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PREFACE

WISC Technologies, Inc. was incorporated in the State of California in
March, 1987. The Company is dedicated to the development of new tech-
nologxes in computer software and hardware des1gn These papers describe .
the work we have done. '

The original CPU/16 was shown at the San Francisco Computer Faire
in 1986. We were pleased that BYTE noted our product in their What’s
New section of the June 1986 issue.

At the 1986 Rochester Convention, two pa.pérs were presented on the
history and architecture of the product.

BYTE invited two papers from Phil Koopman, Jr. The first was in
their January 1987 issue featuring Programmable Hardware. The second
was in their April 1987 issue featuring Instruction Set Strategies.

At the 1987 Rochester Forth Conference with the theme Computer
Architectures, Glen B. Haydon presented a paper entitled “A Unification
of Software and Hardware; A New Tool for Human Thought ” and Phil
Koopman Jr. presented an invited paper entitled “Writable Instruction

- Set, Stack Oriented Computers: The WISC Concept” .

These papers are collected in this publication to provide convenient
access to the ba.ckground history and the problems addressed by WISC
Technologies, Inc. in their development of computer architectures to im-
plement the WISC concepts. :

The WISC CPU/16 and WISC CPU/32 are available for immediate
delivery. _

June 1987 . P K. and G.B.H.
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THE SMALL SYSTEMS JOURNAL

WHAT'S NEW

Microcoded
IBM PC Board

esigned for building

customized processors.
the MVP Microcoded
CPU/16 from Mountain View
Press is an add-on board for
the IBM PC that implements
a high-speed microcoded
processor. A wire-wrapped
prototype of the board.
which MVP demonstrated at
the West Coast Computer
Faire in April. ran one
FORTH test program 50
times faster than an IBM PC
alone. According to the
company. the processor can
execute over 2 million stack
operations per second.

The card's 74-chip design
includes a 16-bit ALU. two
hardware stacks. an interface
to the IBM PC. 128K bytes
of static memory. a program
counter. two 16-bit data
registers. and room for 256
microcoded processor in-
structions. Each microcoded
instruction is defined by up
to eight 32-bit user-definabie
microcode instructions

An Engineering Prototype
Kit is available for S1500
and a printed circuit board
version should be available
this month. MVP includes
the following software with
the wire-wrap kit;: MVP
FORTH/16. a word-oriented
FORTH that executes direct-
ly in the processor; the
MVP-FORTH Programmer's
Kit: a Number Extensions
package: a microcode as-
sembler: a cross-compiler: a
set of diagnostic programs.
and source code for all the
preceding software

For more information.. con-
lact Mountain View Press
Inc. POB 4656. Mountain
View. CA 94040. (415)
961-4103
Inquiry 558.

34 BYTE * |UNE 1986



MVP MICROCODED CPU/16
HISTORY
~ Glen B. Haydon
Haydon Enterprises
Box 429 Route 2
La Honda, CA 94020
Ph1l Koopman Jre

- 20 Cattail Lane
No. K1ngstown, RI 02852

INTRODUCTCN

The ‘MVP-MICROCODED CPU/16 des1gn resembles that conceived in the

_ALCOR project in developing an ALGOL translator utilizing multiple hardware

stacks combined with the powerful techniques of a freely microcodable
processor implemented in discrete components. In the present form of the

CPU/16 design, the user is free to structure the processor ~according to
application requirements for opt1mat efficiency.

HISTORY

TheALCORpro;ectwasLedbySamelsonandBauerdur1ngthe19505. Its
goal was to provide a direct method for translation of ALGOL. They conceived
of a hardware design with two"ceLLars",one was to hold operatiomal characters
and the other to hold numbers. In modern terminology these would be called
stacks. They are hardware storage devices based on a Last.in first out scheme.
Ablock diagram of their concept, Figure 1, has been included in several papers.
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» It appears that a hardware implementation of the ALCOR design was
never completed. Computer processor designs took another direction. - A
stack operation was often included but with the stack memory mapped into a

portion of the system's memory. Such stacks are usually used to store the

-.return location for subroutine calls and sometimes to preserve other values.

- Inthe late 1960s, Charles Moore designed a scheme of programming also
~using two stacks. One stack contained the return addresses of successive
subroutine calls and the other stored interim data values during computation.
~ Unfortunately, he could find no hardware designed to fulfill his needs and
resorted to emulating such aprocessor. Such emulaticns are ava1lable on many
: systems today. ‘They are known as a FORTH kerneL. . '

A second consideration in. the CPU/T6 design is similar to that adopted
by Seymore Cray. In his Cray computer design, he used discrete components.
“His claim was that it was the only way to get speed. Of course the Cray Gesign

utilized many other features but the basic idea was that faster processo.s

could be 1mpLemented ut1l.1z1ng simple components.

The Cray computers used a Data General Eclipse as a host'gi'ving access

to the outside world. Inasimilar manner the CPU/16 uses an IBM compatible as
a host providing I/0 to the outside world. With only minor changes, the CPU/16
could use any common  microcomputer. : oo- .

Finally, the concept of rvnicrocobd"i,ng a simple processor has been

~utilized in many different ways. Specific microcodable devices have been

- designed and are commercially available. Examination of these devices
suggested that we could design a simple processor with cdiscrete components

wh1ch coul.d be microcoded and provide even greater varsahhty and speeo.-~

RESULTS

The end result of these ideas is presently operational and available in

kit form. It provides an ideal tool for exploring the potential of the des1gn'-‘
and as a Learmng medium. Unfortunately, many people are reluctant to .

undertake a wire wrapping exercise requiring 30 to 40U hours. However,

_utilizing the single stepping czpabilities from the host, any portion of the
processor can be exercised step by step. There is no better way to Learn at

first hand the capab1t1t1es of a multistack m1croc00abLe processor.

‘WORK IN PROGRESS

Now that the CPU/16 design of the kit has stabilized, the ne‘,x‘t step is‘

to produce that design on printed circuit boards to be placed in the IBM FC

compatible. A problem with such a board js that it is no longer s1mpLe to

change a wire corresponding to a bit in the microcode. The printed circuit
board is no longer the experimental tool at the hardware level.

The CPU/16 design is currently being la1d out and wire wrapped on a
pair of S-100 system boards. It will run with an implementation of MVP-FORTH
on an S-1G0 bus system. There is also interest in implementing the CPU/16
des1gn ut1l.1z1ng the Apple II ser'les of computers as the host.
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- NEXT GENERATION

Where to from here? The 16~bit bus of the present design is limited to
16-bits of address space. By addressing on word boundar‘ies; the system can
address 128K bytes. But without some form of bank switching, virtual memory
cr some other technique, the size of memory is limited. Intel has overcome
this limitation by utilizing several base segments from which addresses can be

indexed. This is in essence a form of bank switching although it has been
efficiently implemented. ‘ :

The next bus size to consider is 32-bits wide. Intermediate numbers
of address bits can be used but efficiency dictates the next size limitation at
twice the size of the 16-bit Limit.. Using a 32-bit bus in a manner analogous to
the current 16-bit design and adding a number of enhancements, a significant
further increase in performance is anticipated. Also a billion 32-bit words
(4-giga-bytes) of contiguous memory cculd be addressed without some form of

bank switching. Part of the engineering prototype for a CPU/32 basec on these
considerations is already completed and functional.

The CPU/16 kit is an ideal hardware system with which to study other
architectures. For example, the design is clearly not a RISC machine as
currently described. However, by addressing items in the decdicated stack
memory with optimized microcode, it would be possible to treat stack RAM as an
array of registers and emulate a RISC design. In such an implementation, the
RISC architecture could be thought of as a subset of the copabilities of the
CPU/32 processor. '

LANGUAGES

The MVP CPU design lends itself to the efficient implementation of a
wide variety of high Llevel Llanguages. For example Smalltalk-50 uses
approximately 100 primitives each of which could be implemented in microcode.
The design would be ideal for implementation of 2 p-code machine.

FORTH has been used in the initial phases of this work. FORTH is. af-er
all, an emulation of the hardware design. The language ‘has the advantage of
ease of interactive programming and access to all hardware components. The
ciagnostic suite, micro-assembler and cross-compiler were easily developed
with a minimum of effort. = The language also provides a versatile facility for
programming many applications.

However, with the desirability of making the system compatible with
other existing programs, it would be desirable to have a common cperating
system available. One route to a popular operating system woulc be to first
implement the C langusge. Already, one group is working to implement Small C.
With a full implementation of C, the entire UNIX system cculd be added.

With the versatility of a microcodable processor, the cevelopment of
new languages tailored to specific applications becomes more reasonable. The
languages of LISP and PROLOG are just a beginning in the field of artificial
intelligence and they have been inplemented in FORTH. It should be relatively
essy to move such implementations to the newly designed processor.

(@1)



CONCLUSIONS

The MVP CPU design provides fLex1b1L1ty in designing and using hardware

to solve many application problems. In addition, many high level languages
could be implemented on such a system with excellent efficiency. Initially,

'FCRTH has been chosen as the as the host and processor language. As such, the
system complements a variety of other commercially available implementations
‘of FORTH in hardware. The MVP CPU series of products provides flexibility for

experimentation and tailoring the processor to specific application and a tool ,

for teaching and testing a variety of hardware processor designs.

The kit would mzke an ideal starting point for a eomprehensive
computer science course sequence. Such a sequence might start with the

building of the kit as a microcodable processor. That might be followed with. v

‘the writing of the software for a compiler and an operating system. The series
might conclude with a significant application ut1L1z1ng the tools which were
developed. S

The fundamental philosophy = has been to examine programing
requirements of the application at hand, and design the hardware accordingly.
It is a shame to have the hardware Limitations drive the programming and limit
the solution of the application. Thepresent designis a stage in the evolution

of hardware to solve problems. Perhaps more than two stacks would be

desirable in some applications. Once & design is found for a specific
- application, the next step would be to cast that des1gn in silicon. But con't
" get the cart before the horse. :

BIBLIOGRAPHY

Bauer. Fredrich L., Between Zuse and Rutishauser- The Early Development of

Digital Computing in Central Europe., in A History of Computing in the Twentieth

Century, N. Metropolis, J. Howlet, and Gain-Carlo Rota, Editors, Academic Press
1980.

to many workers in various branches of computer science today.

Note: This volume is a treasury of historical ideas which are unknown
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MVP MICROCODED CPU/16
ARCHITECTURE

Phil Koopman Jr.
20 Cattail Lane
No. Kingstown, RI 02852

Glen Haydon
‘Haydon Enterprises
Box 429 Route 2
La Honda, CA 94020

. ABSTRACT

The MVP Microcoded CPU/16 is a 16-bit coprocessor board
that directly executes high level stack-oriented programs. .
The CPU/16 may be micro-programmed to execute any stack-
oriented language. FORTH was used as the 1initial implemen-
tation language to reduce development time and costs.

- INTRODUCTION

Modern computer languages and compilers rely heavily on
the concept of the push-down stack. However, conventional
computers are optimized for register-oriented operations and
impose large memory access time penalties when using stacks
residing in main memory. The CPU/16 stack-oriented co-
processor can improve the performance of a personal computer
to equal that of a much more expensive mini-computer for

. programs that make heavy use of stacks.

The MVP Microcoded CPU/16 was designed as - a "low tech"
exploration tool for stack-oriented processing. The result
is an inexpensive commercial system that: '

1) Uses simple, inexpensive, commonly available components.

2) Minimizes hardware and software development tool costs.

3) Fits the basic system onto a single IBM compatible
Personal Computer expansion board (13" x 4").

4) Maximizes flexibility and minimizes complexity.

5) Achieves a 20 to 50 times speed improvement over 8088 MVP
FORTH. '

SYSTEM ARCHITECTURE

The CPU/16 is implemented in only 74 ICs (with 8k words
of program memory), with no custom or semi-custom chips
required. 74xx and 74LSxx series ICs provide all logic
functions, with 120ns CMOS static RAMs for. microcode and
program memory. ’

Figure 1 shows the architectural structure of the

CPU/16. All data paths are 16 bits wide.

The CPU/16 plugs into an IBM compatible personal
computer as a one-slot expansion board. The host interface

on the CPU/16 allows the personal computer to alter

registers and memory as well as single-step programs at the
microcode or macrocode level. When the CPU/16 is in
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"master" mode, the personal computer waits for the CPU/16 to
request I/0 service through the status register.

The return stack and data stack are hardware. stacks
with 8-bit pointers addressing 256 elements of stack memory.
The stacks may be accessed and pointers incremented or
decremented in a single clock cycle.

The ALU is built from 74LS181 chips, and has two shift

registers to hold intermediate results. The  Data Hi.

register and the Data Lo register can be shifted together as

a 32-bit register for multiplication and division. The Data

Hi register normally contains the top data stack element.
Program memory is organized as 64k words of 16 bits.

All but the last 256 words may be used for program memory.

