
c ' , I

! __ , '

i \
I I

, I

o·
lJ

o.
CI·
0
[(

-o
tJ

lo
[J
[I
) \
LJ

0
I

I '
'. _) .

COLLECTED WISC PAPERS

June 1987

WISC Technologies, Inc.

La Honda, CA 94020

·'

First Printing June 1981
Second Printing June 1981

Copyright 1986, 1987

WISC Technologies, Inc.
Box 429 Sta.r Route 2
La. Honda., CA 94020

I

'• .. /

f1 '

.,,....--..,
\i i

i I

' I
~ ,,

r

PREFACE

WISC Technologies, Inc. was incorporated in the State of Ca.lifornia in
March, 1987. The Company is dedicated to the development of new tech­
nologies in computer software and hardware design. These papers describe.
the work we have done.

The original CPU /16 was shown a.t the Sa.n Francisco Computer Fa.ire
in 1986. We were pleased that BYTE noted our product in their What's
New section of the June 1986 issue.

At the 1986 Rochester Convention, two papers were presented on the
history and architecture of the product.

BYTE invited two papers from Phil Koopman, Jr. The first was in
their January 1987 issue featuring Programmable Hardware. The second
was in their April 1987 issue featuring Instruction Set Strategies.

At the 1987 Rochester Forth Conference with the theme Computer
Architectures, Glen B. Haydon presented a. paper entitled "A Unification
of Software a.nd Hardware; A New Tool for Human Thought " and Phil
Koopman Jr. presented a.n invited pa.per entitled "Writable Instruction
Set, Stack Oriented Computers: The WISC Concept" . ·

These papers are collected in this publication to provide convenient
access to the background history and the problems addressed by WISC
Technologies, Inc. in their development of computer architectures to im­
plement the WISC concepts:

The WISC CPU /16 and WISC CPU /32 a.re available for immediate
delivery.

June 1987 P. K. and G. B. H.

[\
·\r
(__j .

f J
f}

(__,

i--,
U·

I

,,

f I . ' I_/

CONTENTS

PREFACE

Microcoded IBM PC Board
BYTE, June 1986

MVP Microcoded CPU /16; History
Glen B. Ha.ydon &: Phil Koopman, Jr.
1986 Rochester Forth Confermce, June 1986

MVP Microcoded CPU /16; Architecture
· Phil Koopman, Jr. & Glen B. Haydon

1986 Rochester Forth Conference, June 1986

Microcoded Versus Hard~ Wired Control
Phil Koopman, Jr.
BYTE, January 1987

The WISC Concept
Phil Koopman, Jr.
BYTE, April 1987

A Unification of Software and Hardware;
A New Tool for Human Thought

Glen B. Haydon
1987 Rochester Forth Con/ermce 1 June 1987

Writable Instruction Set, Sta.ck Oriented Computer;
The WISC Concept

Phil Koopman, Jr.
1987 Rochuter Forth Conference, June 1987

Sta.ck Oriented WISC Ma.chine
1986 WISC Product Announcement

iii

1

3

7

11

19

25

29

53

$3.50 JUNE 1986

·1. \
.• THESMALL SYSTEMS JOURNAL

D

I

1 -~

WHAT'S NEW

Microcoded
IBM PC Board

D esigned for building
customized processors.

the MVP Microcoded
CPU/16 from Mountain View
Press is an add-on board for
the IBM PC that implements
a high-speed microcoded
processor. A wire-wrapped
prototype of the board.
which MVP demonstrated at
the West Coast Computer
Faire in April. ran one
FORTH test program 50
times faster than an IBM PC

. alone. According to the
company. the processor can
execute over 2 million stack
operations per second.

The card's 7 4-chip design
includes a 16-bit ALU. two
hardware stacks. an interface
to the IBM PC 12 BK bytes
of static memory. a program
counter. two I 6·bit data
registers. and room for 2 56
microcoded processor in·
structions. Each microcoded
instruction is defined by up
to eight 32-bit user-definable
microcode 1nstrucuons

An Engineering Prototype
Kit is available for SI 500
and a printed circuit board
version should be available
this month. MVP includes
the following software with
the wire-wrap kit: MVP
FORTH/!6. a word-oriented
FORTH that executes direct·
ly in the processor: the
MVP-FORTH Programmers
Kit: a Number Extensions
package: a microcode as·
sembler: a cross-compiler. a
set of diagnostic programs
and source code for all the
preceding software

For more information. con·
tact Mountain View Press
Inc. POB 4656. Mounra.in
View. CA 94040 (4151
961-410'3
Inquiry 558.

34 BYTE • JUNE 1986

0
jl
I I w
~
I \ I . u

\~.ii
Ii

I
0

0

)j

INTRODUCTON

MVP MICROCODED CPU/16

HISTORY

Glen B. Haydon
Haydon Enterprises

Box 429 Route 2
La Honda, CA 94020

Phil Koopman Jr.
20 Cattail Lane

No. Ki~gstown, RI 02852

The ·MVP-MICROCODED CPU/16 design resembles that conceived in the
ALCOR project in developing an ALGOL translator utilizing multiple harcware
stacks combined with the powerful techniques of a freely microcodable
processor implement~d in discrete components. In the present form of the
CPU/16 design, the user is free to structure the processor according to
application requirements for optimal efficiency.

HISTORY

The ALCOR project was Led by Samelson and Bauer during the '1950s. Its
goal was to provide a direct method for translation of ALGOL. They conceived
of a hardware design with two "cellars", one was to hold operational characters
and the other to hold numbers. In modern terminology these would be called
stacks. They are hardware storage devices based on a Last in first out scheme.
A block diagram of their concept, Figure 1, has been included in several papers.

5 4 8 7

r--- _____ }_ ____ _

: ,._.~--. R
I ~----~----!'--~----,'--~~~
I
I
I
I
1 Predecoder
I
I
I
I
I

:~--~
I
I ..__,....,,-,,.--

N

Op

c
~ -- - -------- ------

3 9
Operations 0

l Cellar l ·' . Key board

12

2

Printer

FIG. l.

Op' Op"

Computer

0

3

6

A

A

13

0 Num-
ber::i

cellar

11

It appears that a hardware implementation of the ALCOR design was
never completed. Computer processor designs took another direction. A
stack operation was often included but with the stack memory mapped into a
portion of the system's memory. Such stacks are usually used to store the
return Location for subroutine calls and sometimes to preserve other values.

In the Late 1960s, Charles Moore designed a scheme of programming also
using two stacks. One stack contained the return addresses of successive
subroutine calls and the other stored interim data values during computation.
Unfortunately, he could find no hardware. designed to fulfill his needs anci
resorted to emulating such a processor. Such emulations are available on many
systems today. They are known as a FORTH kernel.

A second consideration in the CPU/16 design is similar to that adopted
by Seymore Cray. In his Cray computer design, he used discrete components.
His claim was that it was the only way to get speed. Of course the Cray oesign
utilized many other features but the basic idea was that faster processo,·::.
could be implemented utilizing simple components.

The Cray computers used a Data General Eclipse as a host giving access
to the outside world. In a similar manner the CPU/16 uses an IBM compatible as
a host providing I/Oto the outside world. With only minor changes, the CPUFl6
could use any common microcomputer.

Finally, the concept of microcoding a simple processor has been
utilized in many different ways. Specific microcodable devices have been
designed and are commercially available. Examination of these devices
suggested that we could design a simple processor with discrete components
which could be· microcoded and provide even greater versat1Lity and speed.

RESULTS

The end result of these ideas is presently operational and available in
kit form. It provides an ideal tool for exploring the potential of the design
and as a Learning medium. Unfortunately, many people are reluctant to
undertake a wire wrapping exercise requiring 30 to 4CJ hours. Ho1i1ever,

. utilizing the single stepping capabilities from the host, any portion of the
processor can be exercised step by step. There is no better way to Learn at
first hand the capabilities of a multistack microcodable processor.

WORK IN PROGRESS

Now that the CPU/16 design of the kit has stabilized, the next step is
to produce that design on printed ~ircuit boards to be placed in the IBM FC
compatible. A problem with such a board is that it is no Longer simple to
change a wire corresponding to a bit in the microcode. The printed circuit
board is no Longer the experimental tool at the hardware Level.

The CPU/16 design is currently being Laid out and wire wrapped on a
pair of S-100 system" boards. It will run with an implementation of MVP-FORTH
on an S-100 bus system. There is also interest in implementing the CPU/16
design utilizing the Apple II series of computers as the host.

4

;., --,

,l

~

I '

i !

\ I
I

._,

ll

i~\
\-\
u

' i
~-J

NEXT GENERATION

Where to from here? The 16-bit bus of the present design is Limited to
16-bits of address space. By addressing on word boundaries, the system can
address 128K bytes. But without some form of bank switching, virtual memory
or some other technique, the size of memory is Limited. Intel has overcome
this Limitation by utilizing several base segments from which addresses can be
indexed. This is in essence a form of bank switching although it has been
efficiently implemented.

The next bus size to consider is 32-bits wide. Intermediate numbers
of address bits can be used but efficiency dictates the next size limitation at
tv1ice the size of the 16-bit limit. Using a 32-bit bus ina manner analogous to
the current 16-bit design and adding a number of enhancements, a significant
further increase in performance is anticipated. Also a billion 32-bit words
(4-giga-by·tes) of contiguous memory could be addressed without some form of
bank switching. Part of the engineering prototype for a CPU/32 based on these
considerations is already completed and functional.

The CPU/16 kit is an ideal hardware system with which to study other
architectures. For example, the design is clearly not a RISC machine as
currently described. However, by addressing items in the dedicated stack
memory with optimized microcode, it would be possible to treat stack RAM as an
array of re.gisters and emulate a RISC design. In such an implementation, the
RISC architecture could be thought of as a subset of the capabilities of the
CPU/32 processor. ·

LANGUAGES

The MVP CPU design lends itself to the efficient implementation of a
wide variety of high level languages. For example Smalltalk-80 uses
approximately 100 primitives each of which could be implemented in microcode.
The design would be ideal for implementation of a p-code machine.

FORTH has been used in the initial phases of this work. FORTH is, af·t:r
all, an emulation of the hardware design. The Language has the advantage of
ease of interactive programming and access to all hardware components. The
diagnostic suite, micro-assembler and cross-compiler were easily developed
with a minimum of effort. The language also provides a versatile facility for.
programming many applications.

However, with the desirability of making the system compatible wi"th
other existing programs, it would be desirable to have a common operating
system available. One route to a popular operating system would be to first
implement the C languc;ge. Already, one group is working to implement Small C.
With a full implementation of C, the entire UNIX system could be added.

With the versatility of a microcodable processor, the development of
ne~1 Languages tailored to specific applications becomes more reasonable. The
languages of LISP and PROLOG are just a beginning in the field of artificial
intelligence and they have been implemented in FORTH. It should be relatively
easy to move such implementations to the newly designed processor.

5
J

C ONC LUS IONS

The MVP CPU design provides flexibility in designing and using hardware
to solve many application problems. In additionr many high Level language·s
could be implemented on such a system with excellent efficiency. Initially,
FORTH has been chosen as the as the host and processor language. As such, the
system complements a variety of other commercially available implementations
of FORTH in hardware. The MVP CPU series of products provides flexibility for
experimentation and tailorihg the processor to specific application and a tool
for teaching and testing a variety of hardware processor designs.

The. kit would make an ideal starting poiht for a comprehensive
computer science course sequence. Such a sequence might start with the
building of the kit as a rnicrocodable processor. That might be followed ~1ith
the writing of the software for a compiler and an operating system. The series
might conclude with a significant application utilizing the tools which were
developed.

The fundamental philosophy has been to examine program••~ng
requirements of the application at hand,. and design the hardware accordingly.
It is a shame to have the hardware Limitations drive the programming and Limit
the solution of the application. The prE·sent design is a stage in the evolution
of hardware to solve problems. Perhaps more than t\.10 stacks would be
desirable in some applications. Once 2 design is found for a specific
application, the next step would be to cast that design in silicon. But oon't
get the cart before the horse.

BIBLIOGRAPHY

Bauer. Fredrich l., Between Zuse and Rutishauser- The Early Development of
Digital Computing in Central Europe., in A History of Computing in the Twentieth
Century, N. Metropolis.- J. How let, and Gain'-Carlo Rota, Editors, Academic Press
1980.

Note: This volume is a treasury of historical ideas which are unknown
to many workers in various branches of computer science today.

6

/!
'
(_I

1:

(:
\!

~.

~

LI

--"'l I I
~1

[I

I
0

{ \

'----'

ABSTRACT

MVP MICROCODED CPU/16
ARCHITECTURE

Phi.I Koopman Jr.
20 Cattail Lane

No. Kingstown, RI 02852

Glen Haydon
Haydon Enterprises

Box 429 Route 2
La Honda, CA 94020

The MVP Microcoded CPU/16 is a 16-bit doprocessor board that directly executes high level stack-oriented programs. The CPU/16 may be micro-programmed to execute any stack­oriented language. FORTH was used as the initial implemen­tation language to reduce developmerit time and costs.

INTRODUCTION

Modern computer languages and compilers rely heavily on the concept of the push-down stack. However, conventional computers are optimized for register-oriented operations and impose large memory access time penalties when using stacks residing in ~ain memory. The CPU/16 stack-oriented co­processor can improve the performance of a personal computer to equal that of a much more expensive mini-computer for programs that make heavy use of stacks.
· The MVP Microcoded CPU/ 16 was designed as a "low tech" exploration tool for stack-oriented processing. The result is an inexpensive commercial system that:

1) Uses simple, inexpensive, commonly available components. 2) Minimizes hardware and software development tool costs. 3) Fits the basic system onto a single IBM compatible
Personal Computer expansion board (13" x 4").

4) Maximizes flexibility and minimizes complexity.
5) Achieves a 20 to 50 times speed improvement over 8088. MVP FORTH.

SYSTEM ARCHITECTURE

The CPU/16 is implemented in only 74
of program memory), with no custom or
required. 74xx and 74LSxx series ICs
functions, with 120ns CMOS static RAMs
program memory.

ICs {with Bk words
semi-custom chips

provide all logic
for. microcode and

Figure 1 shows the architectural structure of the CPU/16. All data paths are 16 bits wide.
The CPU/16 plugs into an IBM compatible personal computer as a one-slot expansion board. The host interface on the CPU/16 allows the personal computer to alter registers and memory as well as single-step programs at the microcode or macrocode level. When the CPU/16 is in

7

DATA STACK LOU
POINTER <--------1ti:--i
<B ·BITS)

LOU
.,_------1D·i----tS->

DATA STACK D
.. <256 X 16 BITS> . <>----16-0

··RETURN STACK LOU
POHlTER <------8---i
<S BITS)

LOU
->

A

16---<

1-----SHIFT IN-·-> ~Ms~&Tl··· ··· ... · ·.
<CONDITIONED UITH . < 16 BITS> . ·.. · .

SC BIT) .__..__,,......_ ·
16·-+---------.

ALU
<16 BITS) .

Y OUT

16,--)·------+--
s
y
s
T
E <-16
M

B ·sc-1~> DATA LO
RETU ~I STACK D U <>-16,----< > REGISTER ·. ~HIFl Ir.I/OUT~ · 1
<256 X 16 BITS>(>-----..-. 16-<> S <t.6 BITS)

·~. •, .

