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PREFACE 

WISC Technologies, Inc. was incorporated in the State of Ca.lifornia in 
March, 1987. The Company is dedicated to the development of new tech­
nologies in computer software and hardware design. These papers describe. 
the work we have done. 

The original CPU /16 was shown a.t the Sa.n Francisco Computer Fa.ire 
in 1986. We were pleased that BYTE noted our product in their What's 
New section of the June 1986 issue. 

At the 1986 Rochester Convention, two papers were presented on the 
history and architecture of the product. 

BYTE invited two papers from Phil Koopman, Jr. The first was in 
their January 1987 issue featuring Programmable Hardware. The second 
was in their April 1987 issue featuring Instruction Set Strategies. 

At the 1987 Rochester Forth Conference with the theme Computer 
Architectures, Glen B. Haydon presented a. paper entitled "A Unification 
of Software a.nd Hardware; A New Tool for Human Thought " and Phil 
Koopman Jr. presented a.n invited pa.per entitled "Writable Instruction 
Set, Stack Oriented Computers: The WISC Concept" . · 

These papers are collected in this publication to provide convenient 
access to the background history and the problems addressed by WISC 
Technologies, Inc. in their development of computer architectures to im­
plement the WISC concepts: 

The WISC CPU /16 and WISC CPU /32 a.re available for immediate 
delivery. 

June 1987 P. K. and G. B. H. 
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WHAT'S NEW 

Microcoded 
IBM PC Board 

D esigned for building 
customized processors. 

the MVP Microcoded 
CPU/16 from Mountain View 
Press is an add-on board for 
the IBM PC that implements 
a high-speed microcoded 
processor. A wire-wrapped 
prototype of the board. 
which MVP demonstrated at 
the West Coast Computer 
Faire in April. ran one 
FORTH test program 50 
times faster than an IBM PC 

. alone. According to the 
company. the processor can 
execute over 2 million stack 
operations per second. 

The card's 7 4-chip design 
includes a 16-bit ALU. two 
hardware stacks. an interface 
to the IBM PC 12 BK bytes 
of static memory. a program 
counter. two I 6·bit data 
registers. and room for 2 56 
microcoded processor in· 
structions. Each microcoded 
instruction is defined by up 
to eight 32-bit user-definable 
microcode 1nstrucuons 

An Engineering Prototype 
Kit is available for SI 500 
and a printed circuit board 
version should be available 
this month. MVP includes 
the following software with 
the wire-wrap kit: MVP 
FORTH/!6. a word-oriented 
FORTH that executes direct· 
ly in the processor: the 
MVP-FORTH Programmers 
Kit: a Number Extensions 
package: a microcode as· 
sembler: a cross-compiler. a 
set of diagnostic programs 
and source code for all the 
preceding software 

For more information. con· 
tact Mountain View Press 
Inc. POB 4656. Mounra.in 
View. CA 94040 (4151 
961-410'3 
Inquiry 558. 

34 BYTE • JUNE 1986 
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INTRODUCTON 

MVP MICROCODED CPU/16 

HISTORY 

Glen B. Haydon 
Haydon Enterprises 

Box 429 Route 2 
La Honda, CA 94020 

Phil Koopman Jr. 
20 Cattail Lane 

No. Ki~gstown, RI 02852 

The ·MVP-MICROCODED CPU/16 design resembles that conceived in the 
ALCOR project in developing an ALGOL translator utilizing multiple harcware 
stacks combined with the powerful techniques of a freely microcodable 
processor implement~d in discrete components. In the present form of the 
CPU/16 design, the user is free to structure the processor according to 
application requirements for optimal efficiency. 

HISTORY 

The ALCOR project was Led by Samelson and Bauer during the '1950s. Its 
goal was to provide a direct method for translation of ALGOL. They conceived 
of a hardware design with two "cellars", one was to hold operational characters 
and the other to hold numbers. In modern terminology these would be called 
stacks. They are hardware storage devices based on a Last in first out scheme. 
A block diagram of their concept, Figure 1, has been included in several papers. 
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It appears that a hardware implementation of the ALCOR design was 
never completed. Computer processor designs took another direction. A 
stack operation was often included but with the stack memory mapped into a 
portion of the system's memory. Such stacks are usually used to store the 
return Location for subroutine calls and sometimes to preserve other values. 

In the Late 1960s, Charles Moore designed a scheme of programming also 
using two stacks. One stack contained the return addresses of successive 
subroutine calls and the other stored interim data values during computation. 
Unfortunately, he could find no hardware. designed to fulfill his needs anci 
resorted to emulating such a processor. Such emulations are available on many 
systems today. They are known as a FORTH kernel. 

A second consideration in the CPU/16 design is similar to that adopted 
by Seymore Cray. In his Cray computer design, he used discrete components. 
His claim was that it was the only way to get speed. Of course the Cray oesign 
utilized many other features but the basic idea was that faster processo,·::. 
could be implemented utilizing simple components. 

The Cray computers used a Data General Eclipse as a host giving access 
to the outside world. In a similar manner the CPU/16 uses an IBM compatible as 
a host providing I/Oto the outside world. With only minor changes, the CPUFl6 
could use any common microcomputer. 

Finally, the concept of microcoding a simple processor has been 
utilized in many different ways. Specific microcodable devices have been 
designed and are commercially available. Examination of these devices 
suggested that we could design a simple processor with discrete components 
which could be· microcoded and provide even greater versat1Lity and speed. 

RESULTS 

The end result of these ideas is presently operational and available in 
kit form. It provides an ideal tool for exploring the potential of the design 
and as a Learning medium. Unfortunately, many people are reluctant to 
undertake a wire wrapping exercise requiring 30 to 4CJ hours. Ho1i1ever, 

. utilizing the single stepping capabilities from the host, any portion of the 
processor can be exercised step by step. There is no better way to Learn at 
first hand the capabilities of a multistack microcodable processor. 

WORK IN PROGRESS 

Now that the CPU/16 design of the kit has stabilized, the next step is 
to produce that design on printed ~ircuit boards to be placed in the IBM FC 
compatible. A problem with such a board is that it is no Longer simple to 
change a wire corresponding to a bit in the microcode. The printed circuit 
board is no Longer the experimental tool at the hardware Level. 

The CPU/16 design is currently being Laid out and wire wrapped on a 
pair of S-100 system" boards. It will run with an implementation of MVP-FORTH 
on an S-100 bus system. There is also interest in implementing the CPU/16 
design utilizing the Apple II series of computers as the host. 
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NEXT GENERATION 

Where to from here? The 16-bit bus of the present design is Limited to 
16-bits of address space. By addressing on word boundaries, the system can 
address 128K bytes. But without some form of bank switching, virtual memory 
or some other technique, the size of memory is Limited. Intel has overcome 
this Limitation by utilizing several base segments from which addresses can be 
indexed. This is in essence a form of bank switching although it has been 
efficiently implemented. 

The next bus size to consider is 32-bits wide. Intermediate numbers 
of address bits can be used but efficiency dictates the next size limitation at 
tv1ice the size of the 16-bit limit. Using a 32-bit bus ina manner analogous to 
the current 16-bit design and adding a number of enhancements, a significant 
further increase in performance is anticipated. Also a billion 32-bit words 
(4-giga-by·tes) of contiguous memory could be addressed without some form of 
bank switching. Part of the engineering prototype for a CPU/32 based on these 
considerations is already completed and functional. 

The CPU/16 kit is an ideal hardware system with which to study other 
architectures. For example, the design is clearly not a RISC machine as 
currently described. However, by addressing items in the dedicated stack 
memory with optimized microcode, it would be possible to treat stack RAM as an 
array of re.gisters and emulate a RISC design. In such an implementation, the 
RISC architecture could be thought of as a subset of the capabilities of the 
CPU/32 processor. · 

LANGUAGES 

The MVP CPU design lends itself to the efficient implementation of a 
wide variety of high level languages. For example Smalltalk-80 uses 
approximately 100 primitives each of which could be implemented in microcode. 
The design would be ideal for implementation of a p-code machine. 

FORTH has been used in the initial phases of this work. FORTH is, af·t:r 
all, an emulation of the hardware design. The Language has the advantage of 
ease of interactive programming and access to all hardware components. The 
diagnostic suite, micro-assembler and cross-compiler were easily developed 
with a minimum of effort. The language also provides a versatile facility for. 
programming many applications. 

However, with the desirability of making the system compatible wi"th 
other existing programs, it would be desirable to have a common operating 
system available. One route to a popular operating system would be to first 
implement the C languc;ge. Already, one group is working to implement Small C. 
With a full implementation of C, the entire UNIX system could be added. 

With the versatility of a microcodable processor, the development of 
ne~1 Languages tailored to specific applications becomes more reasonable. The 
languages of LISP and PROLOG are just a beginning in the field of artificial 
intelligence and they have been implemented in FORTH. It should be relatively 
easy to move such implementations to the newly designed processor. 

5 
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C ONC LUS IONS 

The MVP CPU design provides flexibility in designing and using hardware 
to solve many application problems. In additionr many high Level language·s 
could be implemented on such a system with excellent efficiency. Initially, 
FORTH has been chosen as the as the host and processor language. As such, the 
system complements a variety of other commercially available implementations 
of FORTH in hardware. The MVP CPU series of products provides flexibility for 
experimentation and tailorihg the processor to specific application and a tool 
for teaching and testing a variety of hardware processor designs. 

The. kit would make an ideal starting poiht for a comprehensive 
computer science course sequence. Such a sequence might start with the 
building of the kit as a rnicrocodable processor. That might be followed ~1ith 
the writing of the software for a compiler and an operating system. The series 
might conclude with a significant application utilizing the tools which were 
developed. 

The fundamental philosophy has been to examine program••~ng 
requirements of the application at hand,. and design the hardware accordingly. 
It is a shame to have the hardware Limitations drive the programming and Limit 
the solution of the application. The prE·sent design is a stage in the evolution 
of hardware to solve problems. Perhaps more than t\.10 stacks would be 
desirable in some applications. Once 2 design is found for a specific 
application, the next step would be to cast that design in silicon. But oon't 
get the cart before the horse. 

BIBLIOGRAPHY 

Bauer. Fredrich l., Between Zuse and Rutishauser- The Early Development of 
Digital Computing in Central Europe., in A History of Computing in the Twentieth 
Century, N. Metropolis.- J. How let, and Gain'-Carlo Rota, Editors, Academic Press 
1980. 