A 16-bit program counter is used for all memory access
addressing. The separate memory address bus from the
program counter allows overlapped instruction fetching and
execution. Program memory expansion beyond = 8k words
requires a daughter-board. '
Micro-program memory is - organized as 2k words of 32 .
bits. The microcode bit  format is typical of modern
horizontally microcoded machines. The micro-program counter
and micro-instruction register allow overlapped’ fetching and
execution = of micro-instructions. Conditional microcode
branches and microcode looping are accomplished by
manipulation of the low' order 3 " bits of the micro-program
address. If, during macro-instruction decoding, the highest
8 bits of a macro-instruction are not all 1, the

microprogram counter is forced to all zero's, executing a

DOCOL subroutine call. If the highest 8 bits are all 1,
then one of 256 possible microcoded primitives is executed.

SOFTWARE SUPPORT

'FORTH was picked as the CPU/16's development language
for its efficiency, its simplicity’ of compiler
implementation, and its friendly interactive environment
with easy access to hardware resources. The CPU/16
supporting software includes a host control program, a
microcode assembler, and a FORTH cross-assembler, as well as

the FORTH microcode and kernel for the CPU/16
implementation. ‘
The host program, microcode assembler, and cross-

compiler are written in 8088 MVP-FORTH. The CPU/16
currently uses an - MVP-FORTH kernel that differs in
functionality from the 8088 MVP-FORTH version in that it
uses word-oriented instead of byte-oriented memory
addressing. In addition to FORTH, the CPU/16 is ' capable of
supporting other programming languages such as Modula 2,
Pascal, Lisp, and C. Any compiler implemented in machine-
independent MVP-FORTH can be quickly installed on the
CPU/16.

Current applications available on the CPU/16 include
double-precision and quad-precision integer arithmetic¢ and
single-precision floating point math packages.



- PERFORMANCE

The CPU/16 runs at a 4.77 MHz micro-cycle rate. An.

"average" microcoded primitive executes in 3 clock cycles
(630 ns). This .provides approximately a 20 to 50 times
speed increase over 8088 MVP-FORTH programs operatlng at- the
. same clock speed.

Since only half of the micro-program memory is required
for the MVP-FORTH implementation, custom-written microcoded
primitives may be ‘added to a user's application to increase
the speed of commonly used words. As an example, software
stack manipulation words: o o -

: INC[@] ( PTR-ADDR =-> N ) DUP @ @_ 1 ROT +! ;

DEC[!] ( N PTR-ADDR => ) -1 OVER +! @ ! ;
can - each be implemented in 10 micro-cycles (2.10 us), a
speed increase of greater ‘than - 300% over high-level
definitions. The listing for INC[@] is glven as an example
of CPU/16 microcode: :

177 OPCODE: INCI[@] ( ADDR -> N ) -

0 :: SOURCE=ALU ALU=B DEST=PC ;; \ PC <- ADDR.

1 :: SOURCE=ALU ALU=-1 DEST=DLO ;; \ DLO <- -1

2 :: SOURCE=RAM - ALU=A+1 DEST=DHI ;; \ DHI <- POINTER+1

3 :: SOURCE=ALU ALU=B DEST=RAM ;;  \ POINTER <- DHI

4 :: SOURCE=DLO ALU=A+B DEST=PC INC[MPC] ;; \ ‘PC <- PTR
5 JMP=000 ;; \ WAIT FOR RAM ACCESS, JMP TO NEXT PAGE
178 CURRENT-PAGE ! : .

0 SOURCE=RAM ~ DEST=DLO ;; \ DLO <- DATA

1 SOURCE=PCSAVE ALU=A+1 DEST=PC ;; \ RESTORE. PC

2 :: SOURCE=DLO ALU=A DEST=DHI DECODE ;; \ T.0.S. <- DATA.

3 oz END ;; \ JMP TO NEXT INSTRUCTION

FUTURE DEVELOPMENTS

Future developmehts for the CPU/16 will focus on
broadening the range of languages and application programs
available. Potential applications for a  stack-oriented

processor include: artificial intelligence, computer

graphics, image processing, real-time control, and efficient
execution of modern computer languages.

The CPU/16 is the first in a family of stack-oriented

processors. A 32-bit = general-purpose stack-oriented
processor with greater speed and memory addressability is
currently in development.

CONCLUSIONS

The MVP Microcoded CPU/16 is a high performance,
general-purpose stack-oriented processor. A "low tech"
approach has yielded significant speed improvements over
current microprocessors at a modest cost. Compatibility
with existing MVP-FORTH systems allows for easy porting of
existing software to a high performance environment.

10



PROGRAMMABLE HARDWARE

Microcoded Vers

Apw

lard-wired Control

- A comparison of two methods for implementing

R the control logic for a simple CPU

THE INSTRUCTION decoding and exe-
cution control sections of modern com-
puters are prime areas for using program-

© mable hardware. Two of the most widely

used methods for designing. CPU control
sections in microprocessors, minicom-
puters, and mainframes are microcode and

‘hard-wired logic. Each method has its ad-

vantages, and both are natural applications
for programmable hardware devices.

Architectural Description

I'll start by giving the specifications for

a simple computér architecture, then walk
through the implementation of this archi-
tecture using both microcoded and hard-
wired design strategies. While both ap-

proaches require the same description and.

specification groundwork, they use dif-
ferent schemes to generate control signals.
I will examirie the CPU architecture of

. Toy, a fictitious computer designed

especially for this article. The CPU has
an accumulator (ACC), an arithmetic

logic unit (ALU), an instruction register

(IR), a program counter (PC), some ran-
dom-access memory (RAM), and some
control logic. Figure 1 is a block diagram
of the Toy architecture. All data paths are
16 bits wide with 12-bit memory-address
paths. You can directly implement the
ALU, ACC, IR, PC, multiplexer, and

‘RAM sections of Toy using comnionly

available chips. Toy's control-logic section
will require detailed design and the use
of customized hardware or a large number
of combinatorial logic gates.

The Toy instruction format shown in

 figure 2 consists of a 4-bit op code and

Phil Koopman

a [2-bit addreSs ficld. The 16 implemented
op.codes are shown in table 1. Op codes

8 through- 1S do not make use of the in-
struction’s address field.

Since Toy is a single-accumulator ma-
chine, the instructions ADD, SUB, AND,
OR, and XOR combine the contents of a
memory location with the accumulator
and return the result to the accumulator.
The instructions STORE and- LOAD
transfer the accumulator to and from
RAM. The instructions NOT, INC, DEC,
and ZERO operate -on the accumulator
alone. While JMPZ is the only branching
instruction, you can program an uncon-
ditional branch by following ZERO with
a JMPZ. Finally, the four unused op
codes act as null operations (NOPs) to
eliminate the annoyance of dealing with
illegal op codes. :

Control Logic
The control-logic section translates the op-

code bit patterns into CPU-control and -
.timing signals. Figure 1 shows the op-code

inputs to the control-logic unit and the
control-signal outputs required to run the
rest of the CPU. The signals ALUO
through ALUCIN control the ALU. (I
based the bit assignments on those for the
74181 ALU chip. See The TTL Data Book,
listed in the Bibliography.) If ALUMODE
isa 1, then the ALU will perform a logical
operation; if it’s a 0, the ALU will perform
an arithmetic operation. ALUO through
ALU3 control which arithmetic or logic
operation the - ALU .is performing,.
ALUCIN acts as the carry-in for. the ALU.

When the signal CLOCK[ACC]isa 1,

the ACC register is loaded with the value
of its inputs at the rising edge of the system
clock. This -is -usually referred to as
“clocking in" the contents of the ACC.
When the signal CLOCK[IR] is a 1, the
contents of the IR are clocked in from the
RAM output. This is the mechanism used
to decode the next op code. When
ADDR=IR 'is a 1, the RAM address"
multiplexer places the contents of the IR

‘address field onto the RAM address bus.

When it is a 0, the PC is used to address

‘RAM. T use the descriptor ADDR=PC

to mean ADDR=IR is 0. When
CLOCK[PC] isa | and the ACC is 0, the
PC is loaded from the IR address field.

-When INC[PC] is a 1, the program

counter is incremented by | at the ¢nd
of the current clock cycle. When
WRITE[RAM] is a 1, the RAM cell ad-
dressed by the RAM address bus is loaded
with the output of the ALU; when this
signal is a O, the ALU is driven from the
output of RAM.

Functional Specifications
Now for the heart of how the Toy instruc-
tion sct is implemented. In the Toy CPU,
all instructions can be executed in just one
or.two-clock cycles. Table 2 shows the ac-
tions required to complete each op code’s
function. Those actions in table 2 that arc
’ continued

By day, Phil Koopman (20 Cautail Lane,
North Kingston, RI 02852) is a U.S. Navy
submariner and engineering duty officer:
by night, he designs computer hardware,
software, and microcode.
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CONTROL LOGIC

not the control signals shown in figure 1 STORE requires two clock cycles since
are macros for the ALU control bits 'RAM is being used for accessing a data
whose value is given in table 3. Let’s ex-  value during the first clock cycle. The sec-
amine some representative op codes in . ond clock cycle is the same for all two-
- detail. o o cycle instructions; it is simply a decoding
The STORE op code stores the contents ~ of the next op code.
of ACC into RAM. For the first cycle of The contents of the RAM address
this instruction, the low 12 bits of the IR pointed to by the PC are put onto the
address RAM. The ALU routes the ACC  RAM address bus to fetch the op code.
contents through without modification, ~ They are then clocked into the IR, and

then writes them out to RAM. continued

cC )
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CONTROL LOGIC

Table 1: Toy instruction set.

Op code " Operation Description

0 STORE store accumulator in RAM at address
1. LOAD load ACC from RAM at address

2 JMPZ jump to address if ACC is zerg

3 ADD add RAM to ACC

4 suB sublract RAM from ACC
5 OR logical OR RAM into ACC
6 AND logical AND RAM into ACC
7 XOR logical XOR RAM into ACC
8 NOT logical one's complement into ACC
9 INC add 1 to ACC .

10 DEC subtract 1 from ACC

.1 ZERO place 0 in ACC
12 ‘NOP null operation — unused op code
13 NOP null operation — unused op code
14 NOP null operation — unused op code
15 NOP null operation — unused op code

Table 2: Toy functional specification. Note that ADDR=PC is equivalent to
the ADDR=IR signal being 0. Also, I have used descriptive macro names
Jor the ALU control bits (see table 3).

Op code Operaﬁon

Cycle . Specification

0 STORE
1 LOAD
2 JMPZ
3 ~ ADD
4 - suB

5 OR
6 AND
7 XOR
8 NOTA
9 INCA
10 DECA
1 ZERO
12-15 NOP

i
2
1
2
i
2
1
2
1
2
i
2
1
2
1
2
1

ADDR=IR ; ALU=ACC ; WRITE[RAM]
ADDR=PC ; CLOCK([IR] ; INC[PC]

ADDR=IR ; ALU=RAM ; CLOCKIACC]
ADDR=PC ; CLOCK[IR] ; INC[PC]
CLOCK(PC] :

ADDR=PC ; CLOCK(IR] ; INC[PC]
ADDR=IR ; ALU=ACC+RAM ; CLOCK[ACC]
ADDR=PC ; CLOCK([IR] ; INC[PC]
ADDR=IR ; ALU=ACC-RAM ; CLOCK[ACC]
ADDR=PC ; CLOCK(IR] ; INC[PC]

ADDR=IR ; ALU=ACCorRAM ; CLOCK(ACC]
ADDR=PC ; CLOCK(IR] ; INC[PC]

ADDR=IR ; ALU=ACCandRAM ; CLOCK[ACC]
ADDR=PC ; CLOCK(IR] ; INC[PC]

ADDR=IR ; ALU=ACCxorRAM ; CLOCK[ACC]
ADDR=PC ; CLOCK(IR] ; INC[PC] :

ALU=notACC ; CLOCKI[ACC] ;
ADDR=PC ; CLOCK(IR] ; INC[PC]

ALU=ACC+1 ; CLOCK[ACC] ; ADDR=PC :
CLOCK(IR] ; INC[PC]

ALU=ACC-1 ; CLOCK[ACC] ;
ADDR=PC ; CLOCK(IR] ; INC[PC]

ALU=0 ; CLOCKIACC] ;
ADDR=PC ; CLOCK([IR] ; INC[PC]

ADDR=PC ; CLOCK(IR] ; INC[PC]

13
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finally the PC is incremented so that it is
- pointing to the next op code.

“JMPZ " accomplishes a conditional
" branch by loading the contents of the PC

with the address in the IR. For this to-be’
aconditional branch, the control signal to -

the PC loadcr must bc ANDcd with a

‘signal that is only true if all the bits of the
ACC are 0. Since the PC is lodded with

the new instruction address at the end of

the-first clock.cycle, the second cycle is
a normal.decoding instruction for this new

address, identical to the second cycle of

STORE.

