PENNSYLVANIA

Onc of Forth’s strong points is its sup-

port of interactive development and test-
ing. Sometimes, however, interactive test-
ing is not enough. During the development
of low-level software for the RTX family,
we wanted a method to create a permanent
record of test cases for Forth words. This
record serves as documentation for users
and maintainers. In addition, a full suite of
test cases for a program provides a way to
be sure that a change in one part of the
program does not disturb other parts of the
program,

How to Use It

Each test case consists of code that
places elements on the data and retumn
stacks, creates and executes a test defini-
tion, then verifies that the correct results
were placed on both stacks. For example, a
test case for the word DUP would be:

_
The test case can be

any sequence of Forth
words.
_

DS(1111 --

RS(-~

TEST: DUP ;DONE
--)RS

-=- 1111 1111)DpS

The first line of the test case specifies that
the data stack input to the test is the number
1111, The second line specifies that no
elements are to be placed onto the return
stack. The third line creates and executes a
temporary Forth word with a body of DUP,
carefully handling the data and return stack
Contents before and after the test. The
fourth line specifies that no values should

Forth testing support

Derived from test code used for the RTX chip family

\

\ By Philip Koopman Jr., for Harris Semiconductor

\

\ Developed on F-TZ (an F-PC and F-83 derivative) version 3.X11

VARIABLE #STACK -1 #STACK !
CREATE R-SAVE 8 ALLOT

: GET-DEPTH
DEPTH #STACK @ -- #STACK ! ;

: DS((-— $BAD1 $BAD2)

\ Init RS to -1 so that ‘'~ will know it is a DS input
\ Uses hex OBADl and hex OBAD2 as sentinel values for DS

-1 #STACK ! SBAD1 $BAD2 ;

: RS((-~ $BAD3 $BAD4)

\ Uses hex OBAD3 and hex OBAD4 as sentinel values for RS

DEPTH #STACK ! $BAD3 $RAD4 ;

(nl n2 n3 ..
#STACK @ 0< NOT

: ?DATA (nl
= NOT ABORT”

n2 ~-)
DATA STACK ERROR” ;

: PRETURN (nl
= NOT ABORT”

n2 ——)

()
DEPTH #STACK ! ;

: PERCOIATE (rl n.n ..
#STACK @ ROLL

nl —
-1 #STACK +! ;

:)RS (r.n ..
GET-DEPTH #STACK @
IF BEGIN PERCOLATE ?RETURN
$BAD4 ?RETURN S$BAD3 ?RETURN

:)DS (r.n ..
GET-DEPTH #STACK @
IF BEGIN PERCOLATE
$BAD2 ?DATA

?DATA
$BAD1 ?DATA

: REVERSE (n.1n.2..
DUP 0> IF O DO

n.n n

¢ INIT-TEST (..DS.stuff..

(RS: -- ..RS.stuff..

n.n ..

\Savesnumberofstackelementsfortesting
\ Note: F-TZ uses 32-bit return addresses!

(..stack.stuff.. - ..stack.stuff..)

n.n - nl n2 n3 ..

IF (if RS() GET-DEPTH

RETURN STACK ERROR” ;

nl

r3 r2 r.1 nl n2 n3

#STACK @ O= UNTIL THEN
-1 #STACK ! ;

r3 r2 r.1 nl n2 n3 ..

#STACK @ 0= UNTIL THEN
~1 #STACK ! ;

n.n ..

I ROLL IOOP ELSE DROP THEN ;

..RS.stuff..

)

n.n sentinel)
THEN ;

rl)

.. n.n ——)

n.n —)

n.2 n.1)

—— ..DS.stuff..)

Volume XII, Number 3

31

Forth Dimensions

be left on the return stack, and generates an
error message if this is not the case. The
fifth line specifies that two values of the
number 1111 should be returned from the
test, again generating an error message if
this is not the case. It is very important that
the test cases be written in exactly this
order, with no missing items, for proper
operation.