1 PROGRAM
6 <.;..16 , COUNTER SA\.'E (--+---1

PROGRAM . COUl.JTER

p>
B

HIGH 8 BIT BUS · HIGH I
HOLDHIG REGISTER 1-----ti-) T
CS BITS> . S a .__ ______ ..,.

. . .. _r;;t, H lGH ·.
..--IB_M_P_c_""" · -[TI-S-

BUS .) r. > INTERFACE >~-<>
. L'.:rLOw

STATUS REGISTER
<S BITS> <-· ----H--1

LOIJ

. C16 BITS)
<16 B!TS) .

PROGRAM R M
8K·X 16.BITS
<ADDRESSABLE TO 64K) .

<}-16-@------16-....-... D

<>-16

LOW
16

LOIJ :;l

· ·MICRO ROGRAM
COUl·iTER
<8 BITS)

D
32--<>

NOTE: 3

·~

0
FIGURE 1. MVP MICROCODED CPU/16 BLOCK DIAGRAM.

8

HIGH
16

MICRO INSTRUCTION
REGISTER
(32 BITS)

~EXT MICRO ADDR->
3 cmm BRAt;JCH
+ .

CONTROL SIG~IALS

f~}i
i .

. ·., \

/,_'·

·h
\! i
.__r

"I
(1 i

i I
\j i:
~

'

....,._,
)/ :'

. . !____.-\

.~
\ f
v~

A

I .'
\ __ ~'

) l

11 \

.:=
,I I

'I
':.____;

"master" mode, the personal computer waits for the CPU/16 to
request I/O service through the status register.

The return stack and data stack are hardware stacks
with 8-bit pointers addressing 256 elements of stack memory.
The stacks may be accessed and pointers incremented or
decremented in a single clock cycle.

The ALU is built from 74tS181 chips, and has two shift
registers to hold intermediate results. The Data Hi
register and th~ Data Lo register can be shifted together as
a 32-bit register for multiplication and division. The Data
Hi register normally contains the top data stack element~

Program memory is organized as 64k words of 16 bits.
All but the last 256 words may be used for program memory.
A 16-bit program counter is used for all memory access
addressing~ The separate memory address bus from the
program counter allows overlapped instruction fetching and
execution. Program memory expansion beyond Bk words
requires a daughter-board.

Micro-program memory is organized as 2k words of 32
bits. The microcode bit format is typical of modern
horizontally microcoded machines. The micro-program counter
and micro-instruction register allow overlapped' fetching and
execution of micro-instructions. Conditional microcode
branches and microcode looping are accomplished by
manipulation of the low order 3 bits of the micro~program
address. If, during macro-instruction decoding, the highest
8 bits of a macro-instruction are not alr 1, the
microprogram counter is forced to all zero'~, executing a
DOCOL subroutine call. If the highest 8 bits are all 1,
then one of 256 possible microcoded primitives is executed.

SOFTWARE SUPPORT

FORTH was picked as the CPU/16's development language
for its efficiency, its simplicity of compiler
implementation, and its friendly ·interactive environment
with easy access to hardware resources. The CPU/16
supporting software includes a host control program, a
microcode assembler, and a FORTH cross-assembler, as well as
the FORTH microcode and kernel for the CPU/16
implementation.

The host program, microcode assembler, and cross­
compiler are written in 8088 MVP-FORTH. The CPU/16
currently uses an MVP-FORTH kernel that differs in
functionality from the 8088 MVP-FORTH version in that it
uses word-oriented instead of byte-oriented memory
addressing. In addition to FORTH, the CPU/16· is capable of
supporting other programming languages such as Modula 2,
Pascal, Lisp, and C. Any compiler implemented in machine­
independent MVP-FORTH can be quickly installed on the
CPU/16.

Current applications available
double-precision and quad-precision
single-precision floating point math

9

on the CPU/16 include
integer arithmetic and
packages.

PERFORMANCE

The CPU/16 runs at a 4.77 MHz micro-cycle rate. An
"average" microcoded primitive executes in 3 · clock cycles
(630 ns). This ~rovides approximately a 20 to 50 times
speed increase over 8088 MVP-FORTH programs operating at the
same clock speed~

Since only half of the micro-program memory is required
for the MVP-FORTH implementation, custom-written microcoded
primitives may be added to a user's application to increase
the speed of commonly used words. As an example, software
stack manipulation words: ·

INC[@] (PTR-ADDR -> N) DUP @ @ 1 ROT +!
: DEC{!] (N PTR-ADDR ->) ~1 OVER +! @ ! ;

can each be implemented in 10 micro-cycles (2.10 us) / a
speed increase of greater than 300% over high-level
definitions. The listing for INC[@] is given as an example
of CPU/16 microcode:

177 OPCODE: INC[@] (ADDR -> N
0 :: SOURCE=ALU ALU=B DEST=PC ;; \PC<- ADDR
1 :: SOURCE=ALU ALU=-1 DEST=DLO ,, .\ DLO <- ~i
2 .. SOURCE=RAM ALU=A+l DEST=DHI I I \ DHI <- POINTER+l
3 SOURCE=ALU ALU=B DEST=RAM ,, \POINTER<- OHI
4 .. SOURCE=DLO ALU=A+B DEST=PC INC [MPC]. I I \ PC <- PTR
5 · · JMP=OOO ; ; \ WAIT FOR RAM ACCESS., JMP TO NEXT PAGE
178 CURRENT-PAGE !
0 : : SOURCE=RAM DEST=DLO. ; ; \ DLO <- DATA
1 SOURCE==PCSAVE ALU=A+l DEST=PC ;; \ RESTORE PC
2 .. SOURCE=DLO ALU=A DEST=DHI DECODE I I \ T.O.S. <-DATA.
~ .. END;; \ JMP TO NEXT INSTRUCTION

FUTURE DEVELOPMENTS

Future developments for the CPU/16 will focus on
broadening the range of languages and application programs
available. Potential applications for a stack-oriented
processor include: artificial intelligence, computer
graphics, image processing, real-time control, and efficient
execution of modern computer languages.

The CPU/16 is the first in a family of stack-oriented
processor~. A 32-bit general-purpose stack~oriented
processor with greater speed and memory addressability is
currently in development.

CONCLUSIONS

The MVP Microcoded CPU/16 is a high performance,
general-purpose stack-oriented processor. A "low tech"
approach has yielded significant speed improvements over
current microprocessors at a modest cost. Compatibility
with existing MVP-FORTH systems allows for easy porting of
existing software to a high performance environment.

10

J

f--,.

~-'

I

l~_J

PROGRAMMABLE HARDWARE

Microcoded
Hard-wired C 0 .. ·\ll ~ -1-11·.,.,c) 1 ~ ll ~] s

. .r._ l •Iv. _i.L

A comparison of two methods for implementing
the control logic for a simple CPU

THE INSTRUCTION decoding and exe­
cution control sections of modern com­
puters are prime areas for using program­
mable hardware. Two of the most widely
used methods for designing CPU control
sections in microprocessors, minicom­
puters, and mainframes are microcode and
hard-wired logic. Each method has its ad­
vantages, and both are natural applications
for programmable hardware devices.

Architectural Description
· I'll start by giving the specifications for
a simple computer architecture, then walk
through the implementation of this archi­
tecture using both microcoded and hard­
wired design strategjes. While both ap­
proaches require the same description and
specification groundwork, they use dif­
ferent schemes to generate control signals.

I will examine the CPU architecture of
Toy, a fictitious computer designed
especially for this article. The CPU has
an accumulator (ACC), an arithmetic
logic unit (ALU), an instruction register
(IR), a program counter (PC), some ran­
dom-access memory (RAM), and some
control logic. Figure I is a block dhtgram
of the Toy architecture. All data paths are
16 bits wide with 12-bit memory-address
paths. You can directly implement the
ALU, ACC, IR, PC, multiplexer, and

·RAM sections of Toy using comnionly
available chips. Toy's control-logic section
will require detailed design and the use
of customized hardware or a large number
of combinatorial logic gates.

The Toy instruction format shown in
figure 2 consists of a 4-bit op code and

Phil Koopman

a 12-bit address field. The 16 implemented.
op codes are shown in table I. Op codes
8 through· 15 do not make use of the in­
struction's address field.

Since Toy is a single-accumulator ma­
chine, the instructions ADD, SUB, AND,
OR, and XOR combine the contents. ofa
memory location with the accumulator
and return the result to the accumulator.
The instructions STORE and LOAD
transfer the accumulator to and from
RAM. The instructions NOT, INC, DEC,
and ZERO. operate on the accumulator
alone. While JMPZ is the only branching
instruction, you can program an uncon­
ditional branch by following ZERO with
a JMPZ. Finally, the four unused op
codes act as null operations (NOPs) to
eliminate the annoyance of dealing with
illegal op codes.

Control Logic
The control-logic section translates the op­
code bit patterns into CPU-control and

. timing signals. Figure· 1 shows the op-code
inputs to the control-logic unit and the
control-signal outputs required to run the
resi of the CPU. The signals ALUO
through ALUCIN control the ALU. (I
based the bit assignments on those for the
74181 ALU chip. Sec 771e 7TL Data Book,
listed in the Bibliography.) IfALUMODE
is a I, then the ALU will perform a logical
operation; if it"s a 0, the ALU will perform
an arithmetic operation. ALUO through
ALU3 control which arithmetic or logic
operation the ALU is performing.
ALUCIN acts as the cm:ry-in for. the ALU.

When the signal CLOCK[ACC] is a 1,

11

the ACC register is loaded with the value
of its inputs at the rising edge of the system
clock. This ·is usually referred to as
"clocking in" the contents of the ACC.
When.the signal CLOCK[IR] is a 1, _the
contents of thelR are clocked in frotn the
RAM output. This is the mechanism used
to decode the next op code. When
ADDR=IR is a I, the RAM address
multiplexer places the contents of the IR
address field onto the RAM address bus.
When it is a 0, the PC is used to address
RAM. I use the descriptor ADDR=PC
to mean ADDR=IR is 0. When
CLOCK[PC] is a I and the ACC is 0, the
PC is loaded fr9rn the IR address field.
When INC[PC] is a 1, the program
counter is incremented by l al the end
of the current clock cycle. When
WRITE[RAMJ is a I, the RAM cell ad­
dressed by the RAM address bus is loaded
with the output of the ALU; when this
signal is a 0, the ALU is drive·n from the
output of RAM.

Functional Specifications
Now for the heart of how the Toy instruc­
tion set is implemented. In the Toy CPU,
all instructions can be executed in just one
or two clock cycles. ·Table 2 shows the ac­
tions required to complete each op code's
function. Those actions in tnblc 2 th~! ;ire

co1ui1w,•d

lly day. Phil Koopman (20 Ca11ail !1111c.
North Kingston, RI 02852) is a U.S. N(/\')'
submariner and engineering d11ry officer:
by 11ight,lie designs computer lwrdware,
softivare, and 11ij.crocode.

JANUARY 1987 • ll YT E 2J5

CONTROL LOGIC

not the control signals shown in figure 1
are macros for the ALU control bits
whose value is given in table 3. Let's ex­
amine some representative op codes in

. detail.
The STORE op code stores the contents

of ACC into RAM. For the first cycle of
this instruction, the low 12 bits of the IR
address RAM. The ALU routes the ACC
contents through without modification,
then writes them out to RAM.

.. :.: ,.,_
:i·.·

STORE requir.es two clock cycles since
· RAM is being used for accessing a data

value during the first clock cycle. The sec­
ond clock cycle is the same for all two­
cycle instructions; it is simply a decoding
of the next op code.

The contents of the RAM address
pointed to by the PC are put onto the
RAM address bus to fetch the op code.
They are then clocked into the IR, and

co111i11111ttl

·:,'!. ,'I.

---A-"L"'U'~f-'"- -· -1
ARITHMETIC .LOGIC UNIT ,..J
116 BITS) ,J

·-' '------'---.. ~--.r'

·,· ·~, .~ ~ .. -----~ ~ .. --~ ~·· ~

DATA IN

i
RAM
PROGRAM/DATA MEMORY
4K WORDS OF 16 BITS

DATA ·~:m~~me-~· i\' OUT' "(.

IR
INSTRUCTION REGISTE.R

I 4 BITS) (12 BITS)
!OP COOEl (ADDRESS)

CONTROL LOGI~ ~
OP3
OPZ
OPI

.OPO ::; []c ;.;, · . PROGRAM COUNTER
(12 BITS)

·-------'

Figure. h Toy architecture blor.k diagram.

IN$TRUCTION FORMAT:

.) .. ?~~;~t.::f.?~::~~ ':.~;t~: ::,;;:::~:.~~~~~·hf i~~:~ 1 '. ' .

. '. BIT :·JS' '14' 13 '1°2 .'ll '' 10 9 8 7 6 5 4 3 2 I O

OP CODE ADDRESS

4 BITS. 12 BITS

Figure 2: Toy instruction set format. .-
12

L-,

I
\I ;

<..__,_)'

! I

\'

~

/) (

r-·,
h :
(I

~

I'
) .

' 1.
'...-------'

~ ' ' ,\
: ;
L_,:

' I I
~ I

L:

!)
r_ .)

CONTROL LOGIC
_..;,__--:-----:--===========~---. --·---

Table 1: Toy instruction set.

Op code

0
' ' 1 .

2
3
4
5
6
7
8
9
10

•• 11
12
13
14
15

Operation

STORE
LOAD
JMPZ
ADD
SUB
OR
AND
XOR
NOT
INC
DEC
ZERO
"NOP
NOp'
NOP
NOP

Description

store accumulator in RAM at address
.load ACC from RAM at address
jump to address if ACC is zero
add RAM to ACC
subtract RAM from ACC
logical OR RAM into ACC
logical AND RAM into ACC
logical XOR RAM into ACC
logical one's complement into ACC .
add.1 to ACC
subtract 1 from ACC
place 0 in ACC
null operation - unused op code
null operation - unused op code
null operation - unused op code
null operation - unused op code

Table 2: Toy functional specification. Note that ADDR=PC is equivalent 10
the ADDR=IR signal being O; Also, I have used descriptive macro names
for the ALU comrol bits (see table 3).

Op code Operation Cycle Specification

0 .STORE 1 ADDR=IR; ALU•ACC; WRITE(RAM)
2 ADDRaPC: CLOCK[IR]; INC[PC]

LOAD 1 ADDR=IR; ALU=RAM: CLOCK[ACC]
2 ADDR=PC ; CLOCK[IR] ; INC[PC]

2 JMPZ 1 CLOCK[PC]
2 ADDR=PC : CLOCK(IR) ; iNC[PC]

3 ADD 1 ADDR=IR ; ALU•ACC+RAM ; CLOCK[ACC]
2 ADDR=PC : CLOCK[IR] ; INC[PC]

4 SUB 1 ADDR•IR; ALU=ACC-RAM; CLOCK{ACC]
2 ADDR=PC ; CLOCK[IR] : INC[PC]

.s OR 1 ADDR=IR ; ALU=ACCorRAM ; CLOCK[ACC]
2 ADDR==PC ; CLOCK(IR] : INC[PC]

6 ANO 1 ADDR=iR; ALU=ACCandRAM: CLOCK(ACC]
2 ADDR=PC; CLOCK[IR); INC[PC]

7 XOR 1 ADDR=IR; ALU=ACCxorRAM; CLOCK[ACC]
2 ADDRaPC ; CLOCK[IR] ; INC[PC]

8 NOTA ALU=notACC; CLOCK[ACC]:
AODR=PC; CLOCK(IR]; INC[PC]

9 INCA ALU .. ACC+1; CLOCK[ACC]; ADDA==PC;
CLOCK[IR) ; INC[PC)

1.0 DECA ALU=ACC-1 : CLOCK[ACC] ;
ADDR=PC ; CLOCK(IA] ; INC[PC]

11 ZERO ALU=O ; CLOCK[ACC] ;
ADDAaPC; CLOCK[IR); INC[PCJ

12-15 NOP ADDR=PC; CLOCK[IR]; INC[PG]

13

...