74181 ALU chip).

Table 3: Macros for the AiLU control bits (based on. bit a&.vignments; m the ,'

'Macto ALUO  ALU1 ALUZ ALU3 ALUMODE ALUCIN
ALU = ACC 1 1 1 1. 1 x
ALU = RAM 0 1 0 1 1 X
ALU = ACC + RAM = 1 0 0 1 0 0
AU = ACC =~RAM 0 1 1 0 0 1
ALU = ACCORRAM' 0 1 T 1 1 x
ALU = ACC AND RAM 1 1 0 1 1 x
ALU = ACC XOR RAM - 0 1 1 0. 1 X
ALU = NOTACC. 0 0 0 0 1 x
ALU = ACC + 1 0 0 0 0 0 1
ALU = ACC - 1 1 1 1 1 0 0
‘AWU =0 1 1 0 0 1 X

Table 4: Control signal value_.speciﬁcalion.

Values for first clock cycle of each instruction

Control Op code
- signal 0 1

n
[~

[+2]
O
-

o
-
-
-

N

—_

[4)

=y

F.S

-
[&]

ALUO
ALU1
ALU2
ALU3

+/ ALUMODE
ALUCIN
CLOCKIACC]
CLOCK([IR]

- ADDR=IR
CLOCK[PC]
INC[PC]
WRITE[RAM]

dooﬂéox —'—‘-;A'A
COO—40Oux 2a0=0
OO0 =+ 200X X X X X X
vo‘oéh—-'o—too—noo—a
OO0~ 04+=200=4+=0 | &

OO0 ~O-4xX === |0
COO0—=20ax 2=0=x

O-00—-ax 0000 |®

©O-00=+=2~-0000O0

0C-00==00 ===
O~ 0O0 4 =X 200 = =
O-00=0x x x x X X
anoéogx‘xxxx
O~ 00 ~0xxxxxx
O—-OO‘—-AC‘>xxxxxx

Values for second clock cycle of each instruction .

Control Op code :

signal 0 1.2 34 5 6 78 9 1011 12 13 14 15
ALUO X XX X X X X X X X x X %X x x x
ALU1 X X X X X X X X X X X X x x x x
ALU2 X X X X X X. X X X X X X X x x x
ALU3 - X X X X X X -X X X X X X x x x x
ALUMODE X X X x X' x X X x X X x x x x x
ALUCIN X X X X X X X X X X X X X x x =x
CLOCKIACC] 0 0 00 00 0 0 x x x x x X X X
CLOCK(IR] 1T 1 1 1 1 1 1.1 x x x x x X X X
ADDR=IR 0O 000 0 0 0 0 o XX X X X X x x
CLOCKI[PC] 0 0 0.0 0 0 0 O X X X X X x x x
INC[PC] T1 1 1 11 1 1. x x x x x x x x
WRITERAM]" 0 0 0 0 0 0 0 0 'x « XX X x.x x
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The single-clock-cycle instructions.

- such as NOTA, do not require a RAM ac-

cess for an operand. This means that the

. usual second-cycle decoding sequence ¢an:
‘occur during the same clock cycle as the
“ALU operation that modifies the ACC

" -contents. In the case of NOTA| the RAM -

input to the ALU is ignored while the

. ALU computes the one's complement

(logical inverse) of the. current ACC
contents, . B

Control-Logic Outputs ‘
- Table 4 gives a complete listing of all the

control-logic output values that you necd
to specily the Toy functional description.
Each X corresponds to a signal whose
value does not ‘matter, either because the

controlled resource is unused (as in the .
ALU signals for op code 2) or becaise the
second clock cycle is unused for op codes
- 810 15. These “don't-care’ signals become
_crucial when you are designing hard-wired
» control circuitry.

. Hard-wired Control ‘

A CPU designed with hard-wired control

_uses random logic such as AND, OR, and -
NOT gates and either flip-flops or

counters to decode each op code and con-
trol the processing flow. The hard-wired
design process usually consists of identi-
fying all the states needed to implement
the instruction set, then deriving the

-Boolean logic equations required to con-

trol “the computer's resources for each
step.

Figure 3 shows the hard-wired imple-
_mentation of the functional specifica:

tions given in table 4. It requires a con-
troller with two states: first clock cycle and
second clock cycle. The flip-flop in figure

3 is forced to the CLOCKI state whenever-

a new instruction is clocked into the IR
and changes to the CLOCK2 state when-
ever the IR is not clocked.

The most tedious part of a hard-wired
control design is creating the logic gate '
networks to decode instructions into con-
trol signals. I have derived the required

logic equations shown in figure 4 from the
functional specifications in table 4. Figure
5 shows the Karnaugh map for deriving

the first equation (ALUO) in figure 4. (See

W. Fletcher's An Engineering Approach
to Digital Design [Prentice-Hall, 1980] for
a discussion of Karnaugh maps.)

The don't-carc conditions are vitl in

reducing the complexity of the gate net- .
works, since they allow freedom to'ignore’

some op-code bits or state bits to minimize
decoding logic. A good example of a
don’t-care condition is the ALU control
signals; they do not depend on whether
the controller is currently in the CLOCKI
or CLOCK2 mode. :

continued
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aLuo

> ALU2

ALU3

ALUMODE

> ALUCIN

CLOCK [ACC)

CLOCKI(IR)

} ADDR: IR

> CLOCK[PC)

INCTPC)

N
—> WRITE[RAM)

FLIP-FLOP

Figure 3: Hard-

wired controller schematic. Note thas none of the ALU sigrials
depend on whether the controller is in the CLOCK! or CLOCK?2 mode.
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R R T s, L R

gl

Figure 4: Logic equations for Toy's ha

rd-wired implementation.

\\OP1,0P0
£ OP3;0P2N{ /00 -t Ok (M1 i
[ - 1 3
00 1% o 1
4 5 7

S|*—OP CODE VALUE

0 =—— VALUE OF ALUO
J FOR THAT OP CODE

Xz DON'T CARE

Figure 5: 7o show how the Boolean equations in figure 4 were derived

from table 4, here is the Karn
Boolean equation. The Xs are

augh map used to minimize the ALUO

the don’'t-care bits, and the number in the

upper right corner of cach box is the op code.
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~ To implement the hard-wired controller.
the complementary outputs of the
CLOCKI/CIL.OCK2 flip-flop and the in-
puts from the current op code in the IR
are fed throughout the system by the lines
at the left of figure 3. These inputs are then
fed  through = logic gate  combinations
specified by the equations in figure 4. You
can implement these logic-gate combina-
tions with TTL logic gates or. if you want
to save board space, program them into
hardware, such as a PAL.

As an example of how these decoding
gates work, consider the generation of the

signal INC[PC]. The INC[PC] signal

should be a | for op codes 8 to 15 on the
first clock cycle and for op codes 0 to 7
on the second clock cycle. But, since op
codes 8 to 15 are all single-cycle op codes,
any signals generated from them during
the sccond cycle can be ignored. This
gives the result that INC[PC) can be | for
all op codes during the second cycle. The
logic for INC[PC]J then becomes the AND
of the highest op-code bit (OP3) and
CLOCKI, with the result ORed with
CLOCK2.

Becausc the time required for a signal
to pass through a simple logic gate is only
a few nanoseconds with most current
technologies, hard-wired control can pro-
vide the fastest possible decoding of
machine language instructions. It also is
the most flexible design method for speci-
fying unique and complex control flows
within a CPU because the designer can
specify any decoding gate combinations
and any control-flow hardware. .

One drawback to using hard-wired con-
trol methodology is that it requires a con-
siderable amount of Boolean algebra
manipulation. Another drawback is that
the CPU must be completely and correctly
specified before you design a hard-wired
control unit.

Any additions or modifications to the
specification can require a major redesign
of the control unit. 1f you want a feel for
the impact a design change can have on
a hard-wired controller, try redoing the
logic equations with two op codes
switched, such as op codes 5 and 9, or
with op code 15 defined as a two-cycle
logical NAND instruction.

Microcoded Control _
Microcoded design differs from hard-
wired design in that the control-logic gates
are replaced by a memory array (usually
a ROM) to generate the required control-
logic signals. While ROMs are slower
than random logic within the same price
and performance categories, using a ROM
simplifies the design process and signifi-
cantly reduces time and costs for imple-
menting a CPU control circuit.

Figure 6 shows the schematic for a

-~
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microcoded control circuit for Toy. The
op code and a flip-flop similar to the one
used in the hard-wired controller are fed
in as an address to the microprogram
ROM. The outputs of the ROM directly
drive’ the control signals for the CPU.
Each ROM location contains the proper

- bit settings to control a single clock cycle
-of an op code's cxccution, as shown in

figure 7. ‘

The control signals for the first cycle of
each op code are placed in the even
memory addresses (which are addressed
when the flip-flop in the controller out-
puts a 0 for the first clock cycle), and the
second cycle op todes are placed in odd
memory addresses. I have arbitrarily
assigned the value 0 to all don’t-care bits
from table 4 and copied the rest of the bits
directly from table 4 to figurc 7.

. The main advantage (o microcoded con-
trol is that it lets the designer change the
CPU's functional description by changing
the bits in any ROM address without hav-
ing to' redesign the machine’s logic-
decoding gate structure. Microcoded ma-
chine design also lends itself to simply
structured, low-component-count com-
puters such as those built using bit-slice
technology. Most modern microproces-

) continued

NNMIOO D>

ROM
MICROPROGRAM MEMORY

(ALSO KNOWN AS CONTROL
STORE)

(32 WORDS OF 12 BITS)

P~4P>O

HIGH

> WRITE (RAM)
———> INC(PC]
———> CLOCK(PC]
F——> ADDR: IR
——> CLOCK(IR)
> CLOCK[ACC)
——> ALUCIN
——> ALUMODE
——> ALU3
—> atu2

= awnn

> aLuo

Low

* FLIP-FLOP

D

~

Q

Figure 6: Microcoded controller schematic.
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Figure 7: Contents of ROM for the microcode.

sors and large computers use microcoded
design techniques because the design costs
associated with hard-wired control are too
high.

In some cases, a computer will use
* RAM instcad of ROM for its microcoded
memory, providing a “‘writable control’
store.”” A sophisticated programmer can
use this to modify and extend the ma-
chine's instruction set for special applica-
tions. By using multiple sets of ROM or
RAM within a machine, the programmer
can make a computer emulate more than
one machine-code instruction set for dif-
ferent computing cnvironments.

The method of microcoding I used in
Toy is called horizontal microcoding,
since each bit of the ROM directly feeds
a control line for the CPU. A hybrid
design method known as vertical micro-

18

coding compacts some control signals
together to save ROM bits. It then uses
decoding logic much like that used by the
hard-wired approach to regenerate the
signals.

In general, hard-wired control is used
for computer designs that are simple or
that require fast execution speeds, while
microcoded control is used in complex
computer designs to keep design costs low.
Both design’ methods can implement
CPUs that are much more complex than
the Toy architecture. m

BIBLIOGRAPHY

Hill, F,, and Peterson, G. Digital Systems:
Hardware Organization and Design. (2nd
ed.) New York: John Wiley & Sons,. 1978,

The TTL Data Baok, volume 2, Dallas, TX:
Texas Instruments Inc., 1985, pages 3-712.



S

INSTRUCTION SET STRATEGIES

"The WISC Concept

A proposal for a writable instruction set computer

THE TRADITIONAL COMPLEX in-
struction set computer architecture with
its large, complicated instruction set has
become the mainstay of the microproces-
sor industry. Recently, however, pro-
ponents of the reduced instruction set
computer architecture have made the
controversial claim that RISC architec-
tures can execute programs more quickly
than CISC machines. Before you decide
which side of the line you're on, I'd like
to present an alternative computer archi-
tecture that combines elements of both
RISC and CISC philosophies to produce
an interesting, streamlined, flexible, and
potentially fast machine.

"My proposed architecture is called

WISC., for writable instruction set com-

puter. My purpose is not to show that
either the RISC or CISC approach is
somehow wrong, but rather to introduce

.- an alternative that blends RISC and CISC

concepts into a simple but powerful ar-
"chitecture.

First, I want to look at the key ideas
from the RISC and CISC concepts. Then
[ can select the best ideas for the pro-
posed WISC architecture. Finally, I will
combine these ideas to define the WISC
architecture and consider an overview de-
sign fora generic WISC machine.

Key RISC Concepts

RISC systems are based on the'concept of
optimizing the few instructions that are
used the most and eliminating infre-
quently used instructions to reduce hard-
ware complexity and increase hardware
speed. I will look at the key RISC con-
cepts, examine their strong or weak

Phil Koopman

points, and pick the ones that are most
desirable for an alternative architecture.
First, RISC machines must execute all
instructions in a single memory cycle.
Some authors have referred to this as sin-

- gle-clock-cycle operation, but the real

resource limitation is the amount of time
required to reference program memory.
The idea here is that if a CPU can execute
instructions as quickly as they are fetched
from memory, maximum system through-
put speed will result. Clearly, using as
much of the memory bandwidth as is
available is a desirable goal for WISC.