The body of the test case between
TEST : and ; DONE can be any sequence of
Forth words, including primitives that ma-

‘nipulate the return stack. The words
' INIT-TEST and FINISH-TEST are
automatically compiled with the testcase to
handle the data and return stacks for proper
execution.

Inordertobe sure thataword is working
properly, it is not enough to simply place
the required number of parameters on the
stack and then see if the correct results are
returned. The problem is that a word may
cause unexpected side effects (such as cor-
ruption of elements on the data and return
stacks) that are not detected immediately.
In order to handle this case, the test words
place two “sentinel values” onto both the
data stack and the return stack, then check
to ensure that no corruption has occurred.
While side effectsare usually nota problem
in high-level code, they can easily create
problems when dealing with assembly lan-
guage or microcode word implementa-
tions.

Ideas for Further Refinements

The test capability presented here is
rather simple, in order to keep the code
(somewhat) understandable. Features that
could be added to improve its usability
include: allowing RS () RS to be optional,
so tests that deal only with data stack opera-
tions could automatically generate and test
return stack sentinel values; more sophisti-
cated error messages that show exactly
what is wrong with a stack when an error
does occur; methods to ensure that only
desired memory locations are modified for
words that perform fetches and stores; and
methods to ensure that only desired on-chip
registers are modified for assembly lan-
guage definitions.

The code is written for F-TZ, a version
of F-PC, developed by Tom Zimmer. F-PC
is a descendent of F-83, but allows using a
dictionary space of greater than 64K bytes.
The code presented should be relatively

(Continued on page 41.)

CR .” TEST-”

#STACK @ 0< ABORT” You must specify both DS(and RS(.”

R> R-SAVE ! R> R-SAVE 2+ ! \ Save return address
#STACK @ REVERSE

BEGIN 4#STACK @ 0> WHILE >R -1 #STACK +! REPEAT

R-SAVE 2+ @ >R R-SAVE @ >R ; \ Restore return address

: FINISH-TEST (..DS.stuff.. — ..DS.stuff.. ..reversed.RS.stuff..)
(RS: ..RS.stuff.. —)

R> R-SAVE ! R> R-SAVE 2+ ! \ Save return address
\ Transfer return stack contents onto data stack for later compare
0 >R
BEGIN R> R> SWAP 1+ >R
R> REVERSE
R-SAVE 2+ @ >R R-SAVE & >R

DUP $BAD3 = UNTIL
\. Restore return address
.” -DONE” -1 #STACK ! ;

\ TEST and DONE use F-TZ specific words to compile a short
\ definition containing the word to be tested, execute that
\ definition, then FORGET it from the dictionary.
\ This borrows a compilation idea from Rick van Norman’s RIX test code
CREATE MARKER 4 ALLOT
: TESTER ;
: TEST: { —)
XHERE 2DUP MARKER 2! PARAGRAPH + DUP XDPSEG ! 0 XDP !
XSEG @ —— [‘] TESTER >BODY !
COMPILE INIT-TEST] ;

: ;DONE

COMPILE FINISH-TEST COMPILE EXIT

STATE OFF TESTER MARKER 2@ XDP ! XDPSEG ! ;
IMMEDIATE

\ Test ROT for proper operation
DS(1111 2222 3333 —-
RS(—
TEST: ROT ;DONE
—_)RS
-— 2222 3333 1111)DsS

\ Test >R for proper operation
DS(5555 --
RS(—
TEST: >R ;DONE
-— 5555)RS
-—)}DS

\ Any combination may go between TEST: and ;DONE
DS(1111 2222 3333 —
RS(7777 2222 9999 —-
TEST: SWAP R> ROT >R ;DONE
-- 7777 2222 3333)RS
-- 1111 2222 9999)DS

\ Null test to be sure it works
DS(-—
RS(—
TEST: ;DONE
—_—)RS
--)DS

Forth Dimensions

32 Volume XII, Number 3

International Forth BBS's

« Melboumne FIG Chapter
(03) 809-1787 in Australia
61-3-809-1787 international
SysOp: Lance Collins