CONTROL LOGIC.
----'-------------~------------~--------·-···---··· -···------------·-·------ -·

finally the .PC is incremented so that ii is
pointing to the next op code.

JMPZ accomplishes a conditional
branch by loading the contents of the PC
with the address in the IR. For this to-be
a conditional branch, the control signal to
the PC loader must be ANOed with a

signal that is only true if all the bits of the
ACC are 0. Since the PC is loaded with
the new instruction address at the end of
the first clock cycle, the second cycle is
a .normal decoding instruction for this new
address, identical to the second cycle of
STORE.

Table 3: Macros for the ALU control bits (based on bit assignments in the
74181 ALU chip).

·Macro ALUO

ALU = ACC 1
ALU .. RAM 0
ALU • ACC + RAM 1
ALU .. ACC -··RAM 0
ALU .. ACC GR RAM 0 ·
ALU ;.. .ACC AND RAM 1
ALU = ACC XOR RAM 0
ALU .. NOT ACC 0
ALU = ACC + 1 0
ALU = ACC - 1 1
ALU = 0 1

ALU1

1
1
0
1
1
1
1
0
0
1
1

ALU2

1
0
0
1
1
0
1
0
0
1
0

Table 4: Control signal value specification.

Values for firs(clock cycle of each instruction

Control
signal

ALUO
ALU1
ALU2
ALU3

fALUMODE
ALUCIN
CLOCK[ACC)
CLOCK[IR)
ADDA=IR
CLOCK(PC)
INC[PCJ
WRITE[RAM)

Op code
0 1 2 3 4 5 6 7

x
0
0
1
0
0

0
1
0
1
1
x
1
0
1
0
0
0

x 1
x 0
x 0
x 1
x 0
x 0
0 1
0 0
1 1
1 . 0
0 0
0 0

0 0 1 0
1 1 1 1
1 1 0 1
0 1 1 0
0 1 1 1
1 x x x
1 1 . 1 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

Values for second clock cycle of each instruction

Control
signal

ALUO
ALU1
ALU2
ALU3
ALU MODE
ALUCIN
CLOCK(ACC)
CLOCK(IR]
ADDR=IR
CLOCK(PC]
INC[PCJ
WRITE[RAMJ

Op code
0 1 2 3 4 5 6 7

x x x x
x ·x x x
x x x x
x x x x
x x x x
x x x x
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

x x x
x x x
x x x
x x x
x x x
x x x
0 0 0
1 1 1
0 0 0
0 0 0
1 1 1
0 0 0

x
x
x
x
x
x
0
1
0
0
1
0

238 B YT E • JANUARY 1987

ALU3 ALUMODE ALUCIN

8

0
0
0
0
1
x
1
1
0
0
1
0

8

x
x
x
x
x
x
x
x
x
x
x
x

x
1 x

1 0 0
0 0
1 x
1 x
0 x
0 1 x
0 0 1
1 0 0
0 1 x

9 10 11 12 13 14 15

0 1
0 1
0 0
0 1 0
0 0
1 0 x
1 1 1
1 1 1
0 0 0
0 0 0

x x
x x
x x
x x
x x
x x
0 0
1 . 1
0 0
0 0

x
x
x
x
x
x
0
1
0
0

x
x
x
x
x
x
0
1
0
0

1 1 1 1 1 1 1
0 0 0 0 0 0 0

9 10 11 12 13 14 15

x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x

14

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

The single-clock,cycle instructions.
such as NOTA, do.not require a RAtv! ac­
cess for an operand. This means that the
usual second-cycle decoding sequence C:an ·
occur during the same clock cycle as the
ALU operation that modifies the ACC
contents. In the case of NOTA, the RAM
input to the ALU is. ignored while tin;
ALU computes the one's complement
(logical inverse) of the current ACC
contents.

Conlrol-I..-0gic Outputs
Table 4 gives a complete listing of all tilt:
control-logic output values that you need
to specify the Toy functional description.
Each X corresponds to a signal whose
value does not matter, either because th.e
controlled resource is unused (as in the
ALU signals for op code 2) or because the
second clock cycle is unuscdJor op codt:>
8 to 15. These "don't-care'.' signals become
crucial when you are designing hard-wired
control circuitry.

Hard-wired Control
A CPU designed with hard-wired control
uses random logic such as ANO, OR, and
NOT gates and either flip-flops or
counters to decode each op code and con­
trol the processing flow. The hardcwired
design process usually consists of identi­
fying all the states needed to implement
the instruction set, then deriving the

·Boolean logic equations required to con­
trol the computer's resources for each
step.

Figure 3 shows the hard-wired imple­
mentation of the functional specifica:
tions given in table 4. It requires a con­
troller with two states: first clock cycle and
second clock cycle. The flip-flop in figure
3 is forced to the CLOCKl state whenever·
a new instruction is clocked into the IR
and changes to the CLOCK2 state when­
ever the IR is not clocked.

The most tedious part of a hard-wired
control design is creating the logic gate·
networks to decode instructions into con­
trol signals. I have derived the required·
logic equations shown in figure 4 from the
functional specifications in table 4. Figure
5 shows the Karnaugh map for deriving
the first equation (ALUO) in figure 4. (See
W. Fletcher's An Engineering Approach
to Digira/ Design [Prentice-Hall, 1980] for
a discussion of Karna ugh maps.)

The don't-care conditions are vital in
reducing the complexity of the gate net­
works, since th~y allow freedom to ignore
some op-code bits or state bits to minimize
decoding logic. A good example of a
don't-care condition is the ALU control
signals; they do not depend on whether
the controller is currently in the CLOCK!
or CLOCK2 _ _!!lode.

co11rinut:d

"---'

CONTROL LOGIC

~ ' .

ALUO

,;. '. ' ,• ~ ! .:,!(;~. ··t :fr 1.:~
l'···

'?':·. "
.,
'ii" ., ii :..~.

::J·::

ALUJ

'·':.';'

: · .. '~:)'.":. ~:: .:i"

., ... ,,.. .·;;~-+-t-t-t-t--i--"1-...F,....-.~=='=I-_.. ALUMOOE

CLOCK(ACCl

CLOCK r1R1

AOORa IR

· .. ;', .. :·· .~ ' :

INCCPCJ

. ·-<;•· ·~i:;! .. ~i:~f: ; ... t:: ·::. ·· . .-: .•

·,,:;::::;·:t~¥~~ik1~;!~1iiA~2'.i.Al ,_,; >
FLIP·FLOP

. ,:~;~.~~1~:'.}
.. •.

:: ·

Figure 3: Hard-wired controller schematic. Note that none of the ALU sig1ials
depend on whether the controller is in the CLOCKJ or CLOCK2 mode.

15

CONTROL LOGIC·

.. ·;~;:·~-~~ri1~~~~-~~4ir'·•.b,.\.~:;',,:~~-·-~«ti.~~:~~.i;;:-~~~~i~-~~1~~~;,:;~-r~~ii.'.~~- .. \~-:f;>--. ·.;:;:~'"'''7i:~Atu0:f• Fop3·fop2.loP0~1+k .. oP.:21~cp:.1:i~:froP k'OP0 ' ··. ~ ... ' :··.· . . . ;: ': ~~-._·"-. . ··.·:'::, <·:· ' '' .~ ... ': .:".\:.: .J •. ' '• ... ;. ~··:/~"--. ,. : ·: -· ·:

ALU1 - Qpj' OP1 + OP2 + OPJ OP1

....

. . . ,, ;,.p~~q~[P,C] :,~.;,OP3.;.pg~:v,9~i~~.~.N~~,S&Q9\<J.

·. ''.~~ti,tt~~~~.f *it~~2'~~~1
' '· . -~- ' . ; ~- -·.

Figure ·4: Logic equations for Toy's hard-wired implementation.

OPJ.OPO

"OP3;0P2. 00 OJ. .. ,··nf,. ·:for:··
"oa· ... 1·,, 0 o J ,,,:.:c ·+ ..,.

;:.·'~tj>/·;,·!~~~f :1--0-.;,_..o __ ·_·:-_·_:+-:-~!_1 _··,"-l; li.~'i 'i 0 r ;:~~:~i:';~:;,,,
) z 13 15 t

x x x !
I X • OON'T CARE

.. ~-.,.,. . '~

Figure 5: To show how the Boolean equations in figure 4 were derived
from table 4, here is the Karnauglz map used to minimize the ALVO
Boolean equation. 171e Xs are the don't-care bits, and rhe number in the · upper right corner of each box is the op code.

240 8 YT E • JANUARY 1987 16

lb implement the hard-wired controller.
the complementary outputs of the
CLOCKl/CLOCK2 nip-nop and the in·
puts from the current op rnde in the l R
are fed throughout the system by the lines
at the left of figure 3. These inputs are then
!Cd thrn11gh illgic g:11c u1111hi11:11inns
specified by the equations in tigure 4. You
can implement these logic-gate combina·
tions with TTL logic gates or. if you want
to save board space, program them into
hardware, such as a PAL.

As an example of how these decoding
gates work, consider the generation of the
signal INC[PC]. The INC[PC] signal
should be a 1 for op codes 8 to 15 on the
first clock cycle and for op codes 0 to 7
on the second clock cycle. But, since op
codes 8 to 15 are all single-cycle op codes.
any sigmils generated from them during
the second cyc:lt: c:111 be ignored. This
gives the n;sult thut lNC[PC] can be I !'or
all op codes during the second cycle. The
logic for INC[PCJ then becomes the ANO
of the highest op-code bit (OP3) and
CLOCK!, with the result ORed with
CLOCK2.

Because the time required for a signal
to pass through a si111ple logic gate is 011\y
a few nanoseconds with most current
technologies, hard-wired control can pro·
vidc the fastest possible decoding of
machine language instructions. It also is
the most flexible design method for speci·
fying unique and complex control flows
within a CPU because the designer can
specify any decoding gate combinations
and any cont rol-llow hardware.

One drawback to using hard-wired ~on·
trol mctlHidnlngy 1s 1\i:1t it n:quin:s :1 L'Pn·
sidcrablc amount or f3oolean algcbr~
manipulation. Another drawback is that
the CPU must be completely and correctly
specified hcf(Hc you design a h:1rd-wircci
control unit.

Any additions or lllOclifications to the
specification can require a lllajor redesign
of the control unit. If you wnnr a feel for
the impact a design change can have on
a hard-wired controller, try redoing the
logic equations with two op codes
switched, such as op codes 5 and 9, or
with op code 15 defined as a two-cycle
logical NANO instruction.

Microcoded Control
Microcoded design differs frolll hard·
wired design in that the control-logic gates
are replaced by a Jllemory array (usually
a ROM) ro generate the required con1rol·
logic signals. While ROMs are slower
than rnndom logic within the same price
a~d p~rforlllance categories, using a ROM
s1mpl1fies the design process and signiti·
cantly reduces time :ind costs for imple·
menting a CPU s;ontrol circuit.

Figure 6 shows. the schematic for ~

r " ----:

jl
I

I
'--'

L\

·L

I
t~:

~~-<

!
I•
[.___I

I\
·--

\ __

-=-~·

'----'

(
I

!
\

I~

--

microcoded control circuit for Toy. The
op code and a flip-flop similar to the one
used in the hard"wired controller are fed
in as an address to the microprogram
ROM. The outputs of the ROM directly
drive the control signals for the CPU.
Each ROM localion CO!Jtains the proper

. bit settings to contro.1 a single clock cycle
of rin op c.ode's cxccurion, as shown .in
figure 7. ··

The control signals for the first cycle of
each op code are placed in the. even
memory addresses {which are addressed ·
when the flip~flop in the controller out­
puts a 0 for the first clock cycle), l)nd lhe
second cycle op todes are placed in odd
memory addresses. I have arbitrarily
assigned the value 0 to all don't-care bits
from table 4 and copied the rest of the bits
directly from table 4 to figure 7 .

. The main udv-Jnlligc to microcoded con~
trol i~ that it lets the designer change the
CPU's functional description by changing
the bits in any ROM address without hav~
ing to redesign .the machine's logic­
decoding gate structure. Microcoded ma­
chine design also lends itself to simply
structured, low-component-count com­
puters such as those built. using bit-slice
technology. Most iJ10dern microproceS'-

. continued

CONTROL 'LOGIC

HIGH HIGH A
7 WRITECRAl.p 0 0 0 A .INCCPCl R T OPl >--------1 E A C·LOCKCPCJ s

ACOR I IR s
· OPO >----------1

CLOCK CIRJ
LOW

CLOCKtACCl
ROM A LUC IN
MICR.DPROGRAM MEMORY ALU MOOE
[ALSO KNOWN A.S CONTROL ALU3

STORE) ALU2
f 32 WORDS OF 12 BITS l ALU!

ALUO

~ow

. FLIP-FLOP

0 . 0

Figure 6: Microcoded controller schematic.·

....

17

r.'.::~~···r::· .~.;:· ·'
~:.> .:

.:-· ..

CONTROL LOGIC

w c
R C C L
I L. L O
T I 0 A O C A
E N C 0 C K A L

.. ·' , L,_c K.-0 K [L U
·'"" ., ._, ' 'R [[R [A U 1.4 A A A />..

·.·:· .. :t::::<::;;~6~f.7~·1,:.'3.>C1~t 'I ~ g i g b b b b
:oE ,ADDRESS .] .]]. R l] N E 3 2 1 0

.:~;7·,~%~~0~~~4i.i~~~i~~-~~i~i~f ~-T~-~
"::2r .. '"_,'0'r0 0~ .. 1 0· 1 0 1 1 0 1 0

"~·'.' ·3."' · .. 0i 1· 0'-'0 1 0 0· 0 0 0 0 0
2 4 001100000000

5 '0 1 0 0 1 0 0 0 0 0 0 0
6 0 0 0 1 0 1 0 0 1 0 0 1
7 0 1 0 0 1 0 0 0 0 0 0 0
8 000101100110
~- j' t 0 0 1 0 0 0 0 0 0 0

5 10 0 0 0 1 0 1 0 1 1 , 1 0
11 0 1 0 0 1 0 0 0 0 0 0 0

6 12 000101011011
13, . 0 1 0 0 1 0 0 0 0.0 0 0

7 14 0 0 0 1 0 1 0 1 0 1 1 0
15 0 1 0 0 1 0 0 0 0 0 0 0

8 16 0 1 0 0 1 1 0 , 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0

9 ' - ; ~ ~ g. ~ : : ~ ~ ' ~ : : : : :
20 0 1 0 0 1 1 · 0 0 1 · 1 1 1
21 0 0 0 0 0 0 0 0 0 0 ~ 0
'22 0 1 0 0 1. 1 0 1 0 0 1 1

.:23<.· 0 0 0 0 0 0 0 0 0 0 0 0
24'' ·~.,., 0· 1 0. 0 1 0 0 0 0 0 0 0

.,, '• 25 ' '' 0 0 '0 0 0 0 0 0 0 0 0 0
26 0 1 0 0 1 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0.0 0 0 0 0
28 0 1 0 0 1 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 j 0 0 0
30 0 1 0 0 1 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7: Contents of ROM for the microcode.

sors and large computers use microcoded
design techniques because the design costs
associated with hard-wired control are too
high.