RISC machines must use hard-wired
control. The intent of using hard-wired
control is to allow for fast single-mem-
ory-cycle operation of op codes and
(when combined with a very small in-
struction set) reduce the amount of sili-
con area required for implementation on
a single chip. :

But it is not clear whether hard-wired
control is an absolute requirement. Since
a designer can make a small amount of
microcode memory extremely fast in re-
lation to large amounts of program mem-
ory (while achicving a rcasonable cost/
performance trade-off), there is no rea-
son why a microcoded processor cannot
achieve single-memory-reference-cycle
operation for most operations.

As for the chip-area argument, micro-
coded designs can have fewer gates than
hard-wired designs (exclusive of the
actual microcode memory). If I wish, I
can use the extra silicon area available in
a streamlined WISC single-chip imple-
mentation for microcode memory.

Next, RISC machines use relatively

19

few instructions and addressing modes.
This concept is a side effect of the need to
keep things. simple in a hard-wired, sin-
gle-cycle processor. If-a chip can support
additional instructions- without reducing
the clock-cycle speed for basic instruc-
tions—as is often the case with micro-
coded CPUs but usually not with hard-
wired CPUs—no real incentive exists to
limit the number or types of instructions.
Instructions with fancy indirect-address
modes or multiple-memory-cycle opera-
tion should be supported if the net result
is a speed-up of the entire system for an -
important application program or lan-
guage run-time environment. So a WISC
design should not unnecessarily restrict
the number and variety of possible in-
structions.

RISC processors use a load/store de-
sign, which allows *'load from memory "
and “'store to memory " as the only mem-
ory-reference instructions. This tends to
reduce clock-cycle times by shortening
delays in the memory-to-CPU data path
and simplifying control logic. It also sim-
plifies restarting after a virtual memory
page fault. However, if virtual memory is
not being used (as is the case in the vast
majority of personal computers today) or
if a memory reference can be combined

“with another operation for a net savings

continued

By day Phil Koopman is a U.S. Navy sub-
mariner and engineering dury officer; by
night he designs computer hardware,
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reached at 20 Cattail Lane, North Kings-
town, RI 02852.
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No evidence exists
that a fast computer
requires an architecture
with a difficult
assembly language.

in time, then no reason exists for restrict-
iing the system to a load/store design.
Thus, WISC computers should not be
limited to a load/store design.

RISC machines use a fixed instruction
format. Fixed instruction formats allow
simpler decoding of instructions and re-

duced hard-wired logic. They also.mini-

mize the number of microcoded instruc-
tions that are wasted on shifting and
interpreting op codes and operands.
Making all instructions the same size
(e.g.. a 16-bit format aligned on even-
byte- boundaries on a 16-bit machine)
makes'a lot of sense for simple, fast hard-
ware design. You can argue: that com-
pressing variable-length instructions into
the smallest space possible speeds pro-

gram execution by reducing the number

of memory accesses. But the trade-offs in
unpacking these compressed instructions
and formatting them properly for execu-

tion might eat up much of the savings

with more complex hardware and extra

instruction fetching when refilling a pre-

. fetch pipeline after a branch. Most people
seem willing to increase memory space
somewhat for faster program execution
speeds. So WISC should use a fixed in-
struction format. ,

Finally, RISC machines trade off more
sophisticated compiler technology for
less complex hardware. This argument is
based on the assumption that all program-
ming is done in high-level languages that
shield the user from the machine. No
doubt sophisticated compiler technology
can improve the speed of a high-level lan-
guage program. It remains to be seen
whether this speed increase can surpass
the capability of an experienced assembly
language programmer to handcraft the
few lines of code that might break the
speed bottleneck for a complex applica-
tion program. Inasmuch as no evidence
exists that a fast computer requires an ar-
chitecture with a difficult assembly lan-
guage, WISC should not have features
that demand the use of a sophisticated
compiler, although it could benefit from
such a compiler.

A Major RISC Problem
For all its good, the RISC design has an
Achilles’ heel. The low semantic content
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- of each instruction requires a high mem-
ory bandwidth, resulting in'a sharp mem-

ory price/performance trade-off.
Consider the common operation of de-
crementing the value at a memory loca-
tion. In a RISC machine this would be ac-
complished by a load, decrement
register, and store using five memory
cycles: three for instructions and two for
memory data references. An efficient
CISC or WISC architecture might sup-
port a single decrement instruction that

uses only three memory cycles: one for -

the instruction and two for memory data

references. If many commonly. required -

high-level language functions are not

supported in a RISC machine, memory -

access for instructions can create a
bottleneck.

Another example is the absolute value
operation applied to a value already resi-
dent in a CPU register or hardware data
stack. In any processor without this func-
tion as a built-in primitive, absolute value
determination consists of a sign compari-
son, a conditional branch, and a subtrac-
tion (or two's complement). This is a to-
tal of three instructions and a possible
conditional  branch - that upsets any. in-
struction pipelining that might exist. If
the absolute value function is included in
the instruction set, execution requires
only one memory reference. :

. 'Now .you might. be thinking, ““What
about a2 memory cache? Doesn't that
solve the memory bottleneck problem?"
But a cache is only a partial solution.
First a' cache speeds up memory refer-
ences only on the second and subsequent
accesses to a memory location. Thus, the

effectiveness of a cache is reduced by -

compiler optimizations such as unrolling

. loops. Second, a cache introduces addi-
tional system cost and complexity and re- -

sults in extra delay when encountering a
cache “miss” that requires fetching an in-
struction from memory. Finally, a cache
design is often bascd on the concept of
*locality™ of programs. This contradicts

the current software doctrine of breaking .

up programs .into smaller and smaller
procedures and functions for modularity
and reusability—or forces greater mem-
ory usage by compiling functions and
subroutines as in-line code, which fur-
ther reduces cache effectiveness.

Simply put, it is better to have no mem-
ory bottleneck problem than to have a
limited memory bandwidth with a cache.

Therefore, WISC should be designed to -

minimize the number of memory refer-
ences needed to accomplish each func-
tion in a high-level program. \
To avoid the RISC memory bottleneck
problem and achieve high performance, I
can borrow some concepts from CISC
machines. A CISC machine's CPU has
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an extensive and complex instruction set
that attempts to support high-level lan-

guage ‘control and data structures di-

rectly. All of today's widely used 16-bit
‘microprocessors are CISC designs.

Borrowing from CISC ‘
Two common CISC traits that might be

-useful ina WISC design are a minimal se-

mantic gap and the inclusion of as many

" high-level language-oriented instructions - - ‘
.as possible.

The driving force behind the complex-
ity of a CISC machine is the desire 10
speed up common high-level. language
operations such as character-string ma-
nipulation,  pointer maintenance. loop-
ing. and array handling. By reducing the
so-called semantic gap between the high-
level language statements. used in a pro-
gram and the machine-code instructions
available on the CISC machine, programs
should require fewer memory references.
take up less space, and run-faster. To
handle the very complex instructions that
can be used, designers of CISC machines

often use microcoded implementations..

Likewise, to provide complex instruc:
tions while. minimizing hardware com-
plexity, WISC should employ a micro-
.coded design. » .
An unfortunate side effect of complex
and comprehensive instruction formats
can be an excessive amount of decoding
logic or multiple microcycles just to de-
code an instruction before any real work
is done. But this side effect can be re-
duced by the adoption of a simple fixed
instruction format for WISC instruc-
tions. Using a fixed instruction format
eliminates complex manipulation of in-
structions to extract the meaning of an op
code and its operands, thus reducing

hardware requirements and speeding up

the processor.

Powerful high-level language-oriented
instructions, such as decrementing @
memory-location value or string manipu-
lations, can speed up programs signifi-
cantly by reducing the number of instruc-

. tion fetches from program memory. The

only pitfall is that such instructions must
be well suited to high-level languages, or
compilers ignore them in favor of synthe-
sizing primitive instruction sequences
that do the job exactly. Examples of prob-
lem areas include zero-based versus one-
based arrays and loop counters, subrou-
tine calling, parameter passing, and
list/record data-structure manipulation.
The answer to the semantic mismatch
caused by high-level language instruc-
tions that don't quite meet high-level lan-
guage requirements is to customize the
processor’s instruction set for each lan-
guage environment. This customization

continued
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would be accomplished in WISC with a
writable microprogram memory, some-
times called a writable control store, that
employs high-speed RAM to store micro-
code. Such an arrangement would let the

- processor’s microcoded instruction set

be changed ‘as the operating system

requires. o ’
- Therefore, a WISC goal should be to

execute all instructions in a single mem-
ory-reference cycle and use 100 percent
of available memory bandwidth, except
where a microcoded complex instruction
clearly results in performance superior to

multiple simple instructions for a particu-
lar application or high-level language
run-time environment. Of course, in-
structions involving memory operand ac-
cess will be loriger than a single memory
cycle, but they will nonetheless tend to
keep the memory productively engaged at
all times.

Using Stacks , ‘
The WISC architecture should use one

final feature to synergistically work with

other design aspects to increase speed
and decrease complexity of the system:
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hardware-implemented push-down lasi-
in/first-out stacks.

The stack concept has proved its valuc
in computers and modern-language 1m- -
plementations that use stacks for imple-

menting subroutine return-address stor-
age or parameter passing. However.

" these stacks are generally reéalized as ar

address register that points o main men-
ory, with perhaps the top few elements of
the stack located in special registers. 1|
propose using completely independent
high-speed memories to implement two
stacks for the WISC architecture. One
stack would be primarily. for subroutine
return-address storage and the other for
data storage.

The advantage of a hardware return-
address stack is that subroutine calls and
returns can be processed at 4 high speed-
with the return address transferred (o o:
from the return stack in parallel with de-
coding the next instruction. A hardwars
data stack lets subroutine parameters be
passed to subroutines without main-
memory accesses in addition to providing
for a large amount of scratch work space
for storing temporary results. In fact, the
underlying structure of modern lan-
guages such as Modula-2 seems to pre-
sume the existence of a stack of some
sort. :

In addition to reducing subroutine-call
overhead, use of a data stack simplifies
(and quickens) the machine's operation
by eliminating the need for operand ‘de-
coding. Since a stack machine implicitly
addresses certain elements on the stack
relative to the current stack pointer posi-
tion, the CPU does not suffer any delays
while source and destination registers are
selected from a large register bank. Fur-
thermore, the instruction bits freed by not
needing fields for selecting registers
allows the use of a narrow word size (16
bits or less). packing multiple op codes
into each program word, or using con-
stants or other values in the same word as
an op code, all while maintaining a sim-
ple instruction format. _

In-line literal values are required in 2
stack machine only for providing values
for variable initialization, arithmetic con-
stants, or branching addresses. These

_values can either be incorporated into un-

used instruction bits or placed into 2
memory cell after the instruction requir-
ing the value. One interesting approach
that some stack-oriented processors use
is to have two instruction types: one for
operations (consisting of an op code with
No parameters) and one for subroutine
branches (consisting of only an address
with a flag indicating an implied op code
of a call). )

So the WISC design should . include

continued
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hardware stacks. The use of hardware
stacks will reduce subroutine-call over-
head and the complexity and delay asso-
ciated with operand. decoding, since-all
operands are implicit.

A Generic WISC Computer
Having described the attributes of a
WISC computer, I would like to present a
generic architecture for WISC imple-
mentation. Figure 1 shows a block dia-
gram of one possible format for a WISC
computer. ‘ ‘

The resources of this generic WISC
computer are a data stack, an ALU with a
small number of registers (perhaps only

one), a return stack with a bidirectional
data path to the program counter for sub-
routine-call address manipulation, a pro-
gram memory, and a microcoded con-
troller. All the resources are connected to
a central data bus, with access to 1/0 ser-
vices through an appropriate interface.
The WISC machine in figure | has sev-
eral interesting aspects. One feature not
always found on hardware-based stack
designs is that the registers above the

~ALU can hold the top one or two data-

stack elements. These registers allow the

use of a single-ported data-stack RAM.
The entire instruction decoding path,

from the return-address stack all the way
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through to the microinstruction register

is completely independent of the dat
bus. This independence allows for ALL

and data-stack operations on data whiie
instructions are fetched and decodec
simultaneously: This structure allows usc
of nearly 100 percent of the memor:
bandwidth. An added benefit is that there
is no need to implement an instruction
prefetch unit; no time is lost flushing an
instruction queue when a branch is en-
countered. In fact, implementing a de-
layed branch similar to the ones used by

- .some RISC machines can eliminate al-

most all idle or 'wasted memory cycles.
The microinstruction register forms z
one-stage microinstruction pipeline anc
eliminates wasted time that would other-
wise result from waiting for micropro-
gram memory access in a nonpipelined
design. The only drawbacks to this de-
sign are that a two-microcycle minimum

" is imposed on all op codes and that de-

layed microinstruction branches must be
used for condition code testing. How-
ever, the small high-speed memory used
to implement the microprogram memory

-and data-stack memory should allow for

multiple microcode. cycles within each
memory-cycle time, essentially eliminat-
ing the impact of these drawbacks on sys-
tem performance. .
- A design approach for instruction de-
coding that could greatly simplify the
CPU hardware would be to use, for exam-
ple, an 8-bit op code that directly ad-
dresses a word in the microcode mem-
ory. This would directly address the first
microprogram instruction of a page of
microprogram memory; one page of
microprogram memory would be allo-
cated to each op code. This would allow
complete flexibility in instruction set as-
signment while using very little instruc-
tion decoding logic.