Note: This volume is a treasury of historical ideas which are unknown 
to many workers in various branches of computer science today. 
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ABSTRACT 

MVP MICROCODED CPU/16 
ARCHITECTURE 

Phi.I Koopman Jr. 
20 Cattail Lane 

No. Kingstown, RI 02852 

Glen Haydon 
Haydon Enterprises 

Box 429 Route 2 
La Honda, CA 94020 

The MVP Microcoded CPU/16 is a 16-bit doprocessor board that directly executes high level stack-oriented programs. The CPU/16 may be micro-programmed to execute any stack­oriented language. FORTH was used as the initial implemen­tation language to reduce developmerit time and costs. 

INTRODUCTION 

Modern computer languages and compilers rely heavily on the concept of the push-down stack. However, conventional computers are optimized for register-oriented operations and impose large memory access time penalties when using stacks residing in ~ain memory. The CPU/16 stack-oriented co­processor can improve the performance of a personal computer to equal that of a much more expensive mini-computer for programs that make heavy use of stacks. 
· The MVP Microcoded CPU/ 16 was designed as a "low tech" exploration tool for stack-oriented processing. The result is an inexpensive commercial system that: 

1) Uses simple, inexpensive, commonly available components. 2) Minimizes hardware and software development tool costs. 3) Fits the basic system onto a single IBM compatible 
Personal Computer expansion board (13" x 4"). 

4) Maximizes flexibility and minimizes complexity. 
5) Achieves a 20 to 50 times speed improvement over 8088. MVP FORTH. 

SYSTEM ARCHITECTURE 

The CPU/16 is implemented in only 74 
of program memory), with no custom or 
required. 74xx and 74LSxx series ICs 
functions, with 120ns CMOS static RAMs 
program memory. 

ICs {with Bk words 
semi-custom chips 

provide all logic 
for. microcode and 

Figure 1 shows the architectural structure of the CPU/16. All data paths are 16 bits wide. 
The CPU/16 plugs into an IBM compatible personal computer as a one-slot expansion board. The host interface on the CPU/16 allows the personal computer to alter registers and memory as well as single-step programs at the microcode or macrocode level. When the CPU/16 is in 
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"master" mode, the personal computer waits for the CPU/16 to 
request I/O service through the status register. 

The return stack and data stack are hardware stacks 
with 8-bit pointers addressing 256 elements of stack memory. 
The stacks may be accessed and pointers incremented or 
decremented in a single clock cycle. 

The ALU is built from 74tS181 chips, and has two shift 
registers to hold intermediate results. The Data Hi 
register and th~ Data Lo register can be shifted together as 
a 32-bit register for multiplication and division. The Data 
Hi register normally contains the top data stack element~ 

Program memory is organized as 64k words of 16 bits. 
All but the last 256 words may be used for program memory. 
A 16-bit program counter is used for all memory access 
addressing~ The separate memory address bus from the 
program counter allows overlapped instruction fetching and 
execution. Program memory expansion beyond Bk words 
requires a daughter-board. 

Micro-program memory is organized as 2k words of 32 
bits. The microcode bit format is typical of modern 
horizontally microcoded machines. The micro-program counter 
and micro-instruction register allow overlapped' fetching and 
execution of micro-instructions. Conditional microcode 
branches and microcode looping are accomplished by 
manipulation of the low order 3 bits of the micro~program 
address. If, during macro-instruction decoding, the highest 
8 bits of a macro-instruction are not alr 1, the 
microprogram counter is forced to all zero'~, executing a 
DOCOL subroutine call. If the highest 8 bits are all 1, 
then one of 256 possible microcoded primitives is executed. 

SOFTWARE SUPPORT 

FORTH was picked as the CPU/16's development language 
for its efficiency, its simplicity of compiler 
implementation, and its friendly ·interactive environment 
with easy access to hardware resources. The CPU/16 
supporting software includes a host control program, a 
microcode assembler, and a FORTH cross-assembler, as well as 
the FORTH microcode and kernel for the CPU/16 
implementation. 

The host program, microcode assembler, and cross­
compiler are written in 8088 MVP-FORTH. The CPU/16 
currently uses an MVP-FORTH kernel that differs in 
functionality from the 8088 MVP-FORTH version in that it 
uses word-oriented instead of byte-oriented memory 
addressing. In addition to FORTH, the CPU/16· is capable of 
supporting other programming languages such as Modula 2, 
Pascal, Lisp, and C. Any compiler implemented in machine­
independent MVP-FORTH can be quickly installed on the 
CPU/16. 

Current applications available 
double-precision and quad-precision 
single-precision floating point math 
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on the CPU/16 include 
integer arithmetic and 
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PERFORMANCE 

The CPU/16 runs at a 4.77 MHz micro-cycle rate. An 
"average" microcoded primitive executes in 3 · clock cycles 
(630 ns). This ~rovides approximately a 20 to 50 times 
speed increase over 8088 MVP-FORTH programs operating at the 
same clock speed~ 

Since only half of the micro-program memory is required 
for the MVP-FORTH implementation, custom-written microcoded 
primitives may be added to a user's application to increase 
the speed of commonly used words. As an example, software 
stack manipulation words: · 

INC[@] ( PTR-ADDR -> N ) DUP @ @ 1 ROT +! 
: DEC{!] ( N PTR-ADDR -> ) ~1 OVER +! @ ! ; 

can each be implemented in 10 micro-cycles (2.10 us) / a 
speed increase of greater than 300% over high-level 
definitions. The listing for INC[@] is given as an example 
of CPU/16 microcode: 

177 OPCODE: INC[@] ( ADDR -> N 
0 :: SOURCE=ALU ALU=B DEST=PC ;; \PC<- ADDR 
1 :: SOURCE=ALU ALU=-1 DEST=DLO ,, .\ DLO <- ~i 
2 .. SOURCE=RAM ALU=A+l DEST=DHI I I \ DHI <- POINTER+l 
3 SOURCE=ALU ALU=B DEST=RAM ,, \POINTER<- OHI 
4 .. SOURCE=DLO ALU=A+B DEST=PC INC [MPC]. I I \ PC <- PTR 
5 · · JMP=OOO ; ; \ WAIT FOR RAM ACCESS., JMP TO NEXT PAGE 
178 CURRENT-PAGE ! 
0 : : SOURCE=RAM DEST=DLO. ; ; \ DLO <- DATA 
1 SOURCE==PCSAVE ALU=A+l DEST=PC ;; \ RESTORE PC 
2 .. SOURCE=DLO ALU=A DEST=DHI DECODE I I \ T.O.S. <-DATA. 
~ .. END;; \ JMP TO NEXT INSTRUCTION 

FUTURE DEVELOPMENTS 

Future developments for the CPU/16 will focus on 
broadening the range of languages and application programs 
available. Potential applications for a stack-oriented 
processor include: artificial intelligence, computer 
graphics, image processing, real-time control, and efficient 
execution of modern computer languages. 

The CPU/16 is the first in a family of stack-oriented 
processor~. A 32-bit general-purpose stack~oriented 
processor with greater speed and memory addressability is 
currently in development. 

CONCLUSIONS 

The MVP Microcoded CPU/16 is a high performance, 
general-purpose stack-oriented processor. A "low tech" 
approach has yielded significant speed improvements over 
current microprocessors at a modest cost. Compatibility 
with existing MVP-FORTH systems allows for easy porting of 
existing software to a high performance environment. 
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PROGRAMMABLE HARDWARE 

Microcoded 
Hard-wired C 0 .. ·\ll ..... ~ -1-11·.,.,c) 1 ~ ll ~ ] s 

. .r._ l •Iv. _i.L 

A comparison of two methods for implementing 
the control logic for a simple CPU 

THE INSTRUCTION decoding and exe­
cution control sections of modern com­
puters are prime areas for using program­
mable hardware. Two of the most widely 
used methods for designing CPU control 
sections in microprocessors, minicom­
puters, and mainframes are microcode and 
hard-wired logic. Each method has its ad­
vantages, and both are natural applications 
for programmable hardware devices. 

Architectural Description 
· I'll start by giving the specifications for 
a simple computer architecture, then walk 
through the implementation of this archi­
tecture using both microcoded and hard­
wired design strategjes. While both ap­
proaches require the same description and 
specification groundwork, they use dif­
ferent schemes to generate control signals. 

I will examine the CPU architecture of 
Toy, a fictitious computer designed 
especially for this article. The CPU has 
an accumulator (ACC), an arithmetic 
logic unit (ALU), an instruction register 
(IR), a program counter (PC), some ran­
dom-access memory (RAM), and some 
control logic. Figure I is a block dhtgram 
of the Toy architecture. All data paths are 
16 bits wide with 12-bit memory-address 
paths. You can directly implement the 
ALU, ACC, IR, PC, multiplexer, and 

·RAM sections of Toy using comnionly 
available chips. Toy's control-logic section 
will require detailed design and the use 
of customized hardware or a large number 
of combinatorial logic gates. 

The Toy instruction format shown in 
figure 2 consists of a 4-bit op code and 

Phil Koopman 

a 12-bit address field. The 16 implemented. 
op codes are shown in table I. Op codes 
8 through· 15 do not make use of the in­
struction's address field. 

Since Toy is a single-accumulator ma­
chine, the instructions ADD, SUB, AND, 
OR, and XOR combine the contents. ofa 
memory location with the accumulator 
and return the result to the accumulator. 
The instructions STORE and LOAD 
transfer the accumulator to and from 
RAM. The instructions NOT, INC, DEC, 
and ZERO. operate on the accumulator 
alone. While JMPZ is the only branching 
instruction, you can program an uncon­
ditional branch by following ZERO with 
a JMPZ. Finally, the four unused op 
codes act as null operations (NOPs) to 
eliminate the annoyance of dealing with 
illegal op codes. 

Control Logic 
The control-logic section translates the op­
code bit patterns into CPU-control and 

. timing signals. Figure· 1 shows the op-code 
inputs to the control-logic unit and the 
control-signal outputs required to run the 
resi of the CPU. The signals ALUO 
through ALUCIN control the ALU. (I 
based the bit assignments on those for the 
74181 ALU chip. Sec 771e 7TL Data Book, 
listed in the Bibliography.) IfALUMODE 
is a I, then the ALU will perform a logical 
operation; if it"s a 0, the ALU will perform 
an arithmetic operation. ALUO through 
ALU3 control which arithmetic or logic 
operation the ALU is performing. 
ALUCIN acts as the cm:ry-in for. the ALU. 