In some cases, a computer will use
RAM i1\steud of ROM for its microcoded
memory, providing a "writable control·
store." A sophisticated progrummer can
use this to modify and extend the ma­
chine's instruction set for special applica­
tions. By using multiple sets of ROM or
R:AM within a machine, the programmer
can make a computer emulate more than
one machine-code instruction set for dif­
forcnt computing environments.

The method of microcoding I used in
Toy is called horizontal microcoding,
since each bit of the ROM directly feeds
a control line for the CPU. A hybrid
design method known as vertical micro-

18

coding compacts some control signals
together to save ROM bits. It then uses
decoding logic much like that used by the
hard-wired approach to regenerate the
signals.

In general, hard-wired control is used
for computer designs that are simple or
that req\lire fast execution speeds, while
microcoded control is used in complex
computer designs to keep design costs low.
Both design· methods can implement
CPUs that are much more complex than
the Toy architecture. •

llIBIJOGI~APMY

Hill, F., and Peterson, G. Digital Systems:
Hardware Organization and Design. (2nd
ed.) New York: John Wiley & Sons,. 1978.

TI1e TTL Dma n,.,()k, volume 2. Dallas, TX:
Texas Instruments Inc., 1985, pages 3-712.

·-~

.~
r:

i I

\-.
(. '

i

.·i

~.
,, I

~

'· I

I
" ' __,_,!

r' ..
I I

l l

'-~

fl
u

L

I_

INSTRUCTION SET STRATEGIES

The WISC Concept
A proposal for a writable jnstruction set computer

THE TRADITIONAL COMPLEX in­
struction set computer architecture with
its large, complicated instruction set has
become the mainstay of the microproces- ·
sor industry. Recently, however, pro­
ponents of the reduced instruction set
computer. architecture have made the
controversial claim that RISC architec­
tures can execute programs more quickly
than CISC machines. Before you decide.
which side of the line you're on, I'd like
to present an alternative computer archi­
tecture that combines elements of both
RISC and CISC philosophies to produce
an interesting, streamlined, flexible, and
potentially fast machine.

My proposed architecture is called
WISC, for writable instruction set com­
puter. My purpose is not to show that
either the RISC or CISC approach is
somehow wrong, but rather to introduce

.. an alternative that blends RISC and CISC
concepts into a simple but powerful ar­

, chitecture.
First, I want to look at the key ideas

from the RISC and CISC concepts. Then
I can select the best ideas for the pro­
posed WISC architecture. Finally, I will
combine these ideas to define the WISC
architecture and consider an overview de­
sign for a generic WISC machine.

Key RISC Concepts
RISC systems are based on the·concept of
optimizing the few instructions that are
used the most and eliminating infre­
quently used instructions to reduce hard­
ware complexity and increase hardware
speed, I will look at the key RISC con­
cepts. examine their strong or weak

Phil Koopman

points, and pick the ones that are most
desirable for an alternative architecture.

First, RISC machines must execute all
instructions in a single memory cycle.
Some authors have referred to this as sin-

. gle-clock-cycle operation, but the_ real
resource limitation is the amount oftime
required to . reference program memory.
The idea here is that if a CPU can execute
instructions as quickly as they are fetched
from memory, maximum system through­
put speed will result. Clearly, using as
much of the memory bandwidth as is
available is a desirable goal for WISC.

RISC machines must use hard-wired
control. The intent of using hard-wired
control is to allow for fast single-mem­
ory-cycle operation of op codes and
(when combined with a very small in­
struction set) reduce the amount .of sili­
con area required for implementation on
a single chip.

But· it is not clear whether hard-wired
control is an absolute requirement. Since
a designer can make a small amount of
microcode memory extremely fast in re­
lation to large amounts of program mem­
ory (while achieving a reasonable cost/
performance trade-off), there is no rea­
son why a microcoded processor cannot
achieve single-memory-reference-cycle
operation for most operations.

As for the chip-area argument, micro­
coded designs can have fewer gates than
hard-wired designs {exclusive of the
actual microcode memory). If I wish, I
can use the extra silicon area available in
a streamlined WISC single-chip imple­
mentation for microcode memory.

Next, RISC machines use relatively

19

few instructions and addressing modes.
This concept. is a side effect of the need to
keep things simple in a hard-wired, sin­
gle-cycle processor. If a chip can support
additional instructions without reducing
the clock-cycle speed for basic instruc·
tions:_as is often the case with micro­
coded CPUs but usually not with hard·
wired CPUs-no real incentive exists to
limit the number or types of instructions ..
Instructions with fancy indirect-address
modes or multiple-memory-cycle opera·
tion should be supported ifthe net result
is a speed-up of the entire system for an
important application program or Ian·
guage run-time environment. So a WISC
design should not unnecessarily restrict
the number and variety of possible in·
structions.

RISC processors use a load/store de·
sign. which allows "load. from memory"
and "store to memory" as the only mem·
cry-reference instructions. This tends to
reduce clock-cycle times by shonening
delays in the memory-to-CPU data path
and simplifying control logic. It also sim­
plifies restarting after a virtual memory
page fault. However, ifvinual memory is
not being used (as is the case in the vast
majority of personal computers today) or
if a memory reference can be combined
with another operation for a net savings

continued

By day Phil Koopman is a U.S. Navy sub­
mariner and engineering dury officer; by
night he designs computer hardware.
software, and microcode. He can be
reached at 20 Cattail Lane. Nonh Kings­
town, RI 02852.

APRIL 1987 • B YT E 187

No evidence exists .
that a fast computer
requires an architecture
with a difficult
assembly language.

. in time, then no reaso·n exists for restrict­
ing the system to a load/store design.
Thus, WISC computers. should not be
limited to a load/store design.

RISC machines use a fixed instruction
fomiat. Fixed instruction fonnats allow
simpler decoding ofinstructions and re­
duced hard-wirec! logic. They also mini­
mize the· number of microcoded instruc­
tions that are wasted on shifting and .
inteI1Jreting op codes and operands.

Making. all instructions the same size
(e.g .• a 16-bit format aligned on even­
byte boundaries on a 16-bit machine)
makes· a lot of sense for simple, fast hard­
ware design. You can argue· that com­
pressing variable· length· instructions into
the smallest space possible speeds pro- .
gram ~cution by reducing the number
of memory accesses. But the trade-offs in
unpacking these compressed instructions.
and fonnatting them properly for eiecu-

. tion might ·eat up much .of the savings·
with more complex hardware and extra
instruction fetching when refilling a pre~
fetch pipeline afu:r a branch. Most people
seem willing. tci increase memory, space
somewhat for faster program execution
speeds. So WISC should use a fixed in­

. stniction fonnat. ·
Finally, RISC machines trade off more

sophisticated compiler technology for
less complex hardware. This argument is
based on the assumption that all program­
ming is done in high-level languages that
shield the user from the machine. No
doubt sophisticated compiler technology
can improve the speed of a high-level Ian~

. guage • program. It remains·· to be seen
whether this speed· increase can · SUI1Jass
the capabilifY of an experienced assembly .
language programmer to handcraft the
few 'lines of code that might break the
speed .bottleneck for a complex applica­
tion program. Inasmuch as no eviC:ence
exists that a fast computer requires an ar­
c'1itecture wiih a difficult assembly lan­
guage, WISC should not have features
that demand . the use. of a sophisticated
compiler, although it could benefit from

·such a compiler.

A Major RISC Problem
For all its. good, the RISC design has an
Achilles' heel. The low semantic content

188 B YT E • .APRIL 1987

WISC CONCEPT

. of each instruction requires a high mem~
ory bandwidth, resulting in a sharp mem~

. ory price/perfonnance trade-off. . ·•
Consider the common operation of de- ·

an extensive and complex instruction SCI
that attempts to suppon ·high-level lan­
guage ·control and ·data structures di-

. rectly. All of today's widely used 16-bit .·
microproc;essors are CISC designs . . crementing the \ialue at a memory loca•

tion. In a RISC machine this would be ac­
complished by a. load, dec.rement · 8o~rowingfroin CISC
register, and store using five memory Two common CISC tr.aits that mightbe
cycles: three'for instructions and two for ·.useful inf!, WISC design are a minimal se·
memory data references. An efficient mantic gap arid the inclusiori of as many
CISC or WISC architecture might sup~ high-level language-oriented .instructions··
port a single decrement instruction that . as possible. .
uses only three memory cycles: one for The dri'>'.ing force behind the complex­
the instniction .and two for memory data · ity of a CISC machine· is the desire to
references. If many commonly. required speed up common high-level language
high-level language functions are not operations such as character-string ma•
supported in a RISC machine._ memory .•. nipulation, pointer maintenance.. loop·
access for iristnictions can create a ing. and array handling. BY reducing th~.·
bottleneck. so-called semantic gap between the high·.

Another example is the absolute value level language statements used iri a pro·
operation applied to a value already ·resi- gram and the machine;code instructions
dent in a CPU register or hardware data 11vailable on the CISC machine, programs
stack. in any processor without this func- should require fewer memory references.
tion as a built-in primitive. absolute value take up less space, and run· faster. Tei
determination consists of a sign compari- handle the very complex instructions .that ..
son, a conditional branch, and a subtrac- · tan be used, designers of CISC machines.
tion (or two's compiement). This is a to- often use microcoded implementations.
tal of three instructions and a possible Likewise, to provide complex instruc·.
conditional branch that upsets any in- · tions while minimizing hardware com·
struction pipelining that might exist. If . plexity, WISC should employ a micro~
the absolute ~ue func~iori is. inCluded in . . coded design. . · .
the instruction set, execution requires · An unfOnunate side effect of complex
only orie memory reference; · and comprehensive instruction fonnats

.. Now .you might. be thinking, "What . can be an excessive amount of decoding
about a memory cache? Doesn't that logic or multiple tnicrocycles just to de-
solve the memory bottleneck' problem?" code an instruction before any real work

. But a cache is only a partial solution. is done. But this side effect can be re·
Fir5t a cache speeds up memory refer- duced by the adoption of a simple .tixed
ences only on the second and subsequent instruction format for WISC instrui:·
accesses to a memory location .. Thus, .the tions, Using a fixed instruction format
effectiveness of a cache is reduced by · eliminates complex. manipulation of in·
compiler optimizations such as unrolling structions to extract the meaning of an op ··
loops. Second, a cache introduces addi-. code and its operands. thus reducing
tional system cost and complexity and re· · hardware requirements and speeding up
suits in extra delay when encountering a ·· the processor.
cache "miss'' that requires fetching an in-. Powerful high-level language-oriented

· struction from memory. Finally, a cache instructions, such as decrementing ;1
· design is often based on the concept of memory-location value or string manipu-

''locality" of programs. This contradicts lations, can speed up programs signifi-
the current software doctrine of breaking cantly by reducing the number of instruc· .
up programs into smaller .. and smaller .. tion fetches from program memory. The
procedures and functions for modularity· ·. only pitfall is that such instructions must
and reusability....;.or forces greater mem~ · be well suited to high-level languages, or
ory usage by compiling functions and compilers ignore them in favor of synthe·
subroutines as in-line code, which fur- sizing primitive instruction sequences
ther reduces cache effectiveness. that do the job exactly. Eicamples of prob-

Simply put, it is better to have no mem• !em areas include zero-based versus one-
ory bottleneck problem than to have a based arrays and loop counters, subrou-
limited memory bandwidth with a cache. tine calling, parameter passing, and
Therefore; WISC should be designed to list/record data-structure manipulation.
minimize the number of memory refer- The answer to the semantic mismatch
ences needed to accomplish each func- caused by· high-level language instruc-
tion in a high-level program. . , tions that don't quite meet high-level lan-

To avoid the RISC memory bottleneck guage requirements is .to customize the
problem and achieve high performance, I processor's instruction set for each Jan-
ean ~rrow some concepts from CISC · guage environment. This customization
machines. A CISC. machine's CPU has

co111in11ed

20

J

·n
\ I

,_j

fl
/j '

I

h.

D
0

0
n
I

0

0
LI

i~

J

would be accomplished in WISC with a
writable microprogram memory, some­
times called a writable control Store, that
employs high-speed RAM to store micro­
code. Such an arrangement would let the
processor's microcoded instruction set
be changed as the operating system
requires.

Therefore, a WISC goal should be to
execute all instructions in a single mem­
ory-reference cycle and use 100 percent
of available memory bandwidth, except
where a microcoded complex instruction
clearly results in perfonnance superior to

WISC CONCEPT

multiple simple instructions for a particu­
lar application or high~level language
run-time environment. Of course, in­
structions involving memory operand ac­
cess will be longer than a single memory
cycle, but they will nonetheless tend to
keep the memory productively engaged at
all times.

Using Stacks
The WISC architecture should use one
final feature to synergistically work with
other design aspects to increase speed
and decrease complexity of the system:

21

hardware-implemented push-down las;.
in/first-out stacks.

The .stack concept has proved its value·
in computers and modem-language 1rn ·
plementations that use stacks for imple·
menting subroutine return-address st or·
age or parameter passing. However.
these stacks arc generally rcaliz.cd a~ d!;
address register that points to main mcrn·
ory. with perhaps the top few elements o!
the stack located in special registers. I
propose using completely independent
high-speed memories to implement t1\\)

stacks for the WISC architecture. One
st.ack would be prirnurily for subrou!ln~.
return-address storage and the other for
data storage.

The advantage of a hardware return·
address stack is that subroutine calls anc
returns can be processed at a high speed
with the return address transferred lO O!
from the return stack in parallel with de­
coding the next instruction. A hardware
data stack lets subroutine parameters be
passed to subroutinl!S without main·
memory accesses in addition to providing
for a large amount of scratch work space
for storing temporary results. In fact, the
underlying structure of modern lan­
guages such as Modula-2 seems to pre·
sume the existence of a stack of some
sort.

In addition to reducing subroutine-call
overhead, use of a data stack simplifies
(and quickens) the machine· s operation
by eliminating the need for operand de­
coding. Since a stack machine implicitl)
addresses certain elements on the stack
relative to the current stack pointerposi·
tion, the CPU does not suffer any delays
while source and destination registers are
selected from a large register bank. Fur­
thermore, the instruction bits freed by not
needing fields for selecting registers
allows the use. of a narrow word size (16
bits Or less). packing multiple op code>
into each program word, or using con·
stants or other values in the same word as
an op code, all while maintaining a sim·
pie instruction format.

In-line literal values are required in a
stack machine only for providing values
for variable initialization, arithmetic con·
stants, or branching addresses. These

· values can either be incorporated into un­
used instruction bits or placed inro a
memory cell after the instruction requir­
ing the value. One interesting approach
that some stack-oriented processors use
is to have two instruction types: one for
operations (consisting of an op code with
no parameters) and one for subroutine
branches (consisting of only an address
with a flag indicating an implied op code
of a call). ·

So the WISC design should include
('flllfllllll°l.'

J

hardware .stacks. The use of hardware
stacks will reduce subroutine-call over­
head and the· complexity and delay asso­
ciated with operand decoding, since all
operands are implicit.

A Generic WISC Computer
Having described the attributes of a
WISC computer, I would like to present a
generic architecture for WISC impli:­
mentation. Figure 1 shows a block dia­
gram of one possible format for a WISC
computer.