The Past, Present, and Future

of WISC

Constructing a hodgepodge of previousls
successful computer design techniques
does not guarantee success. The WISC
design criteria presented here represent a
careful balance of often conflicting de-
sign requirements. That said, [ will look
at some past and current computers that
inspired some of the WISC machine’s
unusual design features.

The Burroughs B1700, a microcoded
machine, had a different instruction set
for each language it supporied: BASIC.
FORTRAN, and COBOL/RPG-II. The
tailored instruction set for each language
resulted in smaller programs and much
faster execution speed than that found on
comparable machines of the time. But the
complexity of the architecture for vari-
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. able-width operand support ‘made the

machine expensive. o
The current RISC II and MIPS proces-

sors (see “How Much of a RISC?" by.

Phillip Robinson on page 143) strive to

achieve single-memory-cycle execution

with the use of fixed instruction formats.

Interestingly, the IBM RT PC and the -

Pyramid 90x computers use hybrid hard-
wired/microcoded designs. to allow -for
some complex instructions within a RISC
framework.

~One early reference to a stack machine

was a design for a 1950s ALGOL lan-
guage-specific processor known as

"~ ALCOR. While it was never built, it

called for a two-stack machine that would
have used one stack for operand storage
and another stack for instruction storage.

More recently, the Novix NC4016
chip (see **Stack Machines and Compiler
Design" by Daniel L. Miller on page

177) efficiently executes the dual-stack-

based FORTH language with a hard-
wired RISC architecture; The NC4016 is
designed with single-cycle operation in
mind and has low procedure-calling over-

* head due to the use of stacks; but it has a
.. hard-wired instruction set like other
RISC processors. Another stack-oriented

processor, the MVP Microcoded CPU/

~ WISC CONCEPT

16, combines hardware stacks with writ-

able microprogram memory to allow.

redefinable instruction sets but is not op-
timized for single-memory-cycle instruc-
tion execution. ‘ ‘

While none of the individual design
features of WISC are new, | believe that

implementing a true WISC machine will
lead to. discoveries about the nature of

modern computer architectures and how
to make them better. In the end, design-
ing a more efficient computer architec-
ture will lead to less expensive, more cap-
able computers. m

BIBLIOGRAPHY

- Amsterdam, Jonathan. *Programming
. Project: Building a Computer in Soft- .

ware.” BYTE, October 1985. -
Bauer, F. L. “Between Zuse and Rutj-
shauser—The Early Development of Dig-

ital Computing in Central Europe.” ,A-

History of Computing in the Twentieth
Century, N. Metropolis et al., eds. New
York: Academiic Press. 1980.

Colwell, R. P., et al. “Computers, Com-
plexity, and Controversy.” Computer.
May 1977, .

Fernandez, E. B., and T. Lang, eds. Sofi-
ware-Oriented Computer Architecture (a
Tutorial). Washington, DC: IEEE Com-

puter Society Press. 1986. -

*Jennings. E. "The Novix NC4000 Pro;.

ect.” Computer Language. October 1983
Katevenis. M. G. H. Reduced Instruction

Set Compuiter Architectures for VLSI
- Cambridge. MA: MIT Press. 1985.
Koopman, P. “MVP Microcoded CPU

16-Architecture.™ The Journal of FORTH »

Applications and Research. volume +.
number 2, 1986. ‘ .
Meyers, G. ). Advances in Computer Ar-
chitecture. New York: John Wiley &
Sons, 1982, o

- Multinovic. V.. ed. Tutorial on Micro-

processors and High-Level Language
Computer Architectures. Washington.
DC: IEEE Computer Society Press.
1986. - ' :

Patterson, D. A., and C. H. Seéquin. “4
VLSI RISC ** Computer. September
1982,

Przybylski, S. A.. et al. “Organization and
VLSI Implementation of MIPS.” Sian-
Jord University Technical Report Number
84-259. Suanford, CA: April 1984.

Ragan-Kelly, R..-and R. Clark. " Applying
RISC Theory to a Large Computer. ™
Computer Design. November 1983,

Simpson. Richard O. “The IBM RT Per-
sonal Computer.” [nside the I1BM PCs.
Fall 1986 BYTE. :

23



A UNIFICATION OF SOFTWARE AND HARDWARE;
| ‘A NEW TOOL FOR HUMAN THOUGHT =~

Glen ‘B', Haydon
- WISC Technologies, Inc.
La Honda, CA 94020

The following discussion briefly develops a philoSop_’hiéa,l’ba.sié with which to unify the |
hardware and software tools of a computer development system. The result is an improved
match between software and hardware. ' ' ‘

The nature of the human mind and thought processes are not understood. However,
there appears to be a mismatch between human thought and the rapidly growing use
of computers as tools to help men think. Software engineers and hardware engineers
seem to be working in different directions. If we could unify the software and hardware -
of computers along new lines, we might find a better tool to aid us in our intellectual
endeavours. Perhaps a unification of software and hardware would provide a better model
to simulate part of the activities of the human brain. : ‘

- Origins of Language

: The'develohment of speecﬁ and natural la.nguages produced a ﬁool for the‘develop;
ment of human thought. In an interesting paper by James Cooke Brown and William
Greenhood entitled “PATERNITY, JOKES AND SONG: A POSSIBLE EVOLUTION-

'ARY SCENARIO FOR THE ORIGINS OF MIND AND LANGUAGE ” y (Cultural Futures

Research, Vol VIII, No.2, Winter 1983/84), a new perspective to the development of natural
languages is presented. The paperisa long one and carefully argued with many references.

The origins begin with the development of speech as a tool for communication. Along
with communication has come the internal activity of the mind, thinking. In the develop-
ment of language, the burden of disambiguation grows geometrically with every increase in
sentence length. The development of grammar attempts to accomplish the disambiguation.

A Logical Language - LOGLAN

In his FORWARD to LOGLAN 1: A LOGICAL LANGUAGE, 3rd Ed. (The Loglan Insti-
tute, Inc. 1975, 1701 Northeast 75th Street, Gainesville, FL 32601) James Cook Brown

“begins:

- “At the beginning of the Christmas Holidays, 1955, I sat down before a bright fire

‘to commence what I hoped would be a short paper on the possibility of testing the social

psychological implications of the Sapir-Whorf hypothesis [relating lanugage to thought].
I meant to proceed by showing that the construction of a tiny model language, with a
grammar borrowed from the rules of modern logic, taught to subjects of different nation-

alities, in a laboratory setting, under conditions of control, would permit a decisive test.
I have been writing appendices for that paper ever since. ... * ’
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And now, over thirty years later, the appendices continue to develop. The language
became known as LOGLAN. It was described in the literature, in the June 1960 issue of
Scientific American. Books and publications have continued over the years. Within the past
5 years the language has been refined with a completely unambiguous machine parsable
grammar. Currently, a number of minor revisions to the language are being summarized
and a new publication should be forthcoming before long. o '

Hisﬁory of Computing

Several years ago, Hans Nieuwenhuyzen called my attention to two books. The first

was A HISTORY OF COMPUTING IN THE TWENTIETH CENTURY, (N. Metropolis, J. Howlet

-and Gian-Carlo Rota, Editors, 1980 Academic Press.) Computers have changed with time.

Originally, von Neumann thought of the computer as a number cruncher. Perhaps it was

. Turing who showed that computers can be symbol-manipulating machines. The hardware

design of computers started from these perspectives. Early programming languages dea_.lt' ‘

with methods trying to'use the newly developed hardware to solve real problems.

' The second book was HISTORY OF PROGRAMMING LANGUAGES, (Richard L Wexelblat,
Editor, 1981, Academic Press). The history traces the development of many languages to

- bridge the gap between real problems and the tools provided with computer hardware. The

computer language, FORTRAN was developed as a numerical scientific number cruncher
and continues to this day as a major programming language for scientific computation.
+ Other languages which immediately followed were also number crunchers. These were
batch processing languages. On-line languages were devised nearly a decade later.

- Business applications with number storage and crunching came later. The introduc-
-tion of string and list processing followed. It was always a problem to make the newer

application requirements fit on hardware designed for number crunching. At best, the fit

has not been optimal.

~ Thus the problems addressed with computer hardware expanded from number crunch-
ing to assisting in other areas of human thinking and problem solving. As software en-
- gineers developed languages, the importance of a divide and conquer approach became

apparent. Structured programming became the tool of software engineers. Libraries of

program modules were developed. However, the hardware techniques of number crunching
do not lend themselves to efficient execution of structured programs requiring sequences
of subroutine calls to a variety of modules. »

Progress in Hardware Design

R In conjunction with the developing langﬁages, the hardware engineers made great
strides to support the computational applications addressed by the early languages. The
hardware design has been oriented to improving the speed of execution of sequential op-
erations. : '

In hardware development there has been a trade off between the speed and semantic
- content of the operations and the physical limitations of the speed of memory access. The
increased complexity of instructions increased semantic content of each operation, but
with many operations taking many machine cycles. Other techniques have been developed
to increase the speed of memory access. :

In an alternate approach to increasing hardware speed, hardware designers have tried
to reduce the number of operations with each instruction, each of which would then require
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only a single processing cycle. Many registers are used rather than slower machine memory
to further increase speed. B '

In the course of these hardware engineering efforts, little attention has been gi\v/en‘to :

- efficient subroutine calls.

Progress. in Software Design

Software designs have taken other directions; ‘Compilers were developed to translate
the newer languages to the machine language of the hardware. Modern language optimiz-
ing compilers have many different ways of handling subroutine calls. Not infrequently,

- when speed is required, the subroutine is simply duplicated in line. Though longer, such

machine code will run faster.

~ Compilation is essentially a batch process. Often multiple passes through the source
code are required. Batch processes are slow. A program needs to be completely recompiled
to test it. It used to be that such batch programs took overnight to run. Compilers have
been designed to run ever faster, but they still require minutes to process. Program
development is inhibited by the slow turn-around of batch processing. '

With structured programming, it would be desirable to have an instantaneous turn-
around on tests of new procedures as they are written. A software development system
should also have instantaneous turn-around on tests of connected structures in building
the final program. The conventional development systems requiring a compile, load and

- go for each test is not conducive to good software development.

The Hardware-Software Mismatch

The sequential methods of hardware design are mismatched with structured programs-

‘ming. Sequential methods are also a mismatch with the thought processes of the software

developer. The process is almost a random jumping of ideas in the process of thinking.
Structured programming seems to be better matched with the thinking process. As such
it provides a tool for simulation and study of thought processes. For example: What are

‘the differences between left and right hemisphere processes?

Computer software is divided into smaller and smaller procedures. The process is
similar to the divide and conquer process of problem solving. As programs are written,

- regardless of the language used, they tend to follow a process of natural thought. A
translator is required to take a programming language following thought processes and

structured programming, and produce machine code which can be run inefficiently on

hardware designed to run sequentially.

Unification of Hardware and Software

A rethinking of the hardware design is necessary to better match the direction of
software development. Rather than sequential efficiency, what is needed is subroutine
call efficiency. It would be ideal if subroutine calls could come for free. This is one of
the results of the ideas presented in Phil Koopman Jr’s invited paper at this conference.
Some of those ideas are summarized here. '
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Stack oriented Machines

Samelson and Bauer described an ALGOL translator using multiple stacks. (See 4
HISTORY OF COMPUTING IN THE TWENTIETH CENTURY referred to above.) Though a US
patent was issued on a full wiring diagram, no hardware was built. At the time, they
- turned to implementing their ideas in software. Prior to the recent work of Phil Koopman
- Jr, hardware designers of general purpose processors have not adopted the stack concepts
in developing hardware better suited to structured programming.

It is time to adopt the proposals of Samelson and Bauer. An efficient multiple hard-

ware stack machine will contribute to a functional unification of hardware and software.

Such a hardware design provides for subroutine calls with no cost in processor time. It
contrasts dramatically with the time penalty for subroutine calls.

Writable Control Store

Machine operations should have the semantic content optimized according to the
specific requirements of new applications in the software development process. This can
be done by using software control of hardware components with writable control store
machines. The process divides the hardware components into smaller pieces and allows
the software engineer to assemble their functions into optimal operations according to the
application requirements.

In the history of computers, writable control structures have been used. Bit slice
- technology with writable instructions are available but have not been widely exploited.