When the signal CLOCK[ACC] is a 1, 

11 

the ACC register is loaded with the value 
of its inputs at the rising edge of the system 
clock. This ·is usually referred to as 
"clocking in" the contents of the ACC. 
When.the signal CLOCK[IR] is a 1, _the 
contents of thelR are clocked in frotn the 
RAM output. This is the mechanism used 
to decode the next op code. When 
ADDR=IR is a I, the RAM address 
multiplexer places the contents of the IR 
address field onto the RAM address bus. 
When it is a 0, the PC is used to address 
RAM. I use the descriptor ADDR=PC 
to mean ADDR=IR is 0. When 
CLOCK[PC] is a I and the ACC is 0, the 
PC is loaded fr9rn the IR address field. 
When INC[PC] is a 1, the program 
counter is incremented by l al the end 
of the current clock cycle. When 
WRITE[RAMJ is a I, the RAM cell ad­
dressed by the RAM address bus is loaded 
with the output of the ALU; when this 
signal is a 0, the ALU is drive·n from the 
output of RAM. 

Functional Specifications 
Now for the heart of how the Toy instruc­
tion set is implemented. In the Toy CPU, 
all instructions can be executed in just one 
or two clock cycles. ·Table 2 shows the ac­
tions required to complete each op code's 
function. Those actions in tnblc 2 th~! ;ire 

co1ui1w,•d 

lly day. Phil Koopman (20 Ca11ail !1111c. 
North Kingston, RI 02852) is a U.S. N(/\')' 
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CONTROL LOGIC 

not the control signals shown in figure 1 
are macros for the ALU control bits 
whose value is given in table 3. Let's ex­
amine some representative op codes in 

. detail. 
The STORE op code stores the contents 

of ACC into RAM. For the first cycle of 
this instruction, the low 12 bits of the IR 
address RAM. The ALU routes the ACC 
contents through without modification, 
then writes them out to RAM. 

.. :.: ,.,_ 
:i·.· 

STORE requir.es two clock cycles since 
· RAM is being used for accessing a data 

value during the first clock cycle. The sec­
ond clock cycle is the same for all two­
cycle instructions; it is simply a decoding 
of the next op code. 

The contents of the RAM address 
pointed to by the PC are put onto the 
RAM address bus to fetch the op code. 
They are then clocked into the IR, and 

co111i11111ttl 

·:,'!. ,'I. 

---A-"L"'U'~f-'"- -· -1 
ARITHMETIC .LOGIC UNIT ,..J 
116 BITS) ,J 

·-' '------'---.. ~--.r' 

·,· ·~, .~ ........ ~ .. -----~ ....... ~ .. --~ ......... ~·· ~ 

DATA IN 

i 
RAM 
PROGRAM/DATA MEMORY 
4K WORDS OF 16 BITS 

DATA ·~:m~~me-~· i\' OUT' "(. 

IR 
INSTRUCTION REGISTE.R 

I 4 BITS) (12 BITS) 
!OP COOEl (ADDRESS) 

CONTROL LOGI~ ~ 
OP3 
OPZ 
OPI 

.OPO ::; []c ;.;, · . PROGRAM COUNTER 
(12 BITS) 

·-------' 

Figure. h Toy architecture blor.k diagram. 

IN$TRUCTION FORMAT: 

.) .. ?~~;~t.::f.?~::~~ ':.~;t~: ::,;;:::~:.~~~~~·hf i~~:~ 1 '. .... ' . 

. '. BIT :·JS' '14' 13 '1°2 .'ll '' 10 9 8 7 6 5 4 3 2 I O 

OP CODE ADDRESS 

4 BITS. 12 BITS 

Figure 2: Toy instruction set format. .-
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Table 1: Toy instruction set. 

Op code 

0 
' ' 1 . 

2 
3 
4 
5 
6 
7 
8 
9 
10 

•• 11 
12 
13 
14 
15 

Operation 

STORE 
LOAD 
JMPZ 
ADD 
SUB 
OR 
AND 
XOR 
NOT 
INC 
DEC 
ZERO 
"NOP 
NOp' 
NOP 
NOP 

Description 

store accumulator in RAM at address 
.load ACC from RAM at address 
jump to address if ACC is zero 
add RAM to ACC 
subtract RAM from ACC 
logical OR RAM into ACC 
logical AND RAM into ACC 
logical XOR RAM into ACC 
logical one's complement into ACC . 
add.1 to ACC 
subtract 1 from ACC 
place 0 in ACC 
null operation - unused op code 
null operation - unused op code 
null operation - unused op code 
null operation - unused op code 

Table 2: Toy functional specification. Note that ADDR=PC is equivalent 10 
the ADDR=IR signal being O; Also, I have used descriptive macro names 
for the ALU comrol bits (see table 3). 

Op code Operation Cycle Specification 

0 .STORE 1 ADDR=IR; ALU•ACC; WRITE(RAM) 
2 ADDRaPC: CLOCK[IR]; INC[PC] 

LOAD 1 ADDR=IR; ALU=RAM: CLOCK[ACC] 
2 ADDR=PC ; CLOCK[IR] ; INC[PC] 

2 JMPZ 1 CLOCK[PC] 
2 ADDR=PC : CLOCK(IR) ; iNC[PC] 

3 ADD 1 ADDR=IR ; ALU•ACC+RAM ; CLOCK[ACC] 
2 ADDR=PC : CLOCK[IR] ; INC[PC] 

4 SUB 1 ADDR•IR; ALU=ACC-RAM; CLOCK{ACC] 
2 ADDR=PC ; CLOCK[IR] : INC[PC] 

.s OR 1 ADDR=IR ; ALU=ACCorRAM ; CLOCK[ACC] 
2 ADDR==PC ; CLOCK(IR] : INC[PC] 

6 ANO 1 ADDR=iR; ALU=ACCandRAM: CLOCK(ACC] 
2 ADDR=PC; CLOCK[IR); INC[PC] 

7 XOR 1 ADDR=IR; ALU=ACCxorRAM; CLOCK[ACC] 
2 ADDRaPC ; CLOCK[IR] ; INC[PC] 

8 NOTA ALU=notACC; CLOCK[ACC]: 
AODR=PC; CLOCK(IR]; INC[PC] 

9 INCA ALU .. ACC+1; CLOCK[ACC]; ADDA==PC; 
CLOCK[IR) ; INC[PC) 

1.0 DECA ALU=ACC-1 : CLOCK[ACC] ; 
ADDR=PC ; CLOCK(IA] ; INC[PC] 

11 ZERO ALU=O ; CLOCK[ACC] ; 
ADDAaPC; CLOCK[IR); INC[PCJ 

12-15 NOP ADDR=PC; CLOCK[IR]; INC[PG] 

13 
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finally the .PC is incremented so that ii is 
pointing to the next op code. 

JMPZ accomplishes a conditional 
branch by loading the contents of the PC 
with the address in the IR. For this to-be 
a conditional branch, the control signal to 
the PC loader must be ANOed with a 

signal that is only true if all the bits of the 
ACC are 0. Since the PC is loaded with 
the new instruction address at the end of 
the first clock cycle, the second cycle is 
a .normal decoding instruction for this new 
address, identical to the second cycle of 
STORE. 

Table 3: Macros for the ALU control bits (based on bit assignments in the 
74181 ALU chip). 

·Macro ALUO 

ALU = ACC 1 
ALU .. RAM 0 
ALU • ACC + RAM 1 
ALU .. ACC -··RAM 0 
ALU .. ACC GR RAM 0 · 
ALU ;.. .ACC AND RAM 1 
ALU = ACC XOR RAM 0 
ALU .. NOT ACC 0 
ALU = ACC + 1 0 
ALU = ACC - 1 1 
ALU = 0 1 

ALU1 

1 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 

ALU2 

1 
0 
0 
1 
1 
0 
1 
0 
0 
1 
0 

Table 4: Control signal value specification. 

Values for firs( clock cycle of each instruction 

Control 
signal 

ALUO 
ALU1 
ALU2 
ALU3 

fALUMODE 
ALUCIN 
CLOCK[ACC) 
CLOCK[IR) 
ADDA=IR 
CLOCK( PC) 
INC[PCJ 
WRITE[RAM) 

Op code 
0 1 2 3 4 5 6 7 

x 
0 
0 
1 
0 
0 

0 
1 
0 
1 
1 
x 
1 
0 
1 
0 
0 
0 

x 1 
x 0 
x 0 
x 1 
x 0 
x 0 
0 1 
0 0 
1 1 
1 . 0 
0 0 
0 0 

0 0 1 0 
1 1 1 1 
1 1 0 1 
0 1 1 0 
0 1 1 1 
1 x x x 
1 1 . 1 1 
0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

Values for second clock cycle of each instruction 

Control 
signal 

ALUO 
ALU1 
ALU2 
ALU3 
ALU MODE 
ALUCIN 
CLOCK(ACC) 
CLOCK(IR] 
ADDR=IR 
CLOCK( PC] 
INC[PCJ 
WRITE[RAMJ 

Op code 
0 1 2 3 4 5 6 7 

x x x x 
x ·x x x 
x x x x 
x x x x 
x x x x 
x x x x 
0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 

x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
0 0 0 
1 1 1 
0 0 0 
0 0 0 
1 1 1 
0 0 0 

x 
x 
x 
x 
x 
x 
0 
1 
0 
0 
1 
0 
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ALU3 ALUMODE ALUCIN 

8 

0 
0 
0 
0 
1 
x 
1 
1 
0 
0 
1 
0 

8 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

x 
1 x 

1 0 0 
0 0 
1 x 
1 x 
0 x 
0 1 x 
0 0 1 
1 0 0 
0 1 x 

9 10 11 12 13 14 15 

0 1 
0 1 
0 0 
0 1 0 
0 0 
1 0 x 
1 1 1 
1 1 1 
0 0 0 
0 0 0 

x x 
x x 
x x 
x x 
x x 
x x 
0 0 
1 . 1 
0 0 
0 0 

x 
x 
x 
x 
x 
x 
0 
1 
0 
0 

x 
x 
x 
x 
x 
x 
0 
1 
0 
0 

1 1 1 1 1 1 1 
0 0 0 0 0 0 0 

9 10 11 12 13 14 15 

x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 

14 

x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 

The single-clock,cycle instructions. 
such as NOTA, do.not require a RAtv! ac­
cess for an operand. This means that the 
usual second-cycle decoding sequence C:an · 
occur during the same clock cycle as the 
ALU operation that modifies the ACC 
contents. In the case of NOTA, the RAM 
input to the ALU is. ignored while tin; 
ALU computes the one's complement 
(logical inverse) of the current ACC 
contents. 