The resources of this generic WISC
computer are a data stack, an ALU with a
small number of registers (perhaps only

WISC CONCEPT

one), a return stack with a bidirectional
data path to the program counter for sub­
routine•call address manipulation, a pro­
gram memory, and a microcoded con­
troller. All the resources are connected to
a central data bus, with access to 1/0 ser­
vices through an appropriate interface.

The WISC machine in figure I has sev­
eral interesting aspects. One feature not
always found on hardware-based stack
designs .is that the registers above the
ALU can hold the top one or two data­
stack elements. These registers allow the
use of a single-ported data-stack RAM.

The entire instruction decoding path.
from the return-address stack all the way

Figure 1: A block diagram of a possible WISC machine implemefllation.

192 B Y T E • APRIL 1987 22

through to the microinstruction register
is completely independent of th<: d:1l.,
bus. This independence allows for AL\.
and data-stack operations on data whik
instructions are fetched and decodec:
simultaneously. This structure allows u"
of nearly I 00 percent of the memor\
bandwidth. An added benefit is that there
is no need to implement an instruction
prefetch unit: no time is lost flushing an
instruction queue when a branch is en­
countered. In fact. implementing a de­
layed branch similar to the ones used b:
some RISC machines can eliminate al­
most all idle or wasted memory cycles.

The microinstruction register forms J

one-stage microinstruction pipeline and
eliminates wasted time thar would other·
wise result from waiting for micropro­
gram memory access in a nonpipelined
design. The onl~· drawbacks to this de­
sign are that a two-microcycle" minimum
is imposed on all op codes and that de·
laved microinstruction branches must be
used for condition code testing. HO\\ -

ever, the small high-speed memory used
to implement the microprogram memor:
and data-stack memory should allow for
multiple microcode cycles within each
memory-cycle time. essentially eliminat­
ing the impact of these drawbacks on sys­
tem performance. .

A design approach for instruction de­
coding that could greatly simplify the
CPU hardware would be to use, for exam­
ple, an 8-bit op code that directly ad­
dresses a word in the microcode mem­
ory. This would .directly address t.he firsr
microprogram instruction of a page or
microprogram memory; one page of
microprogram memory would be allo­
cated to each op code. This would alJo,,
complete flexibility in instruction set as­
signment while using very little instm:­
tion decoding logic.

The Past, Present, and Future
of WISC
Constructing a hodgepodge of previous!;
successful computer design techniques
does not guarantee success. The W1SC
design criteria presented here represent a
careful balance of often conflicting de­
sign requirements. That said. I wilrlook
at some past and current computers that
inspired some of the WISC machine·s
unusual design features.

The Burroughs B 1700, a microcoded
machine, had a different instruction set
for each language it supponed: BASIC.
FORTRAN. and COBOL/RPG-II. The
tailored instruction set for each language
resulted in smaller programs and 'ffiu~h
faster execution speed than that found on
comparable machines of the time. But thL'
complexity of the architecture for vari-

nmti111u.·tl

Graphics by Irnagebuilder Des1~n

'-I

I ,,
\

'. ______ ,

~
I I
1~

able-width operand support made the
machine expensive.

The current RISC II and MIPS proces­
sors (see '"How Much of a RISC?" b,y
Phillip Robinson on page 143) strive to
achieve single-memory-cycle . execution
with the use of fixed instruction formats.
Interestingly, the IBM RT PC and the
Pyramid 90x computers use hybrid hard·
wired/microcoded designs to allow for
some complex instructions within a RISC
framework.

One early reference to a stack machine
was a design for a 1950s ALGOL lan­
guage-specific processor known as
ALCOR. While it was never built, it
called for a two•stack machine that would
have used one stai:k ·ror operand storage
and another stack for instruction storage.

More recently, the Novix NC4016
chip (see "Stack Machines and Compiler
Design'" by Daniel L Miller on page
177) efficiently executes the dual-stack­
based FORTH language with a hard­
wired RISC architecture. The NC4016 is
designed with single-cycle operation in
mind and has low procedure-calling over­
head due to the use of stacks, but it has a
hard-wired instruction set like other
RISC processors. Another stack-oriented
processor, the MVP Microcoded CPU/

WISC CONCEPT

16, combines. hardware stacks with writ­
able microprogram memory to allow
redefinable instruction sets but is not op­
timized for single-memory-cycleinstruc·
tion execution.

While none of the individual design
features of WISC are new, I believe that
implementing a true WISC machine will
lead to discoveries about the nature of
modem computer architectures and how
to make them better. In the end, desjgn­
ing a more efficient computer architec­
ture will lead to less expensive, more cap­
able computers. •

BIBLIOGRAPHY
Amsterdam, Jonathan. ··Programming

Project: Building a Computer in Soft­
ware.·· BYTE, October 1985.

Bauer, F. L. "Between Zuse and Ruti­
shauser-The Early Development of Dig­
ital Computing in . (;;entral Europe,'' ,A
History of Computing in the Twentieth
Century, N. Metropolis et al.. eds. New
York: Academic Press. 1980.

Colwell, R. P .. et al. "Computers, Com­
plexity, and Controversy." Computer.
~1ay 1977.

Fernandez, E; B .• and T. Lang, eds. Soft­
ware-Oriemed Computer Architecture (a
Tutorial). Washington, DC: IEEE Com·

23

puter Society Press. 1986.
Jennings. E. "The Nov1x NC4000 Pro1·

ect." Computer1.11nguage. October 1985
Katevenis. M. G. H. Reduced lnstrucilnn

Ser Computer A rchitecrure.1 for VLSI
Cambridge. MA: MIT Press. 1985.

Koopman. P. "MVP Microcoded CPL'
16-Architecture ... The Jou ma/ of FOKTH
Applications and Research. volume ..\.
number 2. 1986.

Meyers. G. J. Ad1ances in Compwer Ar·
chirecture. New York: John Wiley &
Sons, 1982.

Multinovic. V .. ed. Tutorial on Micro·
processors and f!igh-Le1·el Language
Computer Architectures. Washington.
DC: IEEE Computer Society Press.
1986.

Patterson, D. A .. and C. H. Sequin. ''A
VLSI RISC .. Computer. September
1982.

Przybylski, S. A .. el al. "Organization and
VLSI Implementation of MIPS ... Sran­
ford Unfrersiry Technical Repon Numbl'r
84-259. Stanford, CA: April 1984.

Ragan-Kelly. R .. and R. Clark. "Applying
RISC Theory to a Large Computer ...
Computer Design. November 1983.

Simpson. Richard 0. "The IBM RT Per·
sonal Computer ... Inside 1he I BM PCs.
Fall 1986 BYTE.

---~ .. ·.

i '.

-
(I
I '

J__j

;

(i

\ 1

,~'-

I \.
i ._

. ~- _, -

----,
. {

i :,
'! '
L

/, ;

i I
I

.'-·

A UNIFICATION OF SOFTWARE AND.HARDWARE;

A NEW TOOL FOR HUMAN THOUGHT

Glen B. Haydon
· WISC Technologies, Inc~ ·

La Honda, CA 94020

. . . .

The following discussion briefly develops a philosopbical'basis with which to unify the .
hardware anQ software tools of a. computer development system. The result is an improved
match between software a.nd hardware.·

The nature of the human mind and thought processes are not understood. However,
there appears to be a mismatch between human thought and the rapidly growing use
of computers a.s tools to help men think. Software engineers and hardware engineer.s
seem to be working In different directions. If we could unify the software and hardware
of. computers . along new lines, we might find a better tool to aid us in our intellectual·
endeavours. Perhaps a. unification of software and hardware would provide a better model
to simulate part of the activities of the human brain ..

Origins of Language

The development of speech and natural languages produced a tool for the develop­
ment of human thought. In an interesting pa.per by James Cooke Brown and William
Greenhood entitled "PATERNITY,. JOKES AND SONG: A POSSIBLE EVOLUTION-

. ARY SCENARIO FOR THE ORIGINS OF MIND AND LANGUAGE" , (Cultural Futuru.
Research, Vol VIII, No.2, Winter 1983/84), a new perspective to the development of na.t·ura.l
languages is presented. The paper is a long one and carefully argued with many references.

The. origins begin with the development of speech as a. tool for communication. Along
with communication has come the internal activity of the mind, thinking. In the develop­
ment of language, the burden of disambiguation grows geometrically with every increase in
sentence length.· The development of grammar attempts to accomplish the disambiguation.

A Logical Languag.e ·~ LOGLAN

In his FORWARD to LOGLAN 1: A LOGICAL LANGUAGE, 3rd Ed;· (The Logla.n Insti­
tute, Inc. 1975, 1701 Northeast 75th Street, Gainesville, FL 32601) James Cook Brown

· begins:

. "At the beginning of the Christmas Holidays, 1955, I sat d.own before a bright fire
.to commence what I hoped would be a short paper on the possibility of testing the social
psychological implications of the Sapir•Whorf hypothesis [relating lanugage to thought).
I meant to proceed by showing that the construction of a tiny model language, with a
grammar borrowed from the.rules of modern logic, taught to subjects of different nation ..
alities, in a. laboratory setting, under conditions of control, would permit a decisive test.
I have been writing appendices for that paper ever since. "

25

And now, over thirty years later, the appendices continue to develop. The language
became known as LOG LAN. It was described in the literature, in the June 1960 issue of
Scientific American. Books arid publications have continued over the years. Within the past
5 years the language has been refined with a completely unambiguous machine parsable
grammar. Currently, a number of minor revisions to the language are being summarized
and a new publication should be forthcoming before long.

History of Computing

Several years ago, Hans Nieuwenhuyzen called my attention to two books. The first
was A HISTORY OF COMPUTING IN THE TWENTIETH CENTURY, (N. Metropolis, J. How let

. and Gian-Carlo Rota, Editors, 1980Academic Press.} Computers have changed with time.
Originally, von Neumann thought of the computer a$ a number cruncher. Perhaps it was
Turing who showed that computers can be symbol'.'manipulating machines. The hardware
design of computers started from these perspectives. Early programming languages dealt
with methods trying to use the newly developed hardware to solve real problems.

The second book was HISTORY OF PROGRAMMING LANGUAGES, (Richard L Wexelblat,
Editor, 1981, Academic Press). The history traces the development of many languages<to
bridge the gap between real problems and the tools providedwith computer hardware. The
computer language, FORTRAN was developed as a· numerical scientific number cruncher
and continues to this day as a major programming language for scientific computation.
Other languages which immediately followed were also number crunchers. These were
batch processing languages. On-line languages were devised nearly a decade later.

Business applications with number storage and crunching came later. The introduc­
tion of string and list processing followed. It was always a problem to make the newer
application requirements fit on hardware designed for. number crunching. At best, the fit
has not been. optimal.

Thusthe problems addressed with computer hardware expanded from number crunch­
ing to assisting in other areas of human thinking and problem solving. As software en-

,--,

gineers developed languages, the importance of a divide a.nd conquer approach became "
apparent. Structured programming became the tool of software engineers. Libraries of
program modules were developed. However, the hardware techniques of number crunching
do not lend themselves to efficient execution of structured programs requiring sequences
of subroutine calls to a variety of modules ..

Progress in Hardware Design

In conjunction with the developing languages, the hardware engineers made great
strides to support· the computational applications addressed by the early languages. The
hardware design has been oriented to improving the speed of execution of sequential op­
erations.

In hardware development there has been a trade off between the speed and semantic
content of the operations and the physical H:mitations of the speed of memory access. The
increased complexity of instructions increased semantic content of each operation, but
with many operations taking many machine cycles. Other techniques have been developed
to increase the speed of memory access.

In an alternate approach to increasing hardware speed, hardware designers have tried
to reduce the number of operations with each instruction, each .of which would then require

26

~,·

only a single processing cycle. Many registers are used rather than slower machine memory
to further increase speed.

In the course of these hardware engineering efforts, little attention has been given to
effident subroutine calls.

Progress in Software Design

Software designs have taken other directions. Compilers were developed to translate
the newer languages to the machine language of the hardware. Modern language optimiz­
ing compilers have many different ways of handling subroutine calls~ Not infrequently,
when speed is required, the subroutine is simply duplicated in line. Though longer, such
machine code will run faster. ·

· Compilation is essentially a batch process. Often multiple passes through the source
code are required. Batch processes are slow. A program needs to be completely recompiled
to test it. It used to be that such batch programs took overnight to run. Compilers have
been designed to run ever faster, but they still require minutes to process. Program
development is inhibited by the slow turn-around of batch processing.

With structured programming, it would be desirable to have an instantaneous turn­
around on tests of new procedures as they are written. A software development system
should also have instantaneous turn-around on tests of connected structures in building

(___ the final progra~. The conventional development systems requiring a compile, load and
go for each test is not conducive to good software development.

The Hardware-Software Mismatch

The sequential methods of hardware design are mismatched with structured program­
ming. Sequential methods are also a mismatch with the thought processes of the software
developer. The process is almost a random jumping of ideas in the process of thinking.
Structured programming seems to be better matched with the thinking process. As such
it provides a tool for simulation and study of thought processes. For example: What are
the differences between left and right hemisphere processes?

Computer software is divided into smaller and smaller procedures. The process is
similar to the divide and conquer process of problem solving. As programs are written,
regardless of the language used, they tend to follow a process of natural thought. A
translator is required to take a programming language following thought processes and
structured programming, and produce machine code which can be run inefficiently on
hardware desig.ried to run sequentially.

Unification of Hardware and Software

A rethinking of the hardware design is necessary to better match the direction of
software development. Rather than sequential efficiency, what is needed is subroutine
call efficiency. It would be ideal if subroutine calls could come for free. This is one of
the results of the ideas presented in Phil Koopman Jr's invited paper at this conference.
Some of those ideas are summarized here.

27

Stack oriented Machines

Samelson and Bauer described an ALGOL translator using multiple stacks. {See A
HISTORY OF COMPUTING IN THE.TWENTIETH CENTURY referred to above.) Though a. US
patent was issued on a full wiring diagram, .no hardware was built. At the time, they
turned to implementing their ideas in software . .Prior to the recent work of Phil Koopman
Jr, hardware designers of general purpose processors have not adopted the stack concepts
in developing hardware better suited to structured programming. -

It is time to adopt the proposals of Samelson and Bauer. An efficient multiple hard­
ware stack machine will contribute to a functional unification of hardware and software. -
Such a hardware design provides for subroutine calls with no cost in processor time. It
contrasts dramatically with the time pen_alty for subroutine calls. -

Writable Coatrol Store

Machine operations should have the semantic -content optimized according to the
speeific requirements of new applications in the software development process. This can
be don.e by using software control of hardware components with writable control store
machines. The process divides the hardware components into smaller pieces and allows
the software engineer to assemble their fundions into optimal operations according to the
application requirements. -

In the history of computers, writable control structures have been used. Bit slice
technology with writable instruc_tions are available but .have not been widely exploited.

A Unified Design

A rethinking of hardware design, has led to a writable instruction set computer
{WISC) interfaced with multiple dedicate hardware stacks as proposed by Samelson and
Bauer.

The first results of such a rethinking of hardware design were presented and discussed
at the 1986 Rochester Forth Conference by Phil Koopman Jr and Glen B. Haydon. The
design was available then as a wire-wrapped kit. The design is now available on a pair of
printed circuit boards.

Also at the 1986 Rochester Forth Conference, Phil Koopman Jr demolif!trated the
operation of his initial design of a.n enhanced system. During the past year the design
has undergone several itterations. At this, the 1987 Rochester Forth Conference, Phil
Koopman Jr is presenting an invited paper in which he details his concepts of the problems
and implementation of a hardware design to solve the problems.