= Forth BBS JEDI
Paris, France
3336431515
7 data bits, 1 stop, even parity

» Max BBS (ForthNet link*)
United Kingdom
0905 754157
SysOp: Jon Brooks

« Sky Port (ForthNet link*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson

» SweFIG
Per Alm Sweden
46-8-71-35751

« NEXUS Servicios de Informacion,
S.L.
Travesera de Dalt, 104-106, Entlo.
4-5
08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 32147262 (modem)
SysOps: Jesus Consuegra, Juanma
Barranquero
barran@nexus.nsi.es (preferred)
barran@nsi.es
barran (on BIX)

This list was accurate as of August 1990, If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith

P. O. Drawer 7680

Little Rock, Arkansas 72217
Telephone: 501-227-7817

GEnie (co-SysOp, Forth RT and Unix
RT): GARY-S

Usenet domain.: uunet! wugate!
wuarchive!texbell!

ark!lrark!gars

e |

(Continued from page 32.)

portable to other 83-Standard Forths, as
long as the return-address-save sequences
in INIT-TEST and FINISH~TEST are
changed to save and restore only a single
return stack element for most other Forths.
Also, TEST : and ; DONE should be rede-
fined for use with other dictionary struc-
tures.

Interactive testing is important and use-
ful (and, in fact, there is no reason why
these tools cannot be used as an interactive
testing format). However, once initial test-
ing is done, it is often useful to have a
permanent test suite in a consistent and
readable format. Portions of many pro-
grams are so crucial to system operation
that they merit a full validation suite to
prove correct operation. At Harris, valida-
tion suites are being used on the instruction
sets of some of the RTX processors. The
tools presented here provide a starting point
for creating a validation suite for a variety
of applications.

Philip KoopmanJr. is a senior scien-
tist at Harris Semiconductor and an
adjunct professor at Carnegie Mel-
lon University. The opinions in this
article are his, and do not necessar-
tly reflect the views of Harris Semi-
conductor.

(Continued from page 38.)

the current one. Malloc(), calloc(), tal-
loc(), free() and friends all come down
to brk() and sbrk() in the end. So there
are “most primitive possible” func-
tions. So primitive in fact that nobody
in their right mind wants to use them if
malloc() or something like it is avail-
able.

Note that, while this is true in Unix, it is
not necessarily true in other operating sys-
tems. Consequently, while sbrk() is cer-
tainly the primitive memory allocation
operation for Unix, it does not necessarily
even exist on all C implementations. In
particular, I would expect that it would be
difficult to properly implement sbrk() on
the Amiga (probably the Amiga C library
simulates it with some restrictions). sbrk()
assumes that each process has its own ad-
dress space, which is notgenerally true. Use
of sbrk() is not necessarily portable.

By the way, since brk() can be imple-
mented in terms of sbrk(), sbrk() is the true
primitive on Unix systems. In many Unix
implementations, sbrk() is the true system
call, and brk() is implemented as a library
routine, a thin veneer around sbrk().
—Mitch Bradley

e ———,———— |
To suggest an interesting on-line
guest, leave e-mail posted 10 GARY-§
on GEnie (gars on Wetware and the
Well), or mail me a note. I encourage
anyone with a message to share 1o
contact me via the above or through
the offices of the Forth Interest
Group.

ADVERTISERS INDEX

Academic Press, Inc. 14 Institute for Applied 26,27
*ForthNet is a virtual Forth net- Dash. Find Associates 35 Forth Research
work that links designated message ’ Laboratory Mic te 35
bases in an attempt to provide Forth Interest Group 44 ory Microsystems
greater information distribution to FORML 33 Miller Microcomputer Services 24
the Forthusersserved.Itisprovided Next G ion S ”
courtesy of the SysOps of its various Horne Electonics, Inc. 40 ext Generalion Systems
ili 2
Harvard Softworks 16 Silicon Composers
Upper Deck Systems 40
Volume XiI, Number 3 41

Forth Dimensions