Conlrol-I..-0gic Outputs 
Table 4 gives a complete listing of all tilt: 
control-logic output values that you need 
to specify the Toy functional description. 
Each X corresponds to a signal whose 
value does not matter, either because th.e 
controlled resource is unused (as in the 
ALU signals for op code 2) or because the 
second clock cycle is unuscdJor op codt:> 
8 to 15. These "don't-care'.' signals become 
crucial when you are designing hard-wired 
control circuitry. 

Hard-wired Control 
A CPU designed with hard-wired control 
uses random logic such as ANO, OR, and 
NOT gates and either flip-flops or 
counters to decode each op code and con­
trol the processing flow. The hardcwired 
design process usually consists of identi­
fying all the states needed to implement 
the instruction set, then deriving the 

·Boolean logic equations required to con­
trol the computer's resources for each 
step. 

Figure 3 shows the hard-wired imple­
mentation of the functional specifica: 
tions given in table 4. It requires a con­
troller with two states: first clock cycle and 
second clock cycle. The flip-flop in figure 
3 is forced to the CLOCKl state whenever· 
a new instruction is clocked into the IR 
and changes to the CLOCK2 state when­
ever the IR is not clocked. 

The most tedious part of a hard-wired 
control design is creating the logic gate· 
networks to decode instructions into con­
trol signals. I have derived the required· 
logic equations shown in figure 4 from the 
functional specifications in table 4. Figure 
5 shows the Karnaugh map for deriving 
the first equation (ALUO) in figure 4. (See 
W. Fletcher's An Engineering Approach 
to Digira/ Design [Prentice-Hall, 1980] for 
a discussion of Karna ugh maps.) 

The don't-care conditions are vital in 
reducing the complexity of the gate net­
works, since th~y allow freedom to ignore 
some op-code bits or state bits to minimize 
decoding logic. A good example of a 
don't-care condition is the ALU control 
signals; they do not depend on whether 
the controller is currently in the CLOCK! 
or CLOCK2 _ _!!lode. 

co11rinut:d 
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Figure 3: Hard-wired controller schematic. Note that none of the ALU sig1ials 
depend on whether the controller is in the CLOCKJ or CLOCK2 mode. 
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Figure ·4: Logic equations for Toy's hard-wired implementation. 

OPJ.OPO 

"OP3;0P2. 00 OJ. .. ,··nf,. ·:for:·· 
"oa· ... 1·,, 0 o J ,,,:.:c ·+ ..,. 

;:.·'~tj>/·;,·!~~~f :1--0-.;,_..o __ ·_·:-_·_:+-:-~!_1 _··,"-l; li.~'i 'i 0 r ;:~~:~i:';~:;,,, 
) z 13 15 t 

x x x ! 
I X • OON'T CARE 

.. ~-.,.,. . '~ ...... 

Figure 5: To show how the Boolean equations in figure 4 were derived 
from table 4, here is the Karnauglz map used to minimize the ALVO 
Boolean equation. 171e Xs are the don't-care bits, and rhe number in the · upper right corner of each box is the op code. 
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lb implement the hard-wired controller. 
the complementary outputs of the 
CLOCKl/CLOCK2 nip-nop and the in· 
puts from the current op rnde in the l R 
are fed throughout the system by the lines 
at the left of figure 3. These inputs are then 
!Cd thrn11gh illgic g:11c u1111hi11:11inns 
specified by the equations in tigure 4. You 
can implement these logic-gate combina· 
tions with TTL logic gates or. if you want 
to save board space, program them into 
hardware, such as a PAL. 

As an example of how these decoding 
gates work, consider the generation of the 
signal INC[PC]. The INC[PC] signal 
should be a 1 for op codes 8 to 15 on the 
first clock cycle and for op codes 0 to 7 
on the second clock cycle. But, since op 
codes 8 to 15 are all single-cycle op codes. 
any sigmils generated from them during 
the second cyc:lt: c:111 be ignored. This 
gives the n;sult thut lNC[PC] can be I !'or 
all op codes during the second cycle. The 
logic for INC[PCJ then becomes the ANO 
of the highest op-code bit (OP3) and 
CLOCK!, with the result ORed with 
CLOCK2. 

Because the time required for a signal 
to pass through a si111ple logic gate is 011\y 
a few nanoseconds with most current 
technologies, hard-wired control can pro· 
vidc the fastest possible decoding of 
machine language instructions. It also is 
the most flexible design method for speci· 
fying unique and complex control flows 
within a CPU because the designer can 
specify any decoding gate combinations 
and any cont rol-llow hardware. 

One drawback to using hard-wired ~on· 
trol mctlHidnlngy 1s 1\i:1t it n:quin:s :1 L'Pn· 
sidcrablc amount or f3oolean algcbr~ 
manipulation. Another drawback is that 
the CPU must be completely and correctly 
specified hcf(Hc you design a h:1rd-wircci 
control unit. 

Any additions or lllOclifications to the 
specification can require a lllajor redesign 
of the control unit. If you wnnr a feel for 
the impact a design change can have on 
a hard-wired controller, try redoing the 
logic equations with two op codes 
switched, such as op codes 5 and 9, or 
with op code 15 defined as a two-cycle 
logical NANO instruction. 

Microcoded Control 
Microcoded design differs frolll hard· 
wired design in that the control-logic gates 
are replaced by a Jllemory array (usually 
a ROM) ro generate the required con1rol· 
logic signals. While ROMs are slower 
than rnndom logic within the same price 
a~d p~rforlllance categories, using a ROM 
s1mpl1fies the design process and signiti· 
cantly reduces time :ind costs for imple· 
menting a CPU s;ontrol circuit. 

Figure 6 shows. the schematic for ~ 
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microcoded control circuit for Toy. The 
op code and a flip-flop similar to the one 
used in the hard"wired controller are fed 
in as an address to the microprogram 
ROM. The outputs of the ROM directly 
drive the control signals for the CPU. 
Each ROM localion CO!Jtains the proper 

. bit settings to contro.1 a single clock cycle 
of rin op c.ode's cxccurion, as shown .in 
figure 7. ·· 

The control signals for the first cycle of 
each op code are placed in the. even 
memory addresses {which are addressed · 
when the flip~flop in the controller out­
puts a 0 for the first clock cycle), l)nd lhe 
second cycle op todes are placed in odd 
memory addresses. I have arbitrarily 
assigned the value 0 to all don't-care bits 
from table 4 and copied the rest of the bits 
directly from table 4 to figure 7 . 

. The main udv-Jnlligc to microcoded con~ 
trol i~ that it lets the designer change the 
CPU's functional description by changing 
the bits in any ROM address without hav~ 
ing to redesign .the machine's logic­
decoding gate structure. Microcoded ma­
chine design also lends itself to simply 
structured, low-component-count com­
puters such as those built. using bit-slice 
technology. Most iJ10dern microproceS'-

. continued 
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CLOCKtACCl 
ROM A LUC IN 
MICR.DPROGRAM MEMORY ALU MOOE 
[ALSO KNOWN A.S CONTROL ALU3 
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f 32 WORDS OF 12 BITS l ALU! 

ALUO 

~ow 

. FLIP-FLOP 
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Figure 6: Microcoded controller schematic.· 
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E N C 0 C K A L 

.. ·' , L,_c K.-0 K [ L U 
·'"" ., ._, . .. . ' 'R [ [ R [ A U 1.4 A A A />.. 

·.·:· .. :t::::<::;;~6~f.7~·1,:.'3.>C1~t 'I ~ g i g b b b b 
:oE ,ADDRESS . ] . ] ]. R l ] N E 3 2 1 0 

.:~;7·,~%~~0~~~4i.i~~~i~~-~~i~i~f ~-T~-~ 
"::2r .. '"_, .... .'0'r0 0~ .. 1 0· 1 0 1 1 0 1 0 

"~·'.' ·3."' · .. 0i 1· 0'-'0 1 0 0· 0 0 0 0 0 
2 4 001100000000 

5 '0 1 0 0 1 0 0 0 0 0 0 0 
6 0 0 0 1 0 1 0 0 1 0 0 1 
7 0 1 0 0 1 0 0 0 0 0 0 0 
8 000101100110 
~- j' t 0 0 1 0 0 0 0 0 0 0 

5 10 0 0 0 1 0 1 0 1 1 , 1 0 
11 0 1 0 0 1 0 0 0 0 0 0 0 

6 12 000101011011 
13, . 0 1 0 0 1 0 0 0 0.0 0 0 

7 14 0 0 0 1 0 1 0 1 0 1 1 0 
15 0 1 0 0 1 0 0 0 0 0 0 0 

8 16 0 1 0 0 1 1 0 , 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 

9 ' - ; ~ ~ g. ~ : : ~ ~ ' ~ : : : : : 
20 0 1 0 0 1 1 · 0 0 1 · 1 1 1 
21 0 0 0 0 0 0 0 0 0 0 ~ 0 
'22 0 1 0 0 1. 1 0 1 0 0 1 1 

.:23<.· 0 0 0 0 0 0 0 0 0 0 0 0 
24'' ·~.,., 0· 1 0. 0 1 0 0 0 0 0 0 0 

.,, '• 25 ' '' 0 0 '0 0 0 0 0 0 0 0 0 0 
26 0 1 0 0 1 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0.0 0 0 0 0 
28 0 1 0 0 1 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 0 j 0 0 0 
30 0 1 0 0 1 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 7: Contents of ROM for the microcode. 

sors and large computers use microcoded 
design techniques because the design costs 
associated with hard-wired control are too 
high. 

In some cases, a computer will use 
RAM i1\steud of ROM for its microcoded 
memory, providing a "writable control· 
store." A sophisticated progrummer can 
use this to modify and extend the ma­
chine's instruction set for special applica­
tions. By using multiple sets of ROM or 
R:AM within a machine, the programmer 
can make a computer emulate more than 
one machine-code instruction set for dif­
forcnt computing environments. 

The method of microcoding I used in 
Toy is called horizontal microcoding, 
since each bit of the ROM directly feeds 
a control line for the CPU. A hybrid 
design method known as vertical micro-

18 

coding compacts some control signals 
together to save ROM bits. It then uses 
decoding logic much like that used by the 
hard-wired approach to regenerate the 
signals. 