Conclusions

,f

l

I '

' __ ;

.r--1
I I

'· .
'

~

I I

~ 1 ',

-.----.
I have endeavored to review some of the more philosophical ideas leading to a bet- ': :c

ter match between the computer tools available and the human thought processes. The
result has been a unification of structured programming of software engineering with the
necessary hardware to run such software efficiently. - 'I

To me, one of _the greatest potential powers of modern computers is the ability to
simulate problems. Perhaps the unification of software and hardware will provide an ,~~1
improved tool to better understand man's way of thinking and problem solving.

28

'-----'

·__J

\ '
'· I

WRITABLE INSTRUCTION SET, STACK ORIENTED COMPUTERS:

ABSTRACT

The WISC Concept

Philip Koopman Jr.
WISC Technologies, Inc.

Box 429 Route 2
La Honda, CA 94020

Conventional computers are optimized for executing
programs made up of streams of serial instructions.
Conversely, modern programing practices stress the
importance of non-sequential control flow and small
procedures. The result of this hardware/software mismatch
in today's general purpose computers is a costly, sub-.
optimal, self-perpetuating compromise.

The solution to this problem is to change the paradigm
for the computing environment. The two central concepts
required in this new paradigm are efficient procedure calls
and a user-modifiable instruction set. Hardware that is
fundamentally based on the concept of modularity wiil lead
to changes in computer languages ·that will better support
efficient software development. Software that is able to

. customize the hardware to meet critical applicatibn-specif ic
processing requirements will be able to attempt more
difficult tasks on less expensive hardware.

Writable Instruction Set/Stack Oriented Computers (WISC
computers) exploit the synergism between multiple hardware
stacks and writable microcode memory to yield improved
performance for general purpose computing over conventional
processors. Specific strengths of a WISC computer are
simple hardware, high throughput, zero-cost procedure calls
and a machine lang~age to microcode interface.

WISC Technologies' CPU/32 is a 32-bit commercial
processor that implements the WISC philosophy.

INTRODUCTION

People buy computers to solve problems. People measure
the success of computers by how much was saved by using a
computer to solve their problems.

What is the expense of using a computer to solve a
problem? Computers cost users not only money for hardware
and software, but also resources 'for training, labor, and
waiting for solutions (both during development and during
use). In the early days, the cost of solving problems with
computers was predominated by hardware costs. Miraculously,
hardware costs have plunged even while capabilities have
grown by leaps and bounds. As a result, the problems that

29

computers are solving (and the programs that solve them)
have grown much more complex. This has lead to the dramatic
shift in recent years of spending more time and money on
computer software than on hardware.

Since expensive, complex software now dominates the
cost of providing computer solutions to problems, much
effort is going into changing the way software is written.
These efforts often end up placing more demands upon ··
hardware ("hardware is cheap"). Unfortunately, it never
seems that hardware speed increases can quite keep up with
added software demands ("software expands to fill all
available computer resources"). Consequently, much research
is being conducted on ways of making processors run programs
more efficiently for any given·hardware fabrication
technology.

· The premise of this paper is that there are two
fundamental problems with current general-purpose
software/hardware environments: a lack of efficient hardware
support for procedure calls, and an inability to tailor
hardware to applications based on software requirements.
The WISC architecture described in this paper provides
efficient hardware support for procedure calls by using a
combination of two hardware stacks and a dedicated address
field in the instruction format. The WISC architecture also
supports cost-effective modification and expansion of
instruction sets by providing writable microcode memory with
a simple format.

This paper first describes some of the historical roots
for the problems with conventional hardware/software
environments, then describes the concepts, implementation,
and implications of the WISC approach to providing a more
unified hardware/software environment. Although much of
this discussion is applicable to all computing environments,
the scope of this paper is limited to general-purpose
processing on single-processdr computers.

THE HARDWARE/SOFTWARE EVOLUTION CYCLE

In order to see how the hardware environment can be
poorly matched to the needs of the software environment,
consider the historical pattern of steps in the
hardware/software evolution cycle since the days of the
first computers:

1) Profile existing software. How does a designer
determine what instructions should be included in a new
computer? Since the first use of most hardware is to run
existing programs, the most scientific way to design an
instruction set is to measure instruction execution
frequencies on computers already in use. Such measurements
usually reveal a preponderance of register manipulation

30

~'

I

'I I

' 1l I
I

r~:

\ i
'-J

D

. (___,----\

! I
~

·instructions and simple memory loads and stores •
.ll_ Design ~ computer that efficiently executes existing

software. When the new machine is built, it will use faster
hardware and a larger memory to execute more complex (and
memory-hungry) versions of existing programs faster.
Compilers for existing languages will be modified to take
advantage of the new hardware resources, and perhaps some
new features will be tacked onto the local dialect of the
language to make use of added hardware capabilities.

ll_ Write compilers that make new programs look l.ike
existing software~ Wh~n a new language or a new dialect is
developed, the compiler writer is interested in both
improving the software environment and in generating
efficient code. To accomplish these often divergent goals,
compiler writeis u~e optimization techniques to transform
the source code into a program that will execute as
efficiently as possible on available hardware. Since the
hardware designed in steps 1 and 2 is optimized for certain
types of op~rations, the output of these compilers will tend
to use these same types of operations wherever possible.

Some of the most common optimizations that compiler
writers use include unrolling.loops into in,;,..line code
(figure la) and expanding the lowest level procedures as
macros within calling routines (figure lb). These two
optimizations are important in our discussion, because they
both tend to require increased program memory usage in
e~change for increased execution speed. This is based on
the almost universal assumption that hardware is most
efficient at executing in-line code.

il, Write ~ applications using the new compilers
(which produces more machine code optimized for existing
hardware). When it comes time for new application programs
to be written, programmers can be counted on to exploit all
the strengths (and ~uirks) of the newly available compilers
and hardware. ·

SCtU~'.CE COI1E ·

Figure la. Unrolling Loops.

31

.J = 2
stat.erner·t t. .;
st.~t.e:rnerf t b

._l = 3

o:B.JECT COiiE

:::t.:itement .a · 11
CALL B . .1 .st.3tement. c:
CALL B ..

1

1

st.atemetlt· cf '-'------..:..-..-...-....,....:'.

l PRl}CEDURE B: I
· 1 statement bl 1·
· I · st.;itemen t · b2 t I .. st.aternen t b~: 1

SOURCE CODE

., statemetl t a . . I
I '.' .. I
! stat.emen f b 1 1

· . I. statement ~P ! · + t . t i:'.:\' s .,:3 emen , F.•.;:;

I st.stemen t · •::

:I. statement bl

'
., .. st.:itemen t b2

statement b:3

I statement cl

··OBJECT CODE

Figure lb •. Expanding procedures in-line.·

Despite the insulating effects of high level languages
.between programmers and machines, programmers are
uncomfortably aware· of any software features th.at reduce
performance. Whe-n programs perform poorly because they are
not suitable for· automatic compiler optimization, the. user.
is compelled to re..:..write programs·to avoid inefficient
structures or· buy a more' powerful ··(and more expensive)
machine. This tends to further skew· usage statistics, since

·new machines are perceived to be more'expensive than' clever
but shabby software techniques~ . . · · .· · . · · · . ·

. . ?) Q_£ to step (1) ahov7, and. ge~ yet·. another computer
that is. even better at running existing programs. •

This development cycle clea;i::ly favors the propagation
of initial biases in computer.design to successive '
generations of machines •. Could it be that years of pursuing
this cycle has resulted in instruction sets that·still favor ·
the operations present in the·early·machihes? Is this ·
fil teri.ng process the re.al mechanism. that lead to the

· concept of RISC architectures?

HARDWARE.EVOLUTION

Having· .examined the process by which we ended up with.
today'.s computing environment problems, let us take a look
at some of the evolutionary steps computerhardware
architecture has taken along the way.

The history .of computers has been a story of providing
faster hardware with increase<! capacity in smaller packages
with lower prices. The primary emphasis has been on
reducing the cost of computing by reducing the cost to
purchase and operate hardware. Measurements that indicate
the cost effectiveness of hardware include the cost per
m~gabyte of program memory and the cost per millions of
instruc~ions executed per second. From the point of view of

32

. ·, .·

,..,
J l
'.__.).

11 I .·
L _J

:n·· i '

LJ

.11
··tJ

ri

lJ

· r1
' lJ

n
l I
L__J

h
(j

n
n

the purchaser, hardware becomes more Of a bargain every year
(or month, or even day). ·

There have been two central problems.to be overcome in
increasing hardware performance: arithmetic computation
speed and memory access speed.

Figure ia. Pipelining.

~ ADDEF.: #i I . i
!'I - __ h.l. ii§lli·L· _'_:~ ... E_ ... _:_· -_. I · - ~ H 111 r:'. . C: 11

-==--=-'~! I'~~-~.~
I ;1·, I ! i1

I ·~; ' I ·.LI L,._ !:..Fo. I . ~ r·1f!LT TC•! Irr:. ,__ __ _. I,

11: ·'~ ~~-~~--': i
. I I · DIV I DEF.: r-' _ __.___.

Figure 2b. Parallelism.

Arithmetic computation speed was a major problem in
early computers. Originally, the arithmetic computation
speed limitation was overcome by using pipelining (figure
2a) and parallelism within the system (figure 2b). For
example, separate portions of a processor could concentrate
on fetching instructions, fetching operands, computing
values, and storing results (pipelining). ·Additionally,
individual hardware adders, multipliers, and dividers could
work simultaneously on data within the computation section
of the processor (parallelism). Recently, the increasing
speed and complexity of VLSI circuitry (and especially the
availability of inexpensive, fast floating point arithmetic
chips) have greatly reduced arithmetic computation speed.as
a problem in general purpose programing.

As the time to perform arithmetic operations has been
reduced, main memory access speed has emerged as the leading
speed bottleneck. Historically, there have always been two
kinds of memory available to computer designers: small high­
speed memory, and slow bulk memory. Today, the trend
continues. Affordable high capacity memory chips leap by
factors of four in size every few years with modest
increases in speed. Fast static memory increases moderately

33

in size, but increases dramatically in speed.
As CPU speeds have outstripped bulk memory speeds,

memory bandwidth limitations have become more severe. There
are two ways to solve this problem: speed up average memory
access time, and increase the amount of work dbne per memory
access. Cache memory decreases average memory access time
at the cost of added complexity by usihg the small, high
speed memory devices to retain copies o! instructions and/or
data that are likely to be needed by the CPU. Caching
schemes usually rely on the concept of locality: programs
tend to execute instructions in sequence, and tend to access

- data in clumps.
Other techniques to speed memory access include

interle~ving banks of memory and pr~-fetching opcodes beyond
the current operation being executed. Both methods tend to
increase speed for sequentially executing programs at the
cost of added hardware complexity. Separate data and
program memories can also increase available memory
bandwidth, but are beyond the scope of this paper.

The second method of reducing the effects of a memory
access bottleneck is the technique of increasing the average
amount of work done by each opcode fetched-from memory.
This has lead to the development of what is now called the
Complex Instruction Set Computer (CISC) machine. CISC
machines are based on the concept of reducing the semantic
~ between high level language source code and its
corre~ponding machine code. The theory is that if a high
level language specifies a comple~ operation such as a
character string move, it should be able to communicate this
operation with a single machine instruction and consume only
one memory cycle for opcode fetching. A simple, non-CISC
machine would have to synthesize a complex operation from a
sequence of simple instructions (consuming multiple me~ory
cycles for opcodes), resulting in a semantic gap between the
intent of the high level language and the way the intent

tiALA < - AE:S (\.!ALA) -

HJ GH LEt.JEL LANG!JAGE STATEMEi·1T

ll ACCUM <- <VALA>

fl.~._, COMPAF.:E ACCIJM.' ~3
TF Arr1 IM ~3
... c.r~-:-;'it·1 ./_ V1 - '· 1-··-·11r·· , 1-··-·'-' .. _ H_.J_._ I
END IF

j - <1.JALA> <- AtCUM

LOW LEVEL INSTRUCTIONS
(LAF.'.C1E SEMAt-ff IC GAP)

Figure 3. Semantic Gap.

34

or-Ci IM .,.- _ /!JAi A"· ..
;;c:c:DM -:'. - Af::3 (ACCUM)
< 1-.JALA > < - ACCUM

HIGH LEVEL I MSTF.:UCT I Ot·lS
(SMALL SEMAt'ITIC GAP)

I)

~-I

' t J _ _(

-I

must be communicated to the machine (figure 3}. Some other
examples of complex instructions supported in.modern CISC
architectures include frame based procedure parameter

· passing, array address calculation, and linked list pointer
maintenance.

As instruction sets have become more complex, hard­
wired computers that decode and execute instructions by
using only logic gates have become too complex to be cost
effective for most applications. Consequently, the use of
microcoded machines has come to dominate the computer
indu~try. .

Microcoded computers execute several fast low-level
instructions (called micro-instructions) to interpret and
execute each machine instructibn. Since each machine
instruction may invoke a sequence of one or more micro­
instructions, microcoded designs allow straightforward
implementation of the complex instructions of a CISC
machine. As the instruction set grows in size and
complexity, microcoded designs simply increase the ~ize of
the ROM or RAM for storing micro"."'programs. Since microcoded
designs store the mechanism for decoding and executing
instructions in memory instead of as a network of logic
gates, many design errors may be corrected simply by
changing the microcode of the·machine. This provides a
significant savings in development time and cost over making
changes to logic gates in a hard ... wired computer design.

Since adding instructions is relatively inexpensive in
microcoded CISC machines 1 these machines usually attempt to
reduce the size of the semantic gap by providing an
abundance of complicated instructions designed to directly
implement high level language functions. Unfortunately, as
the semantic gap is reduced in this manner, CISC machines
run into a different problem: semantic mismatch.

F'ARAMETEF.:S E:\' ~:EFEF.:EMCE I

I

LAt'iGUAGE REG!IJ I REMEMTS MACHINE msTRUCTiot·i SET

Figure 4. Semantic mismatch.

35

Semantic mismatch take places when a complex machine
instruction doesn't exactly match the requirements of the
high level language being used (figure 4) • Semantic
mismatch usually occurs.because reaJ..-life CISC machines have
a single instruction set that must meet the requirements of
many diverse. programing languages and application programs.··
This means. that the instruction set is, of necessity, a
compromise.

Examples of how languages differ in their requirements
include: zero-based versus one-based array addressing,
procedure stack frame parameter organization, Jinked list
pointer organization, and string count and delimiter
organiz~tion. In addition, new complicated instructions are
often not smart enough to efficiently handle Special
degenerate (but frequent) c~ses such as parameterless
procedure calls. As a tesult, compilers often ignore many
of the very complex instructions added (at considerable
effort) to new machines. Most compiled programs tend to use
simple to moderately complex instructions.

The re.sul t of using the. above approaches to increasing·
hardware power has been that most machines are well, adapted
to executing sequential programs .of medium level complexity
instr~ctions.

SOFTWARE EVOLUTION.

In early computers, hardware cost so much and was so
scarce that any amount of programing effort was justifiable
just to get an answer. ·As hardware has become less

·expensive, programs have become more complex, and software
has grown tremendously in complexity and cost. Today,
software is by far the most expensive part of any complex
computer-based solution to a problem.

Most programing is now done in high level languages.
There are two broad classes of high level languages in use:
special purpose languages and general purpose languages.