A Unified Design

A rethinking of hardware design, has led to a writable instruction set computer
(WISC) interfaced with multiple dedicate hardware stacks as proposed by Samelson and
Bauer. '

The first results of such a rethinking of hardware design were presented and discussed
at the 1986 Rochester Forth Conference by Phil Koopman Jr and Glen B. Haydon. The
design was available then as a wire-wrapped kit. The design is now available on a pair of
printed circuit boards.

Also at the 1986 Rochester Forth Conference, Phil Koopman Jr demonstrated the

operation of his initial design of an enhanced system. During the past year the design
has undergone several itterations. At this, the 1987 Rochester Forth Conference, Phil
Koopman Jr is presenting an invited paper in which he details his concepts of the problems
and implementation of a hardware design to solve the problems.

Conclusions

I have endeavored to review some of the more philosophical ideas leading to a bet-
ter match between the computer tools available and the human thought processes. The
result has been a unification of structured programming of software engineering with the
necessary hardware to run such software efficiently.

To me, one of the greatest potential powers of modern computers is the ability to

§imulate problems. Perhaps the unification of software and hardware will provide an
improved tool to better understand man’s way of thinking and problem solving.
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'WRITABLE INSTRUCTION SET, STACK ORIENTED COMPUTERS.
The WISC Concept

Philip Koopman Jr.
‘WISC Technologies, Inc..
Box 429 Route 2
La Honda, CA 94020

ABSTRACT

Conventional computers are optimized for executing
programs made up of streams of serial instructions.

. Conversely, modern programing practices stress the
importance of non-sequential control flow and small
procedures. The result of this hardware/software mismatch
in today's general purpose computers is a costly, sub-.
optimal, self-perpetuating compromlse.

The solution to this problem is to change the paradlgm
for the computing environment. The two central concepts
required in this new paradigm are efficient procedure calls
and a user-modifiable instruction set. Hardware that is
fundamentally based on the concept of modularity will lead
- to changes in computer languages ‘that will better support
efficient software development. Software that is able to
customize the hardware to meet critical application-specific
processing requirements will be able to attempt more
~difficult tasks on less expensive hardware.

Writable Instruction Set/Stack Oriented Computers (WISC
computers) exploit the synergism between multiple hardware
stacks and writable microcode memory to yield improved
performance for general purpose computing over conventional
. processors. Specific strengths of a WISC computer are
simple hardware, high throughput, zero-cost procedure calls
and a machine language to microcode interface. ,

WISC Technologies' CPU/32 is a 32-bit commercial
processor that implements the WISC philosophy.

INTRODUCTION

People buy computers to solve problems. People measure
the success of computers by how much was saved by using a
computer to solve their problems.

What is the expense of using a computer to solve a
problem? Computers cost users not only money for hardware
and software, but also resources ‘for training, labor, and
waiting for solutions (both during development and during
use). In the early days, the cost of solving problems with
computers was predominated by hardware costs. Miraculously,
hardware costs have plunged even while capabilities have .
grown by leaps and bounds. As a result, the problems that
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computers are solying'(and the’programsbthat solve them)'f

- have grown ‘much more complex. This has lead to the dramatic

shift in recent years of spending more tlme and money on
computer software than on hardware.

v Since expensive, complex software now dominates the
cost of providing computer solutions to problems, much
effort is going into changlng the way software is written.
~ These efforts often end up- placing more demands upon
~hardware ("hardware is cheap"). Unfortunately, 1t never.

seems that hardware speed increases can quite keep up w1th o

added software demands ("software expands to fill all

‘available computer resources"). Consequently, much research;
is being conducted on ways of maklng ‘processors run programs

more eff1c1ently for any given: hardware fabrlcatlon
technology.

-~ - The premise of this. paper is that there are two
fundamental problems with current general-purpose

software/hardware env1ronments. a lack of efficient hardware

- support for procedure calls, and an inability to tailor -
hardware to. applications based on software requirements.
The WISC architecture described in this paper prov1des
-efficient hardware support for procedure calls by using a
combination of two hardware stacks and a dedicated address

, field in the;instruction_format; The WISC architectureualsoﬁ
' supports cost-effective modification and expansion of o
instruction sets by prov1d1ng wrltable mlcrocode memory ‘with

a simple format.

This. paper first descrlbes ‘some of the hlstorlcal roots

for the problems with conventional hardware/software -
- environments, then describes the concepts, 1mp1ementatlon,~
and implications of the WISC approach to providing a more
unified hardware/software environment. Although much of
this discussion is appllcable to all computing environments,
" the scope of this paper is limited to general- purpose
processing on 51ngle processor computers.v :

- THE HARDWARE/SOFTWARE EVOLUTION CYCLE

In order to see how the hardware environment can be
poorly matched to the needs of the software environment,
consider the historical ‘pattern of steps in the
hardware/software evolutlon cycle since the days of the
- first computers:

o 1) Profile ex1st1ng software. How does a de51gner-
~determine what instructions should be included in a new
computer° -Since the first use of most hardware is to run-:
existing programs, the most scientific way to design an-
instruction set is to measure instruction execution

frequencies on computers already in use. Such measurements

usually reveal a preponderance of register manlpulatlon
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" instructions and simple memory loads and stores.

2) Design a computer that eff1c1ent1y executes existing
software. When the new machine is built, it will use faster
hardware and a larger memory to execute more complex (and
memory-hungry) versions of existing programs faster.
Compilers for existing languages will be modified to take
advantage of the new hardware resources, and perhaps some

"new features will be tacked onto the local dialect of the

language to make use of added hardware capabilities.

3) Write compilers that make new programs look like
existing software. When a new language or a new dialect 1is
developed, the compiler writer is interested in both -
improving the software environment and in generating
efficient code. To accomplish these often divergent goals,
compiler writers use optimization techniques to transform
the source code into a program that will execute as
efficiently as possible on available hardware. Since the
hardware designed in steps 1 and 2 is optimized for certain
types of operations, the output of these compilers will tend
to use these same types of operations wherever possible.

Some of the most common optimizations that compiler
writers use include unrolling loops into in-line code
(figure la) and expanding the lowest level procedures as
macros within calling routines (figure 1b). These two
optimizations are important in our discussion, because they
both tend to require increased program memory usage in
exchange for increased execution speed. This is based on
the almost universal assumption that hardware is most

efficient at executing in-line code.

4) Write new applications using the new compilers
(which produces more machine code optimized for existing
hardware). When it comes time for new application programs

to be written, programmers can be counted on to exploit all

the strengths (and guirks) of the newly available compilers
and hardware. '

oo FoR J

Figure la. Unrolling Loops.
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‘Despite the 1nsu1at1ng effects of hlgh level languages
-between programmers and machines, programmers are
- uncomfortably aware of any software features that reduce
performance. When programs perform poorly because they are
not suitable for automatic compiler optimization, the user
is compelled to re-write programs to avoid inefficient
' structures or buy a more powerful (and more expensive)

machine. This tends to further skew usage statistics, since -

“new machines are perceived to be more expen51ve than clever
but shabby software techniques. _
, 5) Go to step (1) above, and get. yet another computer
‘that Is even better at ‘running existing programs.:

, This development cycle clearly favors the propagatlon
of initial biases in computer design to successive

generations of machines. Could it be that years of pursulng :
- this cycle has resulted in instruction sets that still favor -

the operations present in the early machines? Is this
- filtering process the real mechanism that lead to the‘
..concept of RISC architectures?

HARDWARE EVOLUTION

v Hav1ng examlned the process by Wthh we ended up with
today's computing environment problems, let us take a look
at some of the evolutionary steps computer: hardware
architecture has taken along the way. :
The history of computers has been a story of prov1d1ng

faster hardware with increased capacity in smaller packages

~with lower prices. The primary emphasis has been on
reducing the cost of computing by reducing the cost to
‘purchase and operate hardware. Measurements that indicate
the cost effectlveness of hardware include the cost per
megabyte of program memory and the cost per millions of
instructions executed per second. From the point of view of
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the purchaser, hardware becomes more of a bargain every year

(or month, or even day). - ; ’
There have been two central problems to be overcome in

increasing hardware performance: arithmetic computation

speed and memory access speed.

FETCH o

Figure 2a. Pipelining.

T
_—L——% MULTIFLIER —I%

Fiéure 2b. Parallelism.

Arithmetic computation speed was a major problem in
early computers. Originally, the arithmetic computation
speed limitation was overcome by using pipelining (figure
2a) and parallelism within the system (figure 2b). For
example, separate portions of a processor could concentrate
on fetching instructions, fetching operands, computing
values, and storing results (pipelining). Additionally,
individual hardware adders, multipliers, and dividers could
work simultaneously on data within the computation section
of the processor (parallelism). Recently, the increasing
speed and complexity of VLSI circuitry (and especially the
availability of inexpensive, fast floating point arithmetic
chips) have greatly reduced arithmetic computation speed as
a problem in general purpose programing.

As the time to perform arithmetic operations has been
reduced, main memory access speed has emerged as the leading
speed bottleneck. Historically, there have always been two
kinds of memory available to computer designers: small high-
speed memory, and slow bulk memory. Today, the trend
continues. Affordable high capacity memory chips leap by
factors of four in size every few years with modest
increases in speed. Fast static memory increases moderately
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- in size, but increases dramatlcally in speed
'‘As CPU speeds have outstripped bulk memory speeds,’

- memory bandwidth limitations have become more severe.  There

are two ways to solve this problem: speed up average memory

access time, and increase .the amount of work done per memory

access. Cache memory decreases average memory access time
at the cost of added complexity by using the small, high ,
speed memory devices to retain copies of instructions and/or
data that are likely to be needed by the- CPU.. Cachlng
schemes usually rely on the concept of locallty programs

~ tend to execute instructions in sequence, and tend to access'

“data in clumps. . ‘ -
Other techniques to -speed memory access 1nc1ude

interleaving banks of memory and pre-fetching opcodes beyond’

the current operation being executed. Both methods tend to
increase speed for sequentially executing,programs at the
cost of -added hardware complex1ty. Separate data and
program memories can also increase available memory
bandwidth, but are beyond the scope of this paper.

- The second method of reducing the effects of a memory
"access bottleneck is the technique of 1ncrea51ng the average
 amount of work done by each opcode fetched: from memory.

- This has lead to the development of what is now called the
Complex Instruction Set Computer (CISC) machine. CISC

”_ machines are based on the concept of reducing the semantlc

gap between high level language source code and its
corresponding machine code. The theory is that if a high
level language specifies a complex operatlon such as a ‘

character string move, it should be able to communlcate'thls»v

operation with a single machine instruction and consume only
one memory cycle for opcode fetching. ‘A simple, non-CISC
machine would have to synthesize a complex operation from a
sequence of simple instructions (consuming multiple memory

cycles for opcodes), resulting in a semantic gap between the

intent of the high level language and the way the intent

['x'if:d-::l ‘:::-' F‘Ebi :!Hs—pl
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Figure 3. Semantic Gap. -
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must be communicated to . the machine (figure.- 3). Some other
examples of complex instructions supported in modern CIsc .
architectures include frame based procedure parameter

' passing, array address calculatlon, and llnked list p01nter'

maintenance.. ,
As instruction sets have become more complex, hard-
wired computers that decode and execute instructions by
using only logic gates have become too complex to be cost
effective for most appllcatlons.. Consequently, the use of

- microcoded machlnes has come - to dominate the computer
" industry.

Mlcrocoded computers execute several fast low-level
instructions (called micro-instructions) to interpret and
execute each machine instruction. Since each machine
instruction may invoke a sequence of one or more micro-
instructions, microcoded designs allow straightforward
implementation of the complex instructions of a CISC

-.machine. As the instruction set grows in size and

complex1ty, microcoded de51gns simply increase the size of
the ROM or RAM for storing micro-programs. Since microcoded
designs store the mechanism for decoding and executing
instructions in memory instead of as a network of logic '
gates, many design errors may be corrected simply by -
changing the microcode of the machine. This provides a
significant savings in development time and cost over making

‘changes to logic gates in a hard-wired computer de51gn.

Since adding instructions is relatively inexpensive in
microcoded CISC machines, these machines usually attempt to,
reduce the size of the semantic gap by providing an
abundance of complicated instructions designed to. directly

implement high level language functions. ' Unfortunately, as

the semantic gap is reduced in this manner, CISC machines -
run into a dlfferent problem. semantic mlsmatch

B-BASED ARRATS 36 — 1-BASET aRRAYS
COUNT+TEXT éyazéssv e TEHT+§ﬁLIHITER STRINGS
PﬁEéﬂETEES‘E? REFERENCE 3 PRRAMETERS  BY REFERENCE
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3E-BIT STACK ELEMENTS —3¢—— 16-BIT STACK ELEMENTS
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.Figure 4. Semantic mismatch.