In general, hard-wired control is used 
for computer designs that are simple or 
that req\lire fast execution speeds, while 
microcoded control is used in complex 
computer designs to keep design costs low. 
Both design· methods can implement 
CPUs that are much more complex than 
the Toy architecture. • 
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INSTRUCTION SET STRATEGIES 

The WISC Concept 
A proposal for a writable jnstruction set computer 

THE TRADITIONAL COMPLEX in­
struction set computer architecture with 
its large, complicated instruction set has 
become the mainstay of the microproces- · 
sor industry. Recently, however, pro­
ponents of the reduced instruction set 
computer. architecture have made the 
controversial claim that RISC architec­
tures can execute programs more quickly 
than CISC machines. Before you decide. 
which side of the line you're on, I'd like 
to present an alternative computer archi­
tecture that combines elements of both 
RISC and CISC philosophies to produce 
an interesting, streamlined, flexible, and 
potentially fast machine. 

My proposed architecture is called 
WISC, for writable instruction set com­
puter. My purpose is not to show that 
either the RISC or CISC approach is 
somehow wrong, but rather to introduce 

.. an alternative that blends RISC and CISC 
concepts into a simple but powerful ar­

, chitecture. 
First, I want to look at the key ideas 

from the RISC and CISC concepts. Then 
I can select the best ideas for the pro­
posed WISC architecture. Finally, I will 
combine these ideas to define the WISC 
architecture and consider an overview de­
sign for a generic WISC machine. 

Key RISC Concepts 
RISC systems are based on the·concept of 
optimizing the few instructions that are 
used the most and eliminating infre­
quently used instructions to reduce hard­
ware complexity and increase hardware 
speed, I will look at the key RISC con­
cepts. examine their strong or weak 

Phil Koopman 

points, and pick the ones that are most 
desirable for an alternative architecture. 

First, RISC machines must execute all 
instructions in a single memory cycle. 
Some authors have referred to this as sin-

. gle-clock-cycle operation, but the_ real 
resource limitation is the amount oftime 
required to . reference program memory. 
The idea here is that if a CPU can execute 
instructions as quickly as they are fetched 
from memory, maximum system through­
put speed will result. Clearly, using as 
much of the memory bandwidth as is 
available is a desirable goal for WISC. 

RISC machines must use hard-wired 
control. The intent of using hard-wired 
control is to allow for fast single-mem­
ory-cycle operation of op codes and 
(when combined with a very small in­
struction set) reduce the amount .of sili­
con area required for implementation on 
a single chip. 

But· it is not clear whether hard-wired 
control is an absolute requirement. Since 
a designer can make a small amount of 
microcode memory extremely fast in re­
lation to large amounts of program mem­
ory (while achieving a reasonable cost/ 
performance trade-off), there is no rea­
son why a microcoded processor cannot 
achieve single-memory-reference-cycle 
operation for most operations. 

As for the chip-area argument, micro­
coded designs can have fewer gates than 
hard-wired designs {exclusive of the 
actual microcode memory). If I wish, I 
can use the extra silicon area available in 
a streamlined WISC single-chip imple­
mentation for microcode memory. 

Next, RISC machines use relatively 
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few instructions and addressing modes. 
This concept. is a side effect of the need to 
keep things simple in a hard-wired, sin­
gle-cycle processor. If a chip can support 
additional instructions without reducing 
the clock-cycle speed for basic instruc· 
tions:_as is often the case with micro­
coded CPUs but usually not with hard· 
wired CPUs-no real incentive exists to 
limit the number or types of instructions .. 
Instructions with fancy indirect-address 
modes or multiple-memory-cycle opera· 
tion should be supported ifthe net result 
is a speed-up of the entire system for an 
important application program or Ian· 
guage run-time environment. So a WISC 
design should not unnecessarily restrict 
the number and variety of possible in· 
structions. 

RISC processors use a load/store de· 
sign. which allows "load. from memory" 
and "store to memory" as the only mem· 
cry-reference instructions. This tends to 
reduce clock-cycle times by shonening 
delays in the memory-to-CPU data path 
and simplifying control logic. It also sim­
plifies restarting after a virtual memory 
page fault. However, ifvinual memory is 
not being used (as is the case in the vast 
majority of personal computers today) or 
if a memory reference can be combined 
with another operation for a net savings 

continued 

By day Phil Koopman is a U.S. Navy sub­
mariner and engineering dury officer; by 
night he designs computer hardware. 
software, and microcode. He can be 
reached at 20 Cattail Lane. Nonh Kings­
town, RI 02852. 
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No evidence exists . 
that a fast computer 
requires an architecture 
with a difficult 
assembly language. 

. in time, then no reaso·n exists for restrict­
ing the system to a load/store design. 
Thus, WISC computers. should not be 
limited to a load/store design. 

RISC machines use a fixed instruction 
fomiat. Fixed instruction fonnats allow 
simpler decoding ofinstructions and re­
duced hard-wirec! logic. They also mini­
mize the· number of microcoded instruc­
tions that are wasted on shifting and . 
inteI1Jreting op codes and operands. 

Making. all instructions the same size 
(e.g .• a 16-bit format aligned on even­
byte boundaries on a 16-bit machine) 
makes· a lot of sense for simple, fast hard­
ware design. You can argue· that com­
pressing variable· length· instructions into 
the smallest space possible speeds pro- . 
gram ~cution by reducing the number 
of memory accesses. But the trade-offs in 
unpacking these compressed instructions. 
and fonnatting them properly for eiecu-

. tion might ·eat up much .of the savings· 
with more complex hardware and extra 
instruction fetching when refilling a pre~ 
fetch pipeline afu:r a branch. Most people 
seem willing. tci increase memory, space 
somewhat for faster program execution 
speeds. So WISC should use a fixed in­

. stniction fonnat. · 
Finally, RISC machines trade off more 

sophisticated compiler technology for 
less complex hardware. This argument is 
based on the assumption that all program­
ming is done in high-level languages that 
shield the user from the machine. No 
doubt sophisticated compiler technology 
can improve the speed of a high-level Ian~ 

. guage • program. It remains·· to be seen 
whether this speed· increase can · SUI1Jass 
the capabilifY of an experienced assembly . 
language programmer to handcraft the 
few 'lines of code that might break the 
speed .bottleneck for a complex applica­
tion program. Inasmuch as no eviC:ence 
exists that a fast computer requires an ar­
c'1itecture wiih a difficult assembly lan­
guage, WISC should not have features 
that demand . the use. of a sophisticated 
compiler, although it could benefit from 

·such a compiler. 

A Major RISC Problem 
For all its. good, the RISC design has an 
Achilles' heel. The low semantic content 
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. of each instruction requires a high mem~ 
ory bandwidth, resulting in a sharp mem~ 

. ory price/perfonnance trade-off. . ·• 
Consider the common operation of de- · 

an extensive and complex instruction SCI 
that attempts to suppon ·high-level lan­
guage ·control and ·data structures di-

. rectly. All of today's widely used 16-bit .· 
microproc;essors are CISC designs . . crementing the \ialue at a memory loca• 

tion. In a RISC machine this would be ac­
complished by a. load, dec.rement · 8o~rowingfroin CISC 
register, and store using five memory Two common CISC tr.aits that mightbe 
cycles: three'for instructions and two for ·.useful inf!, WISC design are a minimal se· 
memory data references. An efficient mantic gap arid the inclusiori of as many 
CISC or WISC architecture might sup~ high-level language-oriented .instructions·· 
port a single decrement instruction that . as possible. . 
uses only three memory cycles: one for The dri'>'.ing force behind the complex­
the instniction .and two for memory data · ity of a CISC machine· is the desire to 
references. If many commonly. required speed up common high-level language 
high-level language functions are not operations such as character-string ma• 
supported in a RISC machine._ memory .•. nipulation, pointer maintenance.. loop· 
access for iristnictions can create a ing. and array handling. BY reducing th~.· 
bottleneck. so-called semantic gap between the high·. 

Another example is the absolute value level language statements used iri a pro· 
operation applied to a value already ·resi- gram and the machine;code instructions 
dent in a CPU register or hardware data 11vailable on the CISC machine, programs 
stack. in any processor without this func- should require fewer memory references. 
tion as a built-in primitive. absolute value take up less space, and run· faster. Tei 
determination consists of a sign compari- handle the very complex instructions .that .. 
son, a conditional branch, and a subtrac- · tan be used, designers of CISC machines. 
tion (or two's compiement). This is a to- often use microcoded implementations. 
tal of three instructions and a possible Likewise, to provide complex instruc·. 
conditional branch that upsets any in- · tions while minimizing hardware com· 
struction pipelining that might exist. If . plexity, WISC should employ a micro~ 
the absolute ~ue func~iori is. inCluded in . . coded design. . · . 
the instruction set, execution requires · An unfOnunate side effect of complex 
only orie memory reference; · and comprehensive instruction fonnats 

.. Now .you might. be thinking, "What . can be an excessive amount of decoding 
about a memory cache? Doesn't that logic or multiple tnicrocycles just to de-
solve the memory bottleneck' problem?" code an instruction before any real work 

. But a cache is only a partial solution. is done. But this side effect can be re· 
Fir5t a cache speeds up memory refer- duced by the adoption of a simple .tixed 
ences only on the second and subsequent instruction format for WISC instrui:· 
accesses to a memory location .. Thus, .the tions, Using a fixed instruction format 
effectiveness of a cache is reduced by · eliminates complex. manipulation of in· 
compiler optimizations such as unrolling structions to extract the meaning of an op ·· 
loops. Second, a cache introduces addi-. code and its operands. thus reducing 
tional system cost and complexity and re· · hardware requirements and speeding up 
suits in extra delay when encountering a ·· the processor. 
cache "miss'' that requires fetching an in-. Powerful high-level language-oriented 

· struction from memory. Finally, a cache instructions, such as decrementing ;1 
· design is often based on the concept of memory-location value or string manipu-

''locality" of programs. This contradicts lations, can speed up programs signifi-
the current software doctrine of breaking cantly by reducing the number of instruc· . 
up programs into smaller .. and smaller .. tion fetches from program memory. The 
procedures and functions for modularity· ·. only pitfall is that such instructions must 
and reusability....;.or forces greater mem~ · be well suited to high-level languages, or 
ory usage by compiling functions and compilers ignore them in favor of synthe· 
subroutines as in-line code, which fur- sizing primitive instruction sequences 
ther reduces cache effectiveness. that do the job exactly. Eicamples of prob-

Simply put, it is better to have no mem• !em areas include zero-based versus one-
ory bottleneck problem than to have a based arrays and loop counters, subrou-
limited memory bandwidth with a cache. tine calling, parameter passing, and 
Therefore; WISC should be designed to list/record data-structure manipulation. 
minimize the number of memory refer- The answer to the semantic mismatch 
ences needed to accomplish each func- caused by· high-level language instruc-
tion in a high-level program. . , tions that don't quite meet high-level lan-

To avoid the RISC memory bottleneck guage requirements is .to customize the 
problem and achieve high performance, I processor's instruction set for each Jan-
ean ~rrow some concepts from CISC · guage environment. This customization 
machines. A CISC. machine's CPU has 
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would be accomplished in WISC with a 
writable microprogram memory, some­
times called a writable control Store, that 
employs high-speed RAM to store micro­
code. Such an arrangement would let the 
processor's microcoded instruction set 
be changed as the operating system 
requires. 