Special purpose languages such as LISP, Prolog, and
Smalltalk are based on computation models that stress
unconventional approaches to problem solving •. They
typically .do not address the issue of computational
efficiency on general purpose computers. These languages
tend to trade computational efficiency for flexibility and·
freedom of expression for ~pecific tasks. Since these
languages are often developed in research environments with
ready access to powerful computers, computational efficiency
is not a primary consideration~

While special purpose languages are important for their
application areas, the very same features that make them
powerful as a programing tool are the very things that make
them perform poorly on limited resource conventional

36

,,,----,

r-1

. .,_ __ ,

D computers. Some of the special features are dynamic memory
management (especially garbage collection), run-time operand
binding, and inter-procedure communication protocols.
Today's· trend is to either provide language-specific
hardware, or more powerful but more expensive than average
hardware to run programs written in these languages.

Most application programs are written in general
purpose languages such as FORTRAN, BASIC, COBOL, Pascal, C,
and Ada. The early high level programing languages such as
FORTRAN were direct extensions of the philosophy of the
machines they were run on: sequential Von Neumann machines
with registers. Consequently, these languages and their
general. usage have developed to emphasize long sequences of
assignment statements with only occasional conditional
branches and procedure calls.

In recent years, however, the complexion of software
has beguri to change. The currently accepted best practice
in software design centers around structured programing
using modular designs. On a large scale, the use of modules
is essential for partitioning tasks among programmers. On a
smaller scale, procedur~s Control complexity by limiting the
amount of information that a programmer must deal with at
any given time.

Procedures (often called subroutines) started out in
early computers as a memory-saving device used at the cost
of reduced execution speed. In modern programing languages,
the importance of using procedures for software productivity
is taken for granted; memory savings are an almost ·
incidental advantage.

Modern languages such as Modula-2, Pascal, and Ada are
designed specifically to promote modular design. The one
hardware innovation that has resulted from the increasing
popularity of these structured languages has been a register
used as a stack pointer into main memory. With the
exception of this stack pointer and a few complex
instructions (which are not always usable by compilers),
hardware has remained basically unchanged. Because of this~
the machine code output of optimizing compilers for modern
languages still tends to look a lot like output from
earlier, non-structured languages.

Herein lies the problem. Conventional computers are
still optimized for executing pro~rams made up of streams of
serial instructions. Execution traces for most programs
show that procedure calls make up a rather small proportion
of all instructions. Conversely, modern programing
practices stress the importance of non-sequential control
flow and small procedures. The clash between these two
realities leads to a sub-optimal, and therefore costly,
hardware/software environment on today's general purpose
computers. ·

This does not mean that programs have failed to become

37

,/

more organized and maintainable using ~tructu~ed languages~
but rather that efficiency considerations and the use of

_hardware that encourages writing_sequential programs has
prevented modular languages from achieving all that they
mig~t~ Although the current philosophy is to break programs_­
up into very small procedures, most programs still contain.
fewer, larger, and more complicated procedures than they
should. - · - • · - - - ·

_ How many functions should-a typical procedure have? In
. Psychology of Communication: Seven Essays t George Miller
gives strong evidence that the- number seven (plus or minus -­
two) applies to many aspects of thinking. The way the human
mind copes with complicated information is by chunking
groups of similar objects .into fewer, more abstract objects .. -
In a computer program, -this means that each procedure should
contain approximately seven fundamental operations (such as
assignment statements or procedure calls) inorder to be
easily grasped. If a procedure conta.ins more thah seven
distinct operations~ it should be bro.ken apart by chunking
related portions _into.subordinate procedures to.reduce the
complexity of each po:c:tion of the program. In another part
of the book, George Miller shows that the hUrilan mind can
only grasp two or three _levels of nesting of ideas within a
sin'gle conte_xt. This -strongly suggests tha_t deeply nested­
loops and conditional structures ~hould be arranged as
nestedprocedure calls, not as convoluted indented
structures within a .procedure.

The only question now is, why don't most, programmers
follow these guidelines?

The most obvious reason that programmers•avoid small,
deeply nested pJ;:"ocedures is the cost in speed of execution.
Subroutine parameter .setup and the actual pro9edure calling
instructions can swamp the execution time of .a program if
used too frequently. All but the- most sophisticated
optimizing compiler can not help if procedures are deeply
nested, and even those optimi~ations are limited. _ As a
result, efficient programs tend to have a relatively shallow
depth of procedure nesting. _ _ . .

Another reason.that-procedures are not used more is
that they are difficult to program. Often times the effort
to write thepro-forma code required to define a procedure
makes the definition of a Bmall procedure too burdensome.
When this awkwardness is.added to the considerable
documentatio~arid pr~ject management obstacles associated
with creating a new procedure in_a big project, it is no
wonder that average procedure sizes of one or two pages are
considered appropriate.

· There is deeper cause why procedures are difficult to.
create in modern programing languages, and why they are used
less frequently than the reader of a book on structured
programing might expect: conventional programing languages

38

,
.-~·

-~:

, !

n
tJ
Jl
L_J

n
I J,

-'-----

n , I
I i
'~--!

i)
LJ

f l - -,J
-~

"1
lJ
n l_J

n
LJ
"'I
) i

i I l_•

n , I
LJ

n
. L ___)

n
lJ

0

' I ."-._j

\-\I
LJ

! I

I I
~

and the people who use them are steeped in the traditions of
batch processing. Batch processing gives little reward in
testability or convenience for working with small
procedures. Truly interactive processing (which does .. not
mean doing batch-oriented edit-compile-link-execute-crash­
debug cycles from a terminal) is only available in a few
environments, and is not taught to any large extent in
universities.

As a result of all these factors, today's programing
languages provide some moderately useful capabilities for
efficient modular programing. Today's hardware and
programing environments unnecessarily restrict the usage of
modularity, and therefore unnecessarily increase the cost of
providing computer-based solutions to problems.

UNIFICATION OF SOFTWARE AND HARDWARE

Developments in the conventional programing environment
may be reaching a dead end. Recent uniprocessor hardware
innovations tend to focus on either special purpose
processing for symbol manipulation or distilling
conventional machine instruction sets with yet ~nether pass
through the analysis-implementation-programing cycle
discussed earlier. ,

The premise of this paper is that there is still
considerably more mileage to be gained from uniprocessors by
breaking out of the past cycles and looking at the
hardware/software problem as a whole. The answer lies not
with a new hardware architecture that mirrors current
software, nor in changing software to suit current hardware.
The answer lies in a redefinition of how we think about
hardware and software. In this manner, we can aspire to
achieve a unified hardware/ software computing. environment.

The first step in defining a unified general purpose
computing environment is to take to heart the philosophy of
breaking a problem up into smaller sub-problems. Instead of
building a computer that supports procedure calls as special
operations, what if we design a computer to expect
subroutine calls as its primary mode of operation?

Implementing this idea results in a machine that is
unlike conventional processors in a very fundamental way: it
is designed for non-sequential program execution. It
becomes a "tree processing machine". Programs are no longer
lists of sequential instructions with occasional branches
and procedure. calls (figure 5). Programs are now organized
as a tree structure, with each instruction containing
operations and/or pointers to lower level nodes in the tree
(figure 6). In such a·machine, the very notion of a program
"counter" becomes obsolete.

39

!
I PF.:OCEDUF.:E A:

st.:itemeht b c.:il i C call It
. I

I
I
I

I PROCEDURE 1;:
I I .
1 I · PRo;;:~~~;~ J

I r---
i PRCICEDURE G:

statement f·

call K statemerit 1 call N

I I I ·I
I

l
I
.f
I
I

i

I I

.I
I

I l
I
I I

j . _· PROCEDUR .. .E K: .• ·
l . st.:itemeri t p

!,· l PROCEDURE M: . · .
I statement r

I

statement q

·. PF.:OCEDURE H:
Staterr1er1 t . ..:f statetoer1 t ri

PROCEDURE D:

Figure s. A typical sequential program

call H

If this machine could actually process pr9cedure call~
~imultaneously with other operations, modularity in programs
would not be penalized. Such a machine would encourage
better software design,· and could fundamentally alter the·
way.programmers think about· programs •.

Now that we have the concept of hardware that is
efficient at implementing software procedures, how can we
change the software to better match the hardware? The
answer to this question lies in the concept of. a modifiable
microcoded instruction set. ·

· · As discussed previously, reducing ·the semantic gap of a
processor can increase processing speed by reducing me!Jlory ··
bandwidth requirements. The only pitfall is that.if a pre.;..·
defined instruction set does not closely match·the
·requirements of a language or application-program~ semantic
mismatch negates the· usefulness of many complicated
instructions. Since general purpose machines are expected
to perf~rm well on a wide variety of problems in many
different languages, the answer is to chang~. the ·instruction
set as required to suit.each application program. This is
most easily done with a writable microcode memory (often
called writable control store). . _

With writable microcode memory, the user can modify.the
instruction set of the machine to fit.each application

40

n tJ

Jl
'\.._ _ _)

/1

l
\~.··

. •--'-\

0

0

(i
' '·

,..._....,
I '

! :
L_;

i i
__J

Figure 6. A typical program tree

41

.program or programing language support environment.
Applidations can be initially written using a-simple,
generic instruction set. Then new instructidns can be. added
to eliminate performance bottlenecks in heavily used code
sequences.

The combination of tree;_processing hardware with
software that can modify the machine's instruction set for
best efficiency can produce unexpected benefits in both
hardware and software. performance •. The next section
discusses an architectural approach to implementing such a
machine, and the benefits that may be derived.

THE WISC APPROACH

Th.e Writable Instruction Set Computer (WISC) approach
to computer design provides a computer that efficiently
supports· the integrated hardware/ software deve.lopment
environment just dis~ussed~ A WISC machine has high-speed
procedure processing capability along with the capabi11ty to
redefine the instruction set. WISC machines implement these
goals by using multiple hardware stacks for operand and
procedure return address storage, and writable microcode
memory for storing the· instruction set definitions. WISC
machines als~ have a fixed instruction format for simplicity
and speed of operation, and_strive to meet the criterion of
usefully employing all available memory cycles.

Once the decision is made to use a hardware stack in a
design, an interesting and somewhat unexpected cascade of
benefits is realized. These benefits lead to the
architectural features of WISC machi.nes.

The WISC machine discussed in this paper uses two
. hardware stacks: .one for data parameters arid one for return
parameters. The first benefit of using these hardware
stacks is that the overhead cost normally associated with

· procedure calls is greatly reduced •. During a procedure
call, the hardware return stack eliminates the need to save
.a return address to main memory. Additionally, the hardware
data stack eliminates the need to save registers and data
values to memory and/or fetch procedure input parameters
from memory within a procedure.

.Now, however, the unexpected benefits begin to accrue.
A pure stack machine has no need for parameters with opcodes
(except for memory addresses.) Since all operations are
relative to the current position of the stack pointer, each
opcode can be a simple parameterless field of five to ten
bits. This greatly simplifies instruction decoding logic
since implicit operands eliminate the need for explicit
addressing modes, register specifications, etc. In a
microcoded machine, this means that the opcode can directly
access a microcode word with no decoding logic. All this

42

,-
;

----')

j I

! I

•• _j

) '

i '

~

I
'
;

r­
i

. '

; !

Ii
lJ

u
\J

I
.. J

makes the hardware simpler, faster, and less expensive to
develop and manufacture.

Since intermediate operands are kept on the hardware
data stack, each microcoded instruction need take only one
memory reference cycle (with loads and stores taking two
memory cycles). Since microcoded primitives can be kept
simple enough to execute within a single memory access
cycle, there is no need for a complex pipeline to perform
decoding, operand-fetching, execution, and result storage.
A simple overlapped instruction fetch/decode and instruction
execution strategy is quite ample to use all available
memory bandwidth. ·

As.an added bonµs of using a stack-oriented instruction
set, procedu~e calls may be made at zero· cost in execution
time for most cases. Since a stack-oriented opcode need
only take roughly -0ne-quarter of a 32-bit instruction word,
the remaining instruction word.bits are available to use as
a procedure branching address (figure 71 • If an overlapped
fetch/decode and execution strategy is used, procedure
calls, procedure returns, and unconditional branches may be
processed in parallel with operation decoding •

....... r· T" F."• r ,.-.... -... H I 1 I . t- ·- . . -· ·· ... I- .. _) .. ::i

Figure 7. Generic WISC instruction format.

Now add the power of a changeable microcoded
instruction set to the hardware stack machine just
described. Since a fix.ed. instruction format stack machine
is free from 6omplex opcode format interpretation and other
complications, the hardware design is simple. And, simple
hardware means simple microcode.

One problem with the few writabl~ instruction sets
available on current machines .is that the microcode is just
too hard to write. Microcode formats of 48 to 128 bits are
very common. That's a lot of complexity for a programmer to
handle! In fact, such complex microcode formats make
expectations of customizing instruction sets for
applications unrealistic. As will be shown later, a single-

. format 32-b.it micro-instruction format is more than
sufficient for a WISC machine.

Since a WISC architecture can be designed with a simple
microcode format, moderately sophisticated users (such as
compiler writers) can customize the architecture to meet
their needs. Use of writable microcode memory leads to an
increase in semantic content (and therefore a reduction of
the semantic gap) for each instruction, and therefore more
work done per memory access. It also eliminates the problem

43

of semantic mismatch, since the instruction set can be
modified to suit the quirks of any application or language-
support environment. ·

There is yet another benefit to the WISC approach. The
combination of hardware stacks with writable microcode
memory results in the blurring of the boundaries between
high level programs, machine code, and microcode.

Consider the·conventional processor. High level
structured programs are converted from groups of procedures
with stack-oriented local variables to machine code.· A
considerable change in the look and feel of the program
takes place as high level language operations are
transformed into groups of primitive operations. While a
complex machine instruction set may support such stack
operations as frame pushes and pops, and even fetch a
variable given a frame pointer and an off setj the paradigm
switches from va.rial:>les and frames in high. level languages
to registers q,nd memory pointers in machine code.

The means of passing information between many high
level language procedures is the stack. The way of passing
information between conventional machine language
instructions is through registers or discrete· memory
locations. The fundamentq,l mechanisms are completely
different. If an instruction could be added to microcode
memory to replace·a procedure, it would result in re..-writing
the calling code to format the operands in registers instead
of in a stack frame.

Now consider ~ WISC machine. WISC machines accomplish
efficient procedure calling in part by the use of a data
stack to pass inf·ormation from calling programs to
procedures. WISC instruction formats are greatly simplified
by using this same data stack for holding operands.. This
means that a procedure can be transparently replaced with a
microcoded primitive by simply replacing the procedure call
with an opcode. There is no impact to any other aspect of
the source code. This not only.simplifies the substitution
of microcoded primitives for high level source code

. fragments,. but can actually lead to a view of microcode
memory as a cache memory for frequently used operations.

In practice, this view of microcode memory as a cache
mernory allows the developer to selectively optimize th~
hardware for each application. This could be done by pencil
and paper analysis ~f the program,. or by using execution
profiling software. to create a histogram of execution
frequencies for each section of code. The most heavily
executed procedures can then be partly or wholly transferred
from high level code to microcode, resulting in a
significant speed increase. In the case of providing run­
time support for the output of a compiler, the microcoded
instruction set can be tailored to exactly implement the
types of operations supported by the language. In either of

44

! /

these cases, the microcode becomes a sort of cache memory
for storing the operations that need to be executed most
frequently. .