35



7 Semantic mismatch take places when_apcompiex machine
instruction doesn't exactly match the requirements of the
high level language being used (figure 4). Semantic

mismatch usually occurs because real-life CISC machines have

a single instruction set that must meet the requirements of
-'many. diverse programing languages and application programs.
This means that the 1nstructlon set is,. of nece531ty, a
’compromlse.’ '

Examples of how languages differ in their requlrements
include: zero-based versus one-based array addressing,
procedure stack frame parameter organization, linked list
.- pointer organization, and string count and delimiter

‘organization. In addition, new complicated instructions are

often not smart enough to efficiently handle special
degenerate (but frequent) cases such as parameterless
procedure calls. As a result, compilers often ignore many
of the very complex instructions added (at considerable

effort) to new machines. Most compiled programs tend to use

simple to moderately complex instructions.

The result of using the above approaches' to 1ncrea51ngr
hardware power has been that most machines are well adapted
to executing sequentlal programs of medium level . complex1ty
»1nstructlons. :

SOFTWARE EVOLUTION

In early computers, hardware cost so much and was so

scarce that any amount of programing effort was justifiable

- just to get an answer. "As hardware has become less
-expensive, programs have become more complex,. and software
" has grown tremendously in complexity and cost. Today,
software is by far the most expensive part of any complex
computer-based solution to a problem.

Most programing is now done ‘in high level languages.
There are two broad classes of high level languages in use:
-special purpose languages and general purpose languages.

Special purpose languages such as LISP, Prolog, and
Smalltalk are based on computation models. that stress
- unconventional approaches to problem solving. They
“typically do not address the issue of computational
efficiency on general purpose computers. These languages
tend to trade computational efficiency for flexibility and
freedom of expression for spec1f1c tasks. Since these:

languages are often developed in research environments with
ready access to powerful computers, computatlonal efficiency
is not a primary consideration.

While special purpose languages are 1mportant for their
‘application areas, the very same features that make them
powerful as a programing tool are the very things that make
them perform poorly on limited resource conventional
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omputers;- Some of the special features are. dynamlc memory
management (espec1a11y garbage collection), run-time operand
blndlng, and- inter-procedure communication protocols. .
Today's trend is to. either provide language specific
hardware, or more powerful but more expensive than average

- hardware to run programs written in these languages.

- Most application programs are written in general

‘purpose languages such as FORTRAN, BASIC, COBOL, Pascal, C,

and Ada. The early high level programing languages such as.
FORTRAN were direct exten51ons of the philosophy of the
machines they were run on: sequential Von Neumann machines
with registers. Consequently, these languages and their-
general usage have developed to empha31ze long sequences of
assignment statements with only occa51ona1 condltlonal '
branches and procedure calls.

In recent years, however, the complex1on of software
has begun to change. The currently accepted best practice
in software design centers around structured programlng
us1ng modular designs. On a large scale, the use of modules

1s essential for partitioning tasks among programmers. On a

smaller scale, procedures control complexity by limiting the
amount of information that a programmer must deal with at
any given time.

Procedures (often called subroutlnes) ‘started out in
early computers as a memory—sav1ng device used at the cost
of reduced execution speed. In modern programing languages,

the importance of using procedures for software product1v1ty>,'

is taken for granted; memory savings’ are an almost.
incidental advantage.

Modern languages such as Modula-z, Pascal, and Ada are
designed spec1f1cally to promote modular de31gn. The one
hardware innovation that has resulted from the increasing
popularity of these structured languages has been a register
used as a stack pointer into main memory. With the

'exceptlon of this stack pointer and a few complex

instructions (which are not always usable by compilers),
hardware has remained basically unchanged. Because of this,
the machine code output of Optllelng compilers for modern

'f»languages still tends to look a lot like output from

earlier, non-structured languages.

Herein lies the problem. Conventional computers are
still optimized for executing programs made up of streams of
serial instructions. Execution traces for most programs
show that procedure calls make up a rather small proportion
of all instructions. Conversely, modern programing
practices stress the importance of non-sequential control
flow and small procedures. The clash between these two
realities leads to a sub-optimal, and therefore costly,
hardware/software environment on today's general purpose

computers.

This does not mean that programs have failed to become
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more organlzed and maintainable us1ng structured languages,
~but rather that efficiency considerations and the use of
‘hardware that encourages writing sequential programs has
prevented modular languages from ach1ev1ng all that they

might. Although the current philosophy is to break programs -

- up into very small procedures, most programs still contain.

'd»fewer, larger, and more compllcated procedures than ‘they

should.

' How many functlons should a typ1ca1 procedure have? In

szyChology of Communication: Seven Essays, George Miller
gives. strong evidence that. the number seven (plus or minus

two) applles to many aspects of thlnklng.' The way the human”"

mind ‘copes with complicated information is by chunking

groups of similar objects into fewer, more abstract objects. -
In a computer program, this means that each procedure should

contain approximately seven fundamental operations (such as
assignment statements or procedure calls) in - order to be
easily grasped. If a procedure contains more than seven

distinct operations, it should be broken apart-by: chunklng
related portions into subordinate procedures to. reduce the

- complexity of each portlon of the program. - In another part

of the book, George Miller shows that the human mind can

~only grasp two or three levels of nesting of ideas within a

single context. This strongly suggests that deeply nested:

- loops and conditional structures should be arranged as

nested procedure calls, not as convoluted 1ndented

" structures within a procedure.

: The only question now is, why don t most programmerS»‘

- follow these guidelines? ' _
The most obvious reason that programmers av01d small, ,

‘deeply nested procedures is the cost in speed of execution.

Subroutine parameter setup and the actual procedure calling

- instructions can swamp the execution time of a program if
used too frequently. All but the most sophisticated
optimizing compiler can not help if procedures are deeply
nested, and even those optimizations are limited.. As a

result, efficient programs tend to have a relatlvely shallow

depth of procedure nesting.

" Another reason that procedures are not used more is
that they are difficult to program. Often times the effort
to write the pro-forma code required to define a procedure
makes the definition of a small procedure too burdensome.
When this awkwardness is added to the considerable
- documentation and project management obstacles associated
with creating a new procedure in a big project, it is no
‘wonder that average procedure sizes of one or two pages are
considered approprlate.

~ There is deeper cause why procedures are difficult to.
create in modern programing languages, and why they are used
less frequently than the reader of a book on structured
programing might expect: conventional programing languages

N
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and the people who use them are steeped in the traditions of

‘batch processing. Batch processing gives little reward in

testability or convenience for working with small

- procedures. Truly interactive processing (which does not

mean doing batch-oriented edit—compile—link-execute+crash-

- debug cycles from a terminal) is only available ‘in ‘a few
- .environments, and is not taught to. any large extent in

universities.

As a result of all these factors, today' s programlng
languages provide some moderately useful capabilities for.
efficient modular programing. Today's hardware and
programing environments unnecessarily restrict the usage of
modularity, and therefore unnecessarily increase the cost of

t providing computer-based solutions to problems.

UNIFICATION OF SOFTWARE AND HARDWARE

Developments in the conventional programing environment
may be reaching a dead end. Recent uniprocessor hardware
innovations tend to focus on either special purpose
processing for symbol manipulation or distilling
conventional machine instruction sets with yet enother pass
through the analysis- 1mplementatlon-programlng cycle
discussed earlier.

The premise of this paper is that there is still

- considerably more mileage to be gained from uniprocessors by

breaking out of the past cycles and looking at the
hardware/software problem as a whole. The answer lies not
with a new hardware architecture that mirrors current
software, nor in changing software to suit current hardware. .
The answer lies in a redefinition of how we think about
hardware and software. In this manner, we can aspire to
achieve a unified hardware/software computing environment.
The first step in defining a unified general purpose

.computing environment is to take to heart the philosophy of

breaking a problem up into smaller sub-problems. Instead of
building a computer that supports procedure calls as special
operations, what if we de51gn a computer to expect

- _subroutine calls as its primary mode of operation?

~Implementing this idea results in a machine that is-

~unlike conventional processors in a very fundamental way: it

is designed for nonwsequentlal program execution. It
becomes a "tree processing machine". Programs are no longer

‘lists of sequential instructions with occasional branches

and procedure calls (figure 5). Programs are now organized
as a tree structure, with each instruction. contalnlng
operations and/or pointers to lower level nodes in the tree
(figure 6). In such a‘'machine, the very notion of a program
"counter" becomes obsolete.
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- If this machine could actually process procedure calls
simultaneously with other operations, modularity in programs
would not be penalized. Such a machine would encourage
better software design, and could fundamentally alter the
way programmers think about programs.

Now that we have the concept of hardware that is
efficient at implementing software procedures, how can we
change the software to better match the hardware? The

answer to this question lies in the concept of a modlflable;

microcoded instruction set.

-As discussed prev1ously; reduc1ng the semantlc gap of a

processor can increase processing speed by reducing memory

bandwidth requirements. The only pitfall is that if a pre-'u'

defined instruction set does not closely match the
‘requirements of a language or appllcatlon program, semantlc
mismatch negates the usefulness of many complicated
instructions. Since general purpose machines are expected
to perform well on a wide varlety of problems in many -

‘dlfferent languages, the answer is to change the instruction

set as required to suit each application program. This is
most easily done with a writable mlcrocode memory (often -
called writable control store). -

‘ With writable mlcrocode memory, the user can modify the
~instruction set of the machine to fit. each appllcatlon
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program or programing language support environment.
Applications can be initially written using a simple,

generic instruction set. Then new instructions can be added

to eliminate performance bottlenecks in heavily used code
sequences.

The combination of tree-processing hardware with
software that can modify the machine's instruction set for
best efficiency can produce unexpected benefits in both
hardware and software performance. - The next section o
discusses an architectural approach to implementing such a
machine, and the benefits that may be derived.

THE WISC APPROACH

The Writable Instruction Set Computer (WISC) approach
to computer design provides a computer that efficiently
supports the integrated hardware/software development
environment just discussed. A WISC machine has high-speed
procedure processing capability along with the capability to
redefine the instruction set. WISC machines implement these
goals by using multiple hardware stacks for operand and
procedure return address storage, and writable microcode
memory for storing the instruction set definitions. WISC
machines also have a fixed instruction format for simplicity
and speed of operation, and strive to meet the criterion of
usefully employing all available memory cycles.

Once the decision is made to use a hardware stack in a
design, an interesting and somewhat unexpected cascade of
- benefits is realized. These benefits lead to the
architectural features of WISC machines. ‘

' ‘The WISC machine discussed in this paper uses two
~hardware stacks: one for data parameters and one for return

- parameters. The first benefit of using these hardware

stacks is that the overhead cost normally associated with

- procedure calls is greatly reduced. During a procedure
call, the hardware return stack eliminates the need to save

a return address to main memory. Additionally, the hardware
data stack eliminates the need to save registers and data
values to memory and/or fetch procedure input parameters‘

- from memory within a procedure.

. ‘Now, however, the unexpected benefits begin to accrue.
A pure stack machine has no need for parameters with opcodes
(except for memory addresses.) Since all operations are
relative to the current position of the stack pointer, each
opcode can be a simple parameterless field of five to ten

~bits. This greatly simplifies instruction decoding logic

since implicit operands eliminate the need for explicit

- addressing modes, register specifications, etc. 1In a
microcoded machine, this means that the opcode can directly

access a microcode word with no decodlng logic. All this
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makes the hardware s;mpler, faster, and less expen81ve to
develop and manufacture. o

‘Since intermediate operands are kept on the hardware
data stack, each microcoded instruction need take only one
memory reference cycle (with loads and stores taking two
memory cycles). Since microcoded pr1m1t1ves can be kept
simple enough to execute within a single memory access
cycle, there is no need for a complex pipeline to perform
decoding, operand-fetching, execution, and result storage.
A simple overlapped instruction fetch/decode and instruction
execution strategy is quite ample to use all avallable
memory bandwidth.

As an added bonus of using a stack-oriented 1nstructlon
set, procedure calls may be made at zero cost in execution
time for most cases. Since a stack-oriented opcode need
only. take roughly -one-quarter of a 32-bit instruction word,
the remaining instruction word bits are available to use as
a procedure branching address (flgure 7). If an overlapped
fetch/decode and execution strategy is used, procedure
calls, procedure returns, and unconditional branches may be
processed in parallel with operation decoding.:

OFCODE | ADDRESS

Figure 7. Generic WISC instruction format.

Now add the power of a changeable microcoded
instruction set to the hardware stack machine just
described. Since a fixed instruction format stack machine
is free from ¢omplex opcode format 1nterpretat10n and other
complications, the hardware design is simple. And, simple
hardware means simple microcode.

One problem with the few writable instruction sets
available on current machines is that the microcode is just
too hard to write. Microcode formats of 48 to 128 bits are
very common. That's a lot of complexity for a programmer to
handle! 1In fact, such complex microcode formats make
expectations of customizing instruction sets for
applications unrealistic. As will be shown later, a single=-

format 32-bit micro-instruction format is more than

sufficient for a WISC machine.

Since a WISC architecture can be designed with a simple
microcode format, moderately sophisticated users (such as
compiler writers) can customize the architecture to meet
their needs. Use of writable microcode memory leads to an
increase in semantic content (and therefore a reduction of
the semantic gap) for each instruction, and therefore more
work done per memory access. It also eliminates the problem
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of semantlc m1Smatch} 31nce the instructlon‘set can be
‘modified to suit the qulrks of any appllcatlon or language-
support environment.