Therefore, a WISC goal should be to 
execute all instructions in a single mem­
ory-reference cycle and use 100 percent 
of available memory bandwidth, except 
where a microcoded complex instruction 
clearly results in perfonnance superior to 
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multiple simple instructions for a particu­
lar application or high~level language 
run-time environment. Of course, in­
structions involving memory operand ac­
cess will be longer than a single memory 
cycle, but they will nonetheless tend to 
keep the memory productively engaged at 
all times. 

Using Stacks 
The WISC architecture should use one 
final feature to synergistically work with 
other design aspects to increase speed 
and decrease complexity of the system: 
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hardware-implemented push-down las;. 
in/first-out stacks. 

The .stack concept has proved its value· 
in computers and modem-language 1rn · 
plementations that use stacks for imple· 
menting subroutine return-address st or· 
age or parameter passing. However. 
these stacks arc generally rcaliz.cd a~ d!; 
address register that points to main mcrn· 
ory. with perhaps the top few elements o! 
the stack located in special registers. I 
propose using completely independent 
high-speed memories to implement t1\\) 

stacks for the WISC architecture. One 
st.ack would be prirnurily for subrou!ln~. 
return-address storage and the other for 
data storage. 

The advantage of a hardware return· 
address stack is that subroutine calls anc 
returns can be processed at a high speed 
with the return address transferred lO O! 
from the return stack in parallel with de­
coding the next instruction. A hardware 
data stack lets subroutine parameters be 
passed to subroutinl!S without main· 
memory accesses in addition to providing 
for a large amount of scratch work space 
for storing temporary results. In fact, the 
underlying structure of modern lan­
guages such as Modula-2 seems to pre· 
sume the existence of a stack of some 
sort. 

In addition to reducing subroutine-call 
overhead, use of a data stack simplifies 
(and quickens) the machine· s operation 
by eliminating the need for operand de­
coding. Since a stack machine implicitl) 
addresses certain elements on the stack 
relative to the current stack pointerposi· 
tion, the CPU does not suffer any delays 
while source and destination registers are 
selected from a large register bank. Fur­
thermore, the instruction bits freed by not 
needing fields for selecting registers 
allows the use. of a narrow word size ( 16 
bits Or less). packing multiple op code> 
into each program word, or using con· 
stants or other values in the same word as 
an op code, all while maintaining a sim· 
pie instruction format. 

In-line literal values are required in a 
stack machine only for providing values 
for variable initialization, arithmetic con· 
stants, or branching addresses. These 

· values can either be incorporated into un­
used instruction bits or placed inro a 
memory cell after the instruction requir­
ing the value. One interesting approach 
that some stack-oriented processors use 
is to have two instruction types: one for 
operations (consisting of an op code with 
no parameters) and one for subroutine 
branches (consisting of only an address 
with a flag indicating an implied op code 
of a call). · 

So the WISC design should include 
('flllfllllll°l.' 
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hardware .stacks. The use of hardware 
stacks will reduce subroutine-call over­
head and the· complexity and delay asso­
ciated with operand decoding, since all 
operands are implicit. 

A Generic WISC Computer 
Having described the attributes of a 
WISC computer, I would like to present a 
generic architecture for WISC impli:­
mentation. Figure 1 shows a block dia­
gram of one possible format for a WISC 
computer. 

The resources of this generic WISC 
computer are a data stack, an ALU with a 
small number of registers (perhaps only 
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one), a return stack with a bidirectional 
data path to the program counter for sub­
routine•call address manipulation, a pro­
gram memory, and a microcoded con­
troller. All the resources are connected to 
a central data bus, with access to 1/0 ser­
vices through an appropriate interface. 

The WISC machine in figure I has sev­
eral interesting aspects. One feature not 
always found on hardware-based stack 
designs .is that the registers above the 
ALU can hold the top one or two data­
stack elements. These registers allow the 
use of a single-ported data-stack RAM. 

The entire instruction decoding path. 
from the return-address stack all the way 

Figure 1: A block diagram of a possible WISC machine implemefllation. 
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through to the microinstruction register 
is completely independent of th<: d:1l., 
bus. This independence allows for AL\. 
and data-stack operations on data whik 
instructions are fetched and decodec: 
simultaneously. This structure allows u" 
of nearly I 00 percent of the memor\ 
bandwidth. An added benefit is that there 
is no need to implement an instruction 
prefetch unit: no time is lost flushing an 
instruction queue when a branch is en­
countered. In fact. implementing a de­
layed branch similar to the ones used b: 
some RISC machines can eliminate al­
most all idle or wasted memory cycles. 

The microinstruction register forms J 

one-stage microinstruction pipeline and 
eliminates wasted time thar would other· 
wise result from waiting for micropro­
gram memory access in a nonpipelined 
design. The onl~· drawbacks to this de­
sign are that a two-microcycle" minimum 
is imposed on all op codes and that de· 
laved microinstruction branches must be 
used for condition code testing. HO\\ -

ever, the small high-speed memory used 
to implement the microprogram memor: 
and data-stack memory should allow for 
multiple microcode cycles within each 
memory-cycle time. essentially eliminat­
ing the impact of these drawbacks on sys­
tem performance. . 

A design approach for instruction de­
coding that could greatly simplify the 
CPU hardware would be to use, for exam­
ple, an 8-bit op code that directly ad­
dresses a word in the microcode mem­
ory. This would .directly address t.he firsr 
microprogram instruction of a page or 
microprogram memory; one page of 
microprogram memory would be allo­
cated to each op code. This would alJo,, 
complete flexibility in instruction set as­
signment while using very little instm:­
tion decoding logic. 

The Past, Present, and Future 
of WISC 
Constructing a hodgepodge of previous!; 
successful computer design techniques 
does not guarantee success. The W1SC 
design criteria presented here represent a 
careful balance of often conflicting de­
sign requirements. That said. I wilrlook 
at some past and current computers that 
inspired some of the WISC machine·s 
unusual design features. 

The Burroughs B 1700, a microcoded 
machine, had a different instruction set 
for each language it supponed: BASIC. 
FORTRAN. and COBOL/RPG-II. The 
tailored instruction set for each language 
resulted in smaller programs and 'ffiu~h 
faster execution speed than that found on 
comparable machines of the time. But thL' 
complexity of the architecture for vari-
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able-width operand support made the 
machine expensive. 

The current RISC II and MIPS proces­
sors (see '"How Much of a RISC?" b,y 
Phillip Robinson on page 143) strive to 
achieve single-memory-cycle . execution 
with the use of fixed instruction formats. 
Interestingly, the IBM RT PC and the 
Pyramid 90x computers use hybrid hard· 
wired/microcoded designs to allow for 
some complex instructions within a RISC 
framework. 

One early reference to a stack machine 
was a design for a 1950s ALGOL lan­
guage-specific processor known as 
ALCOR. While it was never built, it 
called for a two•stack machine that would 
have used one stai:k ·ror operand storage 
and another stack for instruction storage. 

More recently, the Novix NC4016 
chip (see "Stack Machines and Compiler 
Design'" by Daniel L Miller on page 
177) efficiently executes the dual-stack­
based FORTH language with a hard­
wired RISC architecture. The NC4016 is 
designed with single-cycle operation in 
mind and has low procedure-calling over­
head due to the use of stacks, but it has a 
hard-wired instruction set like other 
RISC processors. Another stack-oriented 
processor, the MVP Microcoded CPU/ 
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16, combines. hardware stacks with writ­
able microprogram memory to allow 
redefinable instruction sets but is not op­
timized for single-memory-cycleinstruc· 
tion execution. 

While none of the individual design 
features of WISC are new, I believe that 
implementing a true WISC machine will 
lead to discoveries about the nature of 
modem computer architectures and how 
to make them better. In the end, desjgn­
ing a more efficient computer architec­
ture will lead to less expensive, more cap­
able computers. • 
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A UNIFICATION OF SOFTWARE AND.HARDWARE; 

A NEW TOOL FOR HUMAN THOUGHT 

Glen B. Haydon 
· WISC Technologies, Inc~ · 

La Honda, CA 94020 

. . . . 

The following discussion briefly develops a philosopbical'basis with which to unify the . 
hardware anQ software tools of a. computer development system. The result is an improved 
match between software a.nd hardware.· 

The nature of the human mind and thought processes are not understood. However, 
there appears to be a mismatch between human thought and the rapidly growing use 
of computers a.s tools to help men think. Software engineers and hardware engineer.s 
seem to be working In different directions. If we could unify the software and hardware 
of. computers . along new lines, we might find a better tool to aid us in our intellectual· 
endeavours. Perhaps a. unification of software and hardware would provide a better model 
to simulate part of the activities of the human brain .. 

Origins of Language 

The development of speech and natural languages produced a tool for the develop­
ment of human thought. In an interesting pa.per by James Cooke Brown and William 
Greenhood entitled "PATERNITY,. JOKES AND SONG: A POSSIBLE EVOLUTION-

. ARY SCENARIO FOR THE ORIGINS OF MIND AND LANGUAGE" , (Cultural Futuru. 
Research, Vol VIII, No.2, Winter 1983/84), a new perspective to the development of na.t·ura.l 
languages is presented. The paper is a long one and carefully argued with many references. 

The. origins begin with the development of speech as a. tool for communication. Along 
with communication has come the internal activity of the mind, thinking. In the develop­
ment of language, the burden of disambiguation grows geometrically with every increase in 
sentence length.· The development of grammar attempts to accomplish the disambiguation. 