This view of microcode memory as a sort of instruction
cache is th~ final link of a chain that transforms a WISC
machine to something beyond a conventional processor; it
makes the WISC machine into a tree processing machine that
merges all levels of processing into a unified
hardware/software environment. Instead of representing
programs as sequences of in-line instructions that are
occasionally interrupted by procedure calls, the WISC
processor views programs as an orderly nested series of
procedure calls, with the final level of procedure call
being a·call to microcode memory.

Now that WISC machines are viewed as tree processors,
several changes in programming take place. If a suitable
microcoded instruction set is used, compiled object code can
closely correspond to the original source code, resulting in
simpler and more efficient compilers and debugging tools.
There is no mismatch between the high level language source
code and the actual machine code executed at run time.

Additionally, procedures are not viewed by the
programmer as a collection of in-line code fragments, but
rather as tree structure. The branches of this tree
structure represent the control flow structure of the
program (procedure cal ls, returns, and jumps) . The lea.ves
of the tree are represent procedure calls into microcode (figure 6 above) • ·

From the above features we can see that a WISC machine
uses simple, and therefore fast hardware to execute high
semantic content instructions that closely reflect the
structure of the software.· Programmers are not penalized
for organizing programs into small, understandable
procedures. This results in compact tree-oriented program
structures which are composed of hierarchically arranged
solutions to sub-problems. Thus programs can be
simultaneously optimized for .small memory space, fast
execution speedi and low development cost. This allows the
hardware/software environment to deliver cost-effective
solutions to the user's problems.

DESIGN OF A 32~BtT WISC MACHINE

In order to reify the conceptual design just presented,
it is necessary to define the high level design of a WISC
machine. For the purposes of this paper, the design of a
32-bit WISC machine called the CPU/32 will be discussed in detail.

It turns out that after a WISC machine is specified as
having hardware stacks and a ~ritable instruction set, the

45

single most important part of the design is the instruction
format. The key to high-speed processing with zero-cost
procedures is to use a fixed length instruction format that
~ontains both an opc6de and a procedure address.

The CPU/32 u~es a 9-bit opcode (figure 8). These 9
bits.can form the page address for a page of microcode
memory, eliminating.virtually all instruction decoding
logic. This allows for up to 512.opcodes in the machine.

BIT: I 31 23 I 22
!

I .·-·1 F) l.-, r-·1 T'·. c­
. l_. . _.. '·-· 11 L

I

... -.. IiD RF e: .. -.. H .1 1. -• ._ ~ .._J .::,

Figure 8. CPU/32 instruction format.

CALL···
D~IT

CONTROL

The remaining 23 bits of the 32 bit instruction format
are dedicated to address and control information. If all
instructions are aligned on byte boundaries that are evenly
divisible by 4, then the high 21 bits of the remaining 23
bits in the instruction can address an instruction word ih
memory (with the low order 2 address bits masked to 0). ·The
lowest order 2 bits of each instruction can then be used as
a branching mode selection: procedure call, procedure
return, or unconditi6nal jump. These 23 bits can be used to
execute an unconditional jump~ proceduie call, or (ignoring
the address field) procedure return. in parallel with opcode
execution. The CPU/32 can process procedure calls for free!

As additional embellishments, this instruction format
allows ta.tl-end recursion elimination by substituting an
unconditional branch for a procedure call as the last

·instruction of a procedure, and facilitates conditional
branching and looping by having the branch destination
address readily 1 available.

The CPU/32's block diagram is shown in figure 9~ The
CPU/32's resources include a data stack, an ALU with a data
register (Data Hi) and a transparent latch, an auxiliary
(Data Lo) register that can connect with the Data Hi
register for 64-bit shifting, a return stack with a bi-

. dire.ctional data path to .the memory addresser for procedure
call address manipulation, a memory addresser, program
memory, and microcoded controller. All of the resources are
connected to a central data bus, with acces~ to I/O services.
through an appropriate host interface. All data paths and
registers in the CPU/32 are 32-bits wide.

There are several interesting aspects to the CPU/32.
One feature that is not always .. found on hardware-based stack
designs is that the Data Hi register above the ALU can hold
the top data stack element. This allows the use of a
single-ported data stack RAM. Another is that the stack
pointers can be loaded with values from the data bus. This

46
J

,,
I i

; I L __

,----,
I '

-................

Ir---._

I

).

)

11
I 1
I !

I I

(. ~I

lJ

I DATA ~ I ~:HACK I I I

I BUS
:--!
I I BUFFEF.:

I
l
I

'--X---. I 11 DATA
! I LATCH

1------'

I 1 DAJHI j
1 · RE·- I ·-·TF0 .. lJ ·=· -1'.

···~.... ..·······
·· ... ,,

ill ····-......

'·· ...
ALU AMII
SHIFTER

I '"·-~-
! I

,--------------J
64-BIT I

· SHIFTING 1 DATA LO
L - - •C.

F.EGISTER

HOST INTERFACE

~I
I I

I
..... -.. I
~.11
_:i·

~1 I .
I I ·· ..
I-.
I

<I
~

Figure 9e The WISC CPU/32.

47

BUS
BUFFEF.:

. RETUF.'.t-1

:3TACK

MEMOR"i' ADDRD:s 1

LOGIC !

I ... ,~1C"'z-.,-.
... HDI:r:.i...·:":.

PROGRAM
MEMORY

DATA

1....---.....,•

BUS

.BUFFER

BUS

BUFFER

MI CRO-H:OGRAM
COUMTER

ADDF.:ESS

MICRO-PROGRAM
MEMORY

DATA

MI CF.:O- I MSTRIJCT I OM
REGISTER

.......
CONTROL· SIGtiALS

makes accessing deeply buried stack elements relatively easy
by eliminating the need for repetitive stack pushing and
popping. ·

The use of a transparent latch on the ALU inputs allows
connecting any data.bus resource. to one side of the ALU
within one clock cycle, but also allows the latch to retain
an intermediate value without disturbing the contents of the
Data Hi register. This capability results in a savings of a
clock cycle any time the top of stack element in Data Hi
needs to .be swapped with a cell in the data stack RAM.

The CPU/32 has no program·counter. Each instruction
contains the address of the next instruction. The only ·
exception to this is when procedure returns are being
processed, in which case the return stack value is passed

. directly through the memory address logic to access the next
sequential instruction in the calling program.

While there is no program counter, there is an
incrementer within the program memory logic that is used to
add a one word displacement to procedure call addresses
before they are saved on the stack. This incrementing is
required in order to generate correct return addresses. The
incrementer is also useful in block memory moves.

The micro-instruction register forms a one,,...stage micro-
.instruction pipeline that eli~inates wasted time which would
otherwise result from waiting for micro-program memory·
access. The only drawbacks to this design are that a two
micro-cycle minimum is imposed on all op-codes, and delayed
micro-instruction branches must be used for condition code
testing. However, the small, high speed memory used to

.implement the micro-program memory and data stack memory
allows for two micro-code cycles within each memory cycle
time, essentially eliminating the impact of these drawbacks
on system performance.

The micro-instruction format is shown in figure 10.
Each micro-instruction uses 30 of the available 32 bits.

The entire instruction decoding path, from the return
address stack all the way through to the micro-instruction
register 1 is totally independent of the data bus. This
allows ALU and data stack operations to proceed while
simultaneously fetching and decoding instructions. This
structure allows nearly 100% of the memory bandwidth to be
used productively.

In the CPU/32, each instru~tion is fetched and decoded
during a two micro-cycle period, waits in the micro­
instruction pipeline for one clock cycle, then executes in
two or more additional microcycles. The average instruction
execution rate is just under one instruction per two micro­
cycles.

48

(l
I I
\. _ _/

[!

:-1
LJ
\)
I ,
LJ

\J
l]

BITS
0-3
4-7
8-9
10-11
12-13
14-15
16-19
20
21
22-23
24-26
21 ... 28
29
30
31

1'' ;- ·:i·:

USAGE
Bus source select
Bus destination select
Data stack pointer control
Return stack poiriter control
ALU multiplexer shift control
unused
ALU function select
ALU mode select
ALU carry-in &. shift-in
Data Lo register shift control
Microcode conditional branch select
Microcode next address generation
Increment microcode page register
Fetch & decode next macro-instruction
Memory address increment control

Figure 10. CPU/32 micro-instruction format.

An interesting software implication of the opcode
format and system design is that opcodes interspersed with
procedure calls must be compacted into single instructions
in order to get zero-cost procedure calls. the procedure
6all in each instruction takes effect after the opcode has
been completed. The only times that procedure calls are not
zero-cost are in deeply nested procedures where there are no
opcodes before the first procedure call in each successive
level. Subroutine returns are zero-cost if the last
instruction in a procedure is an opcode reference.

A possible compiler optimization that can easily
increase efficiency is the ~ubstitution of an unconditional
branch for a procedure call if the last primitive within a
procedure is itself a procedure call (this is often called
tail-end recursion elimination). Another possible
optimization is a "bubbling-up" of the first opcode of a
procedure to a calling program when the calling program
would otherwise be forced to execute a.null op-code in a
series of consecutive procedure calls.

The system software for the CPU/32 obviously plays an
important part in the establishment of a productive
computing environment. While languages such as C are very
well suited to the WISC architecture, eventually a new
language will evolve to exploit the new capabilities of
tree-oriented processors. Such a language would likely
have: small, easily defined procedures; interactive
development, compilation, and testing at the procedure
level; easy access to a microcode assembler; extensibility
of both data and compiler control structures; a high level
infix syntax; a library of commonly needed functions; and
support for module archiving and reuse.

49

THE WISC TECHNOLOGIES CPU/32

Now that the design fo~ the CPU/32 has~be presented,
the question is, can such a machine·actually be built? The
answer is,·of course, yes. WISC Technologies' CPU/32 is a
commercial system tha.t implements all of the philosopby and ·
architectural features discussed i~ this p~per.

Additional CPU/32 implementation f.eatures not
previously discussed are a DMA memory transfer capability
with·the host computer, hardware and software interrupt
support,. and support for byte-oriented memory ac.cess.

CONCLUSION

WISC Technologies' CP0/32 is an implementation of anew
way of thinking about computing environments: .tree-organized
program structures that emphasize modular programing for
general-purpose computing. Preliminary use of WISC.machines
indicates that performance is equal to or better than other
high-performance general purpose uniprocessors overbroader
·classes of problems than mightbe expected. In particula+,
expert syste~ programs with their tree~traversal emphasis
are particularly well suited to WISC-type architectures.

If the past patterns of hardware and software evolution
.. can.be broken, we might yet see·quantum leaps in programmer

productivity. I think that WISC computers are more than
just another novel architecture. I think that they are a

new way of looking at the bottom line of computing: getting
problems solved.

SOURCES CONSULTEO

A. Agrawala and R. Rauscher, Foundations of
Microprogramming: Architecture, Software, and.
Applications, Academic Press, New York NY, 1976.

M. Andrews, Principles of Firmware Engineering in
Microprogram Control, Computer Science Press, Potomac
MD, 1980. .

R. Blake, "Exploring a Stack Architecture", Computer, May
1977, pp. 30-39.

D. Bulman, "Stack Computers: An Introduction", Computer, May
1977, pp. 18-28.

R. Colwell et al., "Computers, Complexity~ and Controversy",
Computer, May 1977, pp. 30-39.

M. Flynn, "Directions and Issues in Architecture and
Language", Computer, October 1980, pp. 5~22.

50

1_ !

r I

I I
~)

I

! :
c__!

I i
I

0

. ___.· .

i I
i

"I .. , .. ,

F. Hill and G. Peterson, Digital Systems: Hardware
Organization and Design.,· (~nd ed.), John Wiley & sons,
1978~ . .

M. Katevenis, Reduced Instruction Set Computer Architectures
for VLSI, MIT Press, CambridgeMA, 1985. . .

P.. Koopman Jr., "Microcoded Versus Hard-wired Controln,
Byte, January 1987, pp. 235-242. . .

P~ Koopman Jr. and G. Haydon, "MVP Microcoded CPU/16 -
Architecture", .The Journal of Forth Applications and
Research, Volume 4, Number 2, 1986, pp. 277-280 •. ·

·P. Koopman Jr., "The WISC Concept", Byte, April 1987,·
pp. 187-217. . .

P. Lewis.et al., compiler Design The.Ory, Addison-Wesley,
Reading MA, 1978. ·

G. Miller, Psychology of communication: seven Essa¥s, Basic
Books, New York NY, 1967. .

v. Mi1utinovic,· Tutorial .Q.!! Advanced Microprocessors and
High-level Language Computer Architecture, IEEE
Computer Society Press, Washington DC, 1,.986.

G. Myers, Advances in Computer Architecture, John Wiley &
Sons, New York, 1982, pp. 212-2.14 ~

J. Park, "Toward the Development of a Real-Time Expert.
System"., The Journal of Forth Applications and
Research, Volume 4, Nurnber 2; 1986, pp. 133-154. ·

D~ Patterson and C. Sequin, "A VLSI RISC", Computer,
September 1982, pp. 8-21. . ·

s. Przybylski et al., Organization and VLSI Implementation
of MIPS, Stanford University Technical Report Number
84-259, April 1984.

P. Schulthess, "Reduced High-Level-Language Instruction
Set", IEEE Micro, June 1984, ~P~ 55-67.

A. Tanenbauiii';"Implications of Structured Programming for
Machine Architecture", Communic(ltions of the ACM, Vol.
21 No. 3, March 1978, pp. 237-246. - --· -

J. Tremblay and P. Sorenson, The Theory and Practice of
Compiler Writing; McGraw.:.Hill, New York NY, 1985 .•

W. Wulf, "Compilers and Computer Architecture", Computer,
July 1981, pp 41-47 •

51

. I

i

I

\ !
I

I f

Stack··
Oriented WISC Machine

Stack-oriented, writable. instruction set
computers, WISC, are for forward­

looking project planners searching for
state of the art techniques to solve a wide
variety of problems. Solutions are easy to
formulate, implement, and test with the
CPU/ 16 combination of hardware and
software.

The writable instruction set gives a new
tool to the project team. It provides the
ability to custom design - with software
- an optimal set of hardware functions.
When efficiently programmed, stack­
oriented WISC machines can execute pro­
grams faster than conventional machines
based on complex instruction set com­
puters (CISC) or reduced instruction set
computers (RISC). This versatile new tech­
nique encourages development of fully
integrated hardware and software systems
to solve each new problem.

CPU/16 is a high-speed, stack-oriented
WISC machine that includes a processor
and memory on two printed circuit boards

WISC Technologies • Box 429, Star Route 2 · •

53

populated with cpmmon TTL compon­
ents. The boards tun as a master processor
in an IBM PC, XT, or AT host. Micro­
code for .the WISC· processor is written
easily with the microassembler, and is
loaded from the host along with the ap­
plication program before the master takes
over. Control can be returned to the host
at any time, freeing it to execute other
programs in a normal manner.

Assembled and tested CPU/16 boards are
available, complete with all documenta­
tion and software to create customized,
high-speed . processors. With them a pro­
grammer or engineer ·can implement and
test solutions via modifiable microcode.
Additional hardware and software in de­
velopment will expand a growing family of
stack-oriented WISC products.

The CPU/16 processor occupies two slots
in the IBM PC, XT, AT, and compatibles.
Package includes microassembler, cross­
compiler, diagnostic programs (all with
source code) and complete schematics.

La Honda, California 94020 • USA