~There is yet another beneflt to the WISC approach. HThef*

combination of hardware stacks with writable microcode

- memory results in the blurrlng of the boundaries between
:hlgh level programs, machine code, and microcode. :
‘ Consider the conventional- processor. High level

 structured programs are converted from groups of proceduresv“een
“with stack-oriented local Varlables to machine code. A

considerable change in the look and feel of the program
© takes place ‘as high . level language operations: are . .
transformed into groups of primitive operations. Whlle a
~complex machine instruction set may" support such stack
operations as frame pushes and pops, and even fetch a
variable. given a frame pointer and an offset, the paradigm-
switches from variables and frames in high level languages
to registers and memory pointers in machine code. :

The means of passing information between many hlgh

level language procedures is the stack. The way of pa531ng',"“'

‘information between conventional machine language
~instructions is through registers or discrete memory.
locations. The fundamental mechanisms are completely.
different. If an instruction could be added to microcode

Uvmemory to replace a procedure, it would result in re-writing
. the calling code to format the operands in reglsters instead

"of in a stack frame.

‘  Now consider a WISC machine. WISC machines accompllsh
-efficient procedure calling in part by the use of a data.
.stack to pass information from calling programs to

procedures. WISC instruction formats are greatly- 51mp11f1ed"'

by using this same data stack for holding operands. This

- means that a procedure can be transparently replaced with a

~microcoded primitive by 51mp1y replacing the procedure call
with an opcode. There is no impact to any other aspect of

the source code. This not only simplifies the substitution

of microcoded primitives for high level source code ,
. fragments, but can actually lead to a view of microcode -
‘memory as a cache memory for frequently used operations.

' In practice, this view of microcode memory as a cache

"g memory allows the developer to selectively optimize the
hardware for each application. This could be done by pencil

and paper analysis of the program, or by using execution
profiling software to create a histogram of execution
frequencies for each section of code. The most heavily
executed procedures can then be partly or wholly transferred
from high level code to mlcrocode, resulting in a
significant speed increase. 1In the case of providing run-
time support for the output of a compiler, the microcoded
instruction set can be tailored to exactly implement the

types of operations supported by the language. In e;ther of -
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these cases, the microcode becomes a sort of cache memory
for storing the operations that need to be executed most
frequently. i - _ , : ‘ . .
s This view of microcode memory as a sort of instruction

- cache is the final link of a chain that transforms a WIsc-
- machine to something beyond a conventional processor; it

makes the WISC machine into a tree processing machine that
merges all levels of processing into a unified
hardware/software environment. Instead of representing

- programs as sequences of in-line instructions that are

occasionally interrupted by procedure calls, the WISC
processor views programs as an orderly nested series of
procedure calls, with the final level of procedure call
being a'call to microcode memory. R .

} Now that WISC machines are viewed as tree processors,
several changes in programming take place. If a suitable
microcoded instruction set is used, compiled object code can
closely correspond to the original source code, resulting in
simpler and more efficient compilers and debugging tools.
There 'is no mismatch between the high level language source
code and the actual machine code executed at run time. -

Additionally, procedures are not viewed by the ’
programmer as a collection of in-line code fragments, but

- rather as tree structure. The branches of this tree

structure represent the control flow structure of the.

- program (procedure calls, returns, and jumps). The leaves

of the tree are represent procedure calls into microcode
(figure 6 above). . 3

From the above features we can see that a WISC machine
uses simple, and therefore fast hardware to execute high

'semantic content instructions that closely reflect the

structure of the software. Programmers are not penalized
for organizing programs into small, understandable
procedures. This results in compact tree-oriented program
structures which are composed of hierarchically arranged
solutions to sub-problems. Thus programs can be
simultaneously optimized for small memory space, fast :
execution speed, and low development cost. This allows the

hardware/software environment to deliver cost-effective
solutions to the user's problems. '

DESIGN OF A 32-BIT WISC MACHINE

In order to reify the conceptual design just presented,

it is necessary to define the high level design of a WISC

machine. For the purposes of this paper, the design of a

32-bit WISC machine called the CPU/32 will be discussed in
detail. | |

It turns out that after a WISC machine is specified as

having hardware stacks and a writable instruction set, the
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51ngle most important part of the des1gn is the 1nstructlon
format. The key to high-speed processing w1th zero-cost
procedures is to use a fixed length instruction format that
contains both an opcode and a procedure address.

: The CPU/32 uses a 9-bit opcode (figure 8). These 9
"bits can form the page address for a page of microcode
memory, eliminating virtually all instruction decoding
~logic. This allows for up to 512 opcodes in the machlne.,_

-
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Figure>8. CPU/32 instruction format.
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_ The remaining 23 bits of the 32 bit instruction format
are dedicated to address and control information. If all
~instructions are aligned on byte boundaries that are evenly
divisible by 4, then the high 21 bits of the remaining 23
bits in the instruction can address an instruction word in
- memory (with the low order 2 address bits masked to 0). The

- lowest order 2 bits of each instruction can then be used as

a branching mode selection: procedure call, procedure.

return, or unconditional jump. These 23 bits can be used to

execute an unconditional jump, procedure call, or (ignoring
the address field) procedure return in parallel with opcode
execution. The CPU/32 can process procedure calls for free!

As additional embellishments, this instruction format
‘allows tail-end recursion elimination by substituting an
unconditional branch for a procedure call as the last
‘instruction of a procedure, and facilitates conditional
branching and looping by having the branch destination
address readilyavailable. :

The CPU/32's block diagram is shown in figure 9. The
CPU/32's resources include a data stack, an ALU with a data
register (Data Hi) and a transparent latch, an auxiliary
(Data Lo) register that can connect with the Data Hi
register for 64-bit shifting, a return stack with a bi-

~directional data path to the memory addresser for procedure
call address manipulation, a memory addresser, program
memory, and microcoded controller. All of the resources are

connected to a central data bus, with access to I/0 services -

through an appropriate host interface. All data paths and
registers in the CPU/32 are 32-bits wide. ,
There are several interesting aspects to the CPU/32.
One feature that is not always found on hardware-based stack
designs is that the Data Hi register above the ALU can hold
the top data stack element. This allows the use of a
single-ported data stack RAM. Another is that the stack
pointers can be loaded with values from the data bus. This
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makes accessing deeply buried stack elements relatively easy
by ellmlnatlng the need for repetltlve stack pushing and
popping..

The use of a transparent latch on the ALU 1nputs allows
connecting any data bus resource to one side of the ALU
within one clock cycle, but also allows the latch to retain
an intermediate value without disturbing the contents of the
Data Hi register. This capability results in a savings of a
clock cycle any time the top of stack element in Data Hi
needs to be swapped with a cell in the data stack RAM.

The CPU/32 has no program counter. Each instruction
~contains the address of the next instruction. The only
exception to this is when procedure returns are being
processed, in which case the return stack value is passed

~directly through the memory address logic to access the next

sequential instruction in the calling program.

While there is no program counter, there is an
incrementer within the program memory logic that is used to
add a one word dlsplacement to procedure call addresses
before they are saved on the stack. This incrementing is
required in order to generate correct return addresses. The
incrementer is also useful in block memory moves.

The micro-instruction register forms a one-stage micro-
‘instruction pipeline that eliminates wasted time which would
otherwise result from waiting for micro-program memory
access. The only drawbacks to this design are that a two -
micro-cycle minimum is imposed on all op-codes, and delayed
micro-instruction branches must be used for condition code
testing. However, the small, high speed memory used to
.implement the micro-program memory and data stack memory
allows for two micro-code cycles within each: memory cycle
time, essentially ellmlnatlng the impact of these drawbacks
on system performance.

The micro-instruction format is shown in figure 10.

Each micro-instruction uses 30 of the available 32 bits.

The entire instruction decoding path, from the return
address stack all the way through to the micro-instruction
register, is totally independent of the data bus. This
allows ALU and data stack operations to proceed while
simultaneously fetching and decoding instructions. This
structure allows nearly 100% of the memory bandw1dth to be
used productively.

In the CPU/32, each instruction is fetched and decoded
-during a two micro-cycle period, waits in the micro-
instruction pipeline for one clock cycle, then executes in
two or more additional microcycles. The average instruction
~execution rate is just under one 1nstructlon per two micro-
cycles.
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BITS  USAGE -

0-3 Bus source select
4-7 Bus destination select
8~9 Data stack pointer control

10-11 Return stack pointer control
12-13 ' ALU multiplexer shift control
- 14=-15 unused _ _
16-19 ALU function select
20 ALU mode select v
21 ALU carry-in & shift-in _
22-23 Data Lo register shift control
24-26 Microcode conditional branch select
27-28 Microcode next address generation

29 Increment microcode page register
30 Fetch & decode next macro-instruction
31 Memory address increment control

Figure 10. CPU/32 micro-instruction format.

An interesting software implication of the opcode
format and system design is that opcodes interspersed with
procedure calls must be compacted into single instructions
in order to get zero-cost procedure calls. The procedure
call in each instruction takes effect after the opcode has
been completed. The only times that procedure calls are not
zero-cost are in deeply nested procedures where there are no
opcodes before the first procedure call in each successive
level. Subroutine returns are zero-cost if the last
instruction in a procedure is an opcode reference.

A possible compiler optimization that can easily
increase efficiency is the substitution of an unconditional
branch for a procedure call if the last primitive within a
procedure is itself a procedure call (this is often called
tail-end recursion elimination). Another possible
optimization is a "bubbling-up" of the first opcode of a
procedure to a calling program when the calling program
would otherwise be forced to execute a null op-code in a
series of consecutive procedure calls.

The system software for the CPU/32 obviously plays an
important part in the establishment of a productive
computing environment. While languages such as C are very
well suited to the WISC architecture, eventually a new
language will evolve to exploit the new capabilities of

~tree-oriented processors. Such a language would likely

have: small, easily defined procedures; interactive
development, compilation, and testing at the procedure
level; easy access to a microcode assembler; extensibility
of both data and compiler control structures; a high level
infix syntax; a library of commonly needed functions; and
support for module archiving and reuse.
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'Now that the design for the CPU/32 has be presented,
‘the question is, can such a machine actually be built? The
answer is, of course, yes. WISC Technologies' CPU/32 is a
commercial system that implements all of the philosophy and
architectural features discussed in this paper.
. Additional CPU/32 implementation features not
previously discussed are a DMA memory transfer capability
with the host computer, hardware and software interrupt
support, and support for byte-oriented memory access.

CONCLUSION

WISC Technologies' CPU/32 is an implementation of a new
- way of thinking about computing environments: tree-organized
- program structures that emphasize modular programing for
general-purpose computing. Preliminary use' of WISC machines
indicates that performance is equal to or better than other.
high-performance general purpose uniprocessors over broader

classes of problems than might be expected. ' In particular, -

expert system programs with their tree-traversal emphasis
are particularly well suited to WISC-type architectures.

If the past patterns of hardware and software evolution
.can be broken, we might yet see quantum leaps in programmer
productivity. I think that WISC computers are more than
just another novel architecture. I think that they are a
new way of looking at the bottom line of computing: getting
‘problems solved. ‘ Lo "
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tack-oriented, writable instruction set

computers, WISC, are for forward-
looking ' project planners searching for -
state of the art techniques to solve a wide
variety of problems.-Solutions are easy to
formulate, implement, and test with the

"CPU/16 combination of hardware .and

software.

The writable instruction set gives a new
tool to the project team. It provides the
ability to custom design — with software
— an optimal set of hardware functions.
When efficiently programmed, stack-

- oriented WISC machines can execute pro-

grams faster than conventional machines
based on complex instruction set com-
puters (CISC) or reduced instruction set
computers (RISC). This versatile new tech-
nique encourages development . of fully
integrated hardware and software systems -
to solve each new problem. :

CPU/16 is a high-spegd, stack-oriented
WISC machine that includes a processor

- and memory on two printed circuit boards

WISC Technologies e - Box429, Star Route2 ~
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populated with common TTL compon-
ents. The boards run as a master processor
in an IBM PC, XT, or AT host. Micro-

“code for the WISC processor is written

easily with the microassembler, and is
loaded from the host along with the ap-
plication program before the master takes
over. Control can be returned to the host
at any time, freeing it to execute other
programs in a normal manner.

Assembled and tested CPU/16 boards are
available, complete with all documenta-
tion and software to create customized,
high-speed processors. With them a pro-
grammer or engineer can implement and
test solutions via modifiable microcode.
Additional hardware and software in de-

- velopment will expand a growing family of

stack-oriented WISC products.

The CPU/16 processor occupies two slots
in.the IBM PC, XT, AT, and compatibles.
Package includes microassembler, cross-
compiler, diagnostic programs (all with
source code) and complete schematics.

La Honda, California 94020 . USA