A Logical Languag.e ·~ LOGLAN 

In his FORWARD to LOGLAN 1: A LOGICAL LANGUAGE, 3rd Ed;· (The Logla.n Insti­
tute, Inc. 1975, 1701 Northeast 75th Street, Gainesville, FL 32601) James Cook Brown 

· begins: 

. "At the beginning of the Christmas Holidays, 1955, I sat d.own before a bright fire 
.to commence what I hoped would be a short paper on the possibility of testing the social 
psychological implications of the Sapir•Whorf hypothesis [relating lanugage to thought). 
I meant to proceed by showing that the construction of a tiny model language, with a 
grammar borrowed from the.rules of modern logic, taught to subjects of different nation .. 
alities, in a. laboratory setting, under conditions of control, would permit a decisive test. 
I have been writing appendices for that paper ever since. " 
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And now, over thirty years later, the appendices continue to develop. The language 
became known as LOG LAN. It was described in the literature, in the June 1960 issue of 
Scientific American. Books arid publications have continued over the years. Within the past 
5 years the language has been refined with a completely unambiguous machine parsable 
grammar. Currently, a number of minor revisions to the language are being summarized 
and a new publication should be forthcoming before long. 

History of Computing 

Several years ago, Hans Nieuwenhuyzen called my attention to two books. The first 
was A HISTORY OF COMPUTING IN THE TWENTIETH CENTURY, (N. Metropolis, J. How let 

. and Gian-Carlo Rota, Editors, 1980Academic Press.} Computers have changed with time. 
Originally, von Neumann thought of the computer a$ a number cruncher. Perhaps it was 
Turing who showed that computers can be symbol'.'manipulating machines. The hardware 
design of computers started from these perspectives. Early programming languages dealt 
with methods trying to use the newly developed hardware to solve real problems. 

The second book was HISTORY OF PROGRAMMING LANGUAGES, (Richard L Wexelblat, 
Editor, 1981, Academic Press). The history traces the development of many languages<to 
bridge the gap between real problems and the tools providedwith computer hardware. The 
computer language, FORTRAN was developed as a· numerical scientific number cruncher 
and continues to this day as a major programming language for scientific computation. 
Other languages which immediately followed were also number crunchers. These were 
batch processing languages. On-line languages were devised nearly a decade later. 

Business applications with number storage and crunching came later. The introduc­
tion of string and list processing followed. It was always a problem to make the newer 
application requirements fit on hardware designed for. number crunching. At best, the fit 
has not been. optimal. 

Thusthe problems addressed with computer hardware expanded from number crunch­
ing to assisting in other areas of human thinking and problem solving. As software en-

,--, 

gineers developed languages, the importance of a divide a.nd conquer approach became " 
apparent. Structured programming became the tool of software engineers. Libraries of 
program modules were developed. However, the hardware techniques of number crunching 
do not lend themselves to efficient execution of structured programs requiring sequences 
of subroutine calls to a variety of modules .. 

Progress in Hardware Design 

In conjunction with the developing languages, the hardware engineers made great 
strides to support· the computational applications addressed by the early languages. The 
hardware design has been oriented to improving the speed of execution of sequential op­
erations. 

In hardware development there has been a trade off between the speed and semantic 
content of the operations and the physical H:mitations of the speed of memory access. The 
increased complexity of instructions increased semantic content of each operation, but 
with many operations taking many machine cycles. Other techniques have been developed 
to increase the speed of memory access. 

In an alternate approach to increasing hardware speed, hardware designers have tried 
to reduce the number of operations with each instruction, each .of which would then require 
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only a single processing cycle. Many registers are used rather than slower machine memory 
to further increase speed. 

In the course of these hardware engineering efforts, little attention has been given to 
effident subroutine calls. 

Progress in Software Design 

Software designs have taken other directions. Compilers were developed to translate 
the newer languages to the machine language of the hardware. Modern language optimiz­
ing compilers have many different ways of handling subroutine calls~ Not infrequently, 
when speed is required, the subroutine is simply duplicated in line. Though longer, such 
machine code will run faster. · 

· Compilation is essentially a batch process. Often multiple passes through the source 
code are required. Batch processes are slow. A program needs to be completely recompiled 
to test it. It used to be that such batch programs took overnight to run. Compilers have 
been designed to run ever faster, but they still require minutes to process. Program 
development is inhibited by the slow turn-around of batch processing. 

With structured programming, it would be desirable to have an instantaneous turn­
around on tests of new procedures as they are written. A software development system 
should also have instantaneous turn-around on tests of connected structures in building 

(___ the final progra~. The conventional development systems requiring a compile, load and 
go for each test is not conducive to good software development. 

The Hardware-Software Mismatch 

The sequential methods of hardware design are mismatched with structured program­
ming. Sequential methods are also a mismatch with the thought processes of the software 
developer. The process is almost a random jumping of ideas in the process of thinking. 
Structured programming seems to be better matched with the thinking process. As such 
it provides a tool for simulation and study of thought processes. For example: What are 
the differences between left and right hemisphere processes? 

Computer software is divided into smaller and smaller procedures. The process is 
similar to the divide and conquer process of problem solving. As programs are written, 
regardless of the language used, they tend to follow a process of natural thought. A 
translator is required to take a programming language following thought processes and 
structured programming, and produce machine code which can be run inefficiently on 
hardware desig.ried to run sequentially. 

Unification of Hardware and Software 

A rethinking of the hardware design is necessary to better match the direction of 
software development. Rather than sequential efficiency, what is needed is subroutine 
call efficiency. It would be ideal if subroutine calls could come for free. This is one of 
the results of the ideas presented in Phil Koopman Jr's invited paper at this conference. 
Some of those ideas are summarized here. 
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Stack oriented Machines 

Samelson and Bauer described an ALGOL translator using multiple stacks. {See A 
HISTORY OF COMPUTING IN THE.TWENTIETH CENTURY referred to above.) Though a. US 
patent was issued on a full wiring diagram, .no hardware was built. At the time, they 
turned to implementing their ideas in software . .Prior to the recent work of Phil Koopman 
Jr, hardware designers of general purpose processors have not adopted the stack concepts 
in developing hardware better suited to structured programming. -

It is time to adopt the proposals of Samelson and Bauer. An efficient multiple hard­
ware stack machine will contribute to a functional unification of hardware and software. -
Such a hardware design provides for subroutine calls with no cost in processor time. It 
contrasts dramatically with the time pen_alty for subroutine calls. -

Writable Coatrol Store 

Machine operations should have the semantic -content optimized according to the 
speeific requirements of new applications in the software development process. This can 
be don.e by using software control of hardware components with writable control store 
machines. The process divides the hardware components into smaller pieces and allows 
the software engineer to assemble their fundions into optimal operations according to the 
application requirements. -

In the history of computers, writable control structures have been used. Bit slice 
technology with writable instruc_tions are available but .have not been widely exploited. 

A Unified Design 

A rethinking of hardware design, has led to a writable instruction set computer 
{WISC) interfaced with multiple dedicate hardware stacks as proposed by Samelson and 
Bauer. 

The first results of such a rethinking of hardware design were presented and discussed 
at the 1986 Rochester Forth Conference by Phil Koopman Jr and Glen B. Haydon. The 
design was available then as a wire-wrapped kit. The design is now available on a pair of 
printed circuit boards. 

Also at the 1986 Rochester Forth Conference, Phil Koopman Jr demolif!trated the 
operation of his initial design of a.n enhanced system. During the past year the design 
has undergone several itterations. At this, the 1987 Rochester Forth Conference, Phil 
Koopman Jr is presenting an invited paper in which he details his concepts of the problems 
and implementation of a hardware design to solve the problems. 

Conclusions 

,f 

l 

I ' 

' __ ; 

.r--1 
I I 

'· . 
' 

~ 

I I 

~ 1 ', 

-.----. 
I have endeavored to review some of the more philosophical ideas leading to a bet- ': :c 

ter match between the computer tools available and the human thought processes. The 
result has been a unification of structured programming of software engineering with the 
necessary hardware to run such software efficiently. - 'I 

To me, one of _the greatest potential powers of modern computers is the ability to 
simulate problems. Perhaps the unification of software and hardware will provide an ,~~1 
improved tool to better understand man's way of thinking and problem solving. 
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WRITABLE INSTRUCTION SET, STACK ORIENTED COMPUTERS: 

ABSTRACT 

The WISC Concept 

Philip Koopman Jr. 
WISC Technologies, Inc. 

Box 429 Route 2 
La Honda, CA 94020 

Conventional computers are optimized for executing 
programs made up of streams of serial instructions. 
Conversely, modern programing practices stress the 
importance of non-sequential control flow and small 
procedures. The result of this hardware/software mismatch 
in today's general purpose computers is a costly, sub-. 
optimal, self-perpetuating compromise. 

The solution to this problem is to change the paradigm 
for the computing environment. The two central concepts 
required in this new paradigm are efficient procedure calls 
and a user-modifiable instruction set. Hardware that is 
fundamentally based on the concept of modularity wiil lead 
to changes in computer languages ·that will better support 
efficient software development. Software that is able to 

. customize the hardware to meet critical applicatibn-specif ic 
processing requirements will be able to attempt more 
difficult tasks on less expensive hardware. 

Writable Instruction Set/Stack Oriented Computers (WISC 
computers) exploit the synergism between multiple hardware 
stacks and writable microcode memory to yield improved 
performance for general purpose computing over conventional 
processors. Specific strengths of a WISC computer are 
simple hardware, high throughput, zero-cost procedure calls 
and a machine lang~age to microcode interface. 

WISC Technologies' CPU/32 is a 32-bit commercial 
processor that implements the WISC philosophy. 

INTRODUCTION 

People buy computers to solve problems. People measure 
the success of computers by how much was saved by using a 
computer to solve their problems. 

What is the expense of using a computer to solve a 
problem? Computers cost users not only money for hardware 
and software, but also resources 'for training, labor, and 
waiting for solutions (both during development and during 
use). In the early days, the cost of solving problems with 
computers was predominated by hardware costs. Miraculously, 
hardware costs have plunged even while capabilities have 
grown by leaps and bounds. As a result, the problems that 
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computers are solving (and the programs that solve them) 
have grown much more complex. This has lead to the dramatic 
shift in recent years of spending more time and money on 
computer software than on hardware. 

Since expensive, complex software now dominates the 
cost of providing computer solutions to problems, much 
effort is going into changing the way software is written. 
These efforts often end up placing more demands upon ·· 
hardware ("hardware is cheap"). Unfortunately, it never 
seems that hardware speed increases can quite keep up with 
added software demands ("software expands to fill all 
available computer resources"). Consequently, much research 
is being conducted on ways of making processors run programs 
more efficiently for any given·hardware fabrication 
technology. 

· The premise of this paper is that there are two 
fundamental problems with current general-purpose 
software/hardware environments: a lack of efficient hardware 
support for procedure calls, and an inability to tailor 
hardware to applications based on software requirements. 
The WISC architecture described in this paper provides 
efficient hardware support for procedure calls by using a 
combination of two hardware stacks and a dedicated address 
field in the instruction format. The WISC architecture also 
supports cost-effective modification and expansion of 
instruction sets by providing writable microcode memory with 
a simple format. 

This paper first describes some of the historical roots 
for the problems with conventional hardware/software 
environments, then describes the concepts, implementation, 
and implications of the WISC approach to providing a more 
unified hardware/software environment. Although much of 
this discussion is applicable to all computing environments, 
the scope of this paper is limited to general-purpose 
processing on single-processdr computers. 

THE HARDWARE/SOFTWARE EVOLUTION CYCLE 

In order to see how the hardware environment can be 
poorly matched to the needs of the software environment, 
consider the historical pattern of steps in the 
hardware/software evolution cycle since the days of the 
first computers: 

1) Profile existing software. How does a designer 
determine what instructions should be included in a new 
computer? Since the first use of most hardware is to run 
existing programs, the most scientific way to design an 
instruction set is to measure instruction execution 
frequencies on computers already in use. Such measurements 
usually reveal a preponderance of register manipulation 
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·instructions and simple memory loads and stores • 
.ll_ Design ~ computer that efficiently executes existing 

software. When the new machine is built, it will use faster 
hardware and a larger memory to execute more complex (and 
memory-hungry) versions of existing programs faster. 
Compilers for existing languages will be modified to take 
advantage of the new hardware resources, and perhaps some 
new features will be tacked onto the local dialect of the 
language to make use of added hardware capabilities. 

ll_ Write compilers that make new programs look l.ike 
existing software~ Wh~n a new language or a new dialect is 
developed, the compiler writer is interested in both 
improving the software environment and in generating 
efficient code. To accomplish these often divergent goals, 
compiler writeis u~e optimization techniques to transform 
the source code into a program that will execute as 
efficiently as possible on available hardware. Since the 
hardware designed in steps 1 and 2 is optimized for certain 
types of op~rations, the output of these compilers will tend 
to use these same types of operations wherever possible. 

Some of the most common optimizations that compiler 
writers use include unrolling.loops into in,;,..line code 
(figure la) and expanding the lowest level procedures as 
macros within calling routines (figure lb). These two 
optimizations are important in our discussion, because they 
both tend to require increased program memory usage in 
e~change for increased execution speed. This is based on 
the almost universal assumption that hardware is most 
efficient at executing in-line code. 

il, Write ~ applications using the new compilers 
(which produces more machine code optimized for existing 
hardware). When it comes time for new application programs 
to be written, programmers can be counted on to exploit all 
the strengths (and ~uirks) of the newly available compilers 
and hardware. · 

SCtU~'.CE COI1E · 

Figure la. Unrolling Loops. 
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Figure lb •. Expanding procedures in-line.· 

Despite the insulating effects of high level languages 
.between programmers and machines, programmers are 
uncomfortably aware· of any software features th.at reduce 
performance. Whe-n programs perform poorly because they are 
not suitable for· automatic compiler optimization, the. user. 
is compelled to re..:..write programs·to avoid inefficient 
structures or· buy a more' powerful ··(and more expensive) 
machine. This tends to further skew· usage statistics, since 

·new machines are perceived to be more'expensive than' clever 
but shabby software techniques~ . . · · .· · . · · · . · 

. . ? ) Q_£ to step (1) ahov7, and. ge~ yet·. another computer 
that is. even better at running existing programs. • 

This development cycle clea;i::ly favors the propagation 
of initial biases in computer.design to successive ' 
generations of machines •. Could it be that years of pursuing 
this cycle has resulted in instruction sets that·still favor · 
the operations present in the·early·machihes? Is this · 
fil teri.ng process the re.al mechanism. that lead to the 

· concept of RISC architectures? 

HARDWARE.EVOLUTION 

Having· .examined the process by which we ended up with. 
today'.s computing environment problems, let us take a look 
at some of the evolutionary steps computerhardware 
architecture has taken along the way. 

The history .of computers has been a story of providing 
faster hardware with increase<! capacity in smaller packages 
with lower prices. The primary emphasis has been on 
reducing the cost of computing by reducing the cost to 
purchase and operate hardware. Measurements that indicate 
the cost effectiveness of hardware include the cost per 
m~gabyte of program memory and the cost per millions of 
instruc~ions executed per second. From the point of view of 
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the purchaser, hardware becomes more Of a bargain every year 
(or month, or even day). · 

There have been two central problems.to be overcome in 
increasing hardware performance: arithmetic computation 
speed and memory access speed. 

Figure ia. Pipelining. 
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Figure 2b. Parallelism. 

Arithmetic computation speed was a major problem in 
early computers. Originally, the arithmetic computation 
speed limitation was overcome by using pipelining (figure 
2a) and parallelism within the system (figure 2b). For 
example, separate portions of a processor could concentrate 
on fetching instructions, fetching operands, computing 
values, and storing results (pipelining). ·Additionally, 
individual hardware adders, multipliers, and dividers could 
work simultaneously on data within the computation section 
of the processor (parallelism). Recently, the increasing 
speed and complexity of VLSI circuitry (and especially the 
availability of inexpensive, fast floating point arithmetic 
chips) have greatly reduced arithmetic computation speed.as 
a problem in general purpose programing. 

As the time to perform arithmetic operations has been 
reduced, main memory access speed has emerged as the leading 
speed bottleneck. Historically, there have always been two 
kinds of memory available to computer designers: small high­
speed memory, and slow bulk memory. Today, the trend 
continues. Affordable high capacity memory chips leap by 
factors of four in size every few years with modest 
increases in speed. Fast static memory increases moderately 
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in size, but increases dramatically in speed. 
As CPU speeds have outstripped bulk memory speeds, 

memory bandwidth limitations have become more severe. There 
are two ways to solve this problem: speed up average memory 
access time, and increase the amount of work dbne per memory 
access. Cache memory decreases average memory access time 
at the cost of added complexity by usihg the small, high 
speed memory devices to retain copies o! instructions and/or 
data that are likely to be needed by the CPU. Caching 
schemes usually rely on the concept of locality: programs 
tend to execute instructions in sequence, and tend to access 

- data in clumps. 
Other techniques to speed memory access include 

interle~ving banks of memory and pr~-fetching opcodes beyond 
the current operation being executed. Both methods tend to 
increase speed for sequentially executing programs at the 
cost of added hardware complexity. Separate data and 
program memories can also increase available memory 
bandwidth, but are beyond the scope of this paper. 

The second method of reducing the effects of a memory 
access bottleneck is the technique of increasing the average 
amount of work done by each opcode fetched-from memory. 
This has lead to the development of what is now called the 
Complex Instruction Set Computer (CISC) machine. CISC 
machines are based on the concept of reducing the semantic 
~ between high level language source code and its 
corre~ponding machine code. The theory is that if a high 
level language specifies a comple~ operation such as a 
character string move, it should be able to communicate this 
operation with a single machine instruction and consume only 
one memory cycle for opcode fetching. A simple, non-CISC 
machine would have to synthesize a complex operation from a 
sequence of simple instructions (consuming multiple me~ory 
cycles for opcodes), resulting in a semantic gap between the 
intent of the high level language and the way the intent 
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Figure 3. Semantic Gap. 
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must be communicated to the machine (figure 3}. Some other 
examples of complex instructions supported in.modern CISC 
architectures include frame based procedure parameter 

· passing, array address calculation, and linked list pointer 
maintenance. 

As instruction sets have become more complex, hard­
wired computers that decode and execute instructions by 
using only logic gates have become too complex to be cost 
effective for most applications. Consequently, the use of 
microcoded machines has come to dominate the computer 
indu~try. . 

Microcoded computers execute several fast low-level 
instructions (called micro-instructions) to interpret and 
execute each machine instructibn. Since each machine 
instruction may invoke a sequence of one or more micro­
instructions, microcoded designs allow straightforward 
implementation of the complex instructions of a CISC 
machine. As the instruction set grows in size and 
complexity, microcoded designs simply increase the ~ize of 
the ROM or RAM for storing micro"."'programs. Since microcoded 
designs store the mechanism for decoding and executing 
instructions in memory instead of as a network of logic 
gates, many design errors may be corrected simply by 
changing the microcode of the·machine. This provides a 
significant savings in development time and cost over making 
changes to logic gates in a hard ... wired computer design. 

Since adding instructions is relatively inexpensive in 
microcoded CISC machines 1 these machines usually attempt to 
reduce the size of the semantic gap by providing an 
abundance of complicated instructions designed to directly 
implement high level language functions. Unfortunately, as 
the semantic gap is reduced in this manner, CISC machines 
run into a different problem: semantic mismatch. 

F'ARAMETEF.:S E:\' ~:EFEF.:EMCE I 

I 

LAt'iGUAGE REG!IJ I REMEMTS MACHINE msTRUCTiot·i SET 

Figure 4. Semantic mismatch. 
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Semantic mismatch take places when a complex machine 
instruction doesn't exactly match the requirements of the 
high level language being used (figure 4) • Semantic 
mismatch usually occurs.because reaJ..-life CISC machines have 
a single instruction set that must meet the requirements of 
many diverse. programing languages and application programs.·· 
This means. that the instruction set is, of necessity, a 
compromise. 

Examples of how languages differ in their requirements 
include: zero-based versus one-based array addressing, 
procedure stack frame parameter organization, Jinked list 
pointer organization, and string count and delimiter 
organiz~tion. In addition, new complicated instructions are 
often not smart enough to efficiently handle Special 
degenerate (but frequent) c~ses such as parameterless 
procedure calls. As a tesult, compilers often ignore many 
of the very complex instructions added (at considerable 
effort) to new machines. Most compiled programs tend to use 
simple to moderately complex instructions. 

The re.sul t of using the. above approaches to increasing· 
hardware power has been that most machines are well, adapted 
to executing sequential programs .of medium level complexity 
instr~ctions. 

SOFTWARE EVOLUTION. 

In early computers, hardware cost so much and was so 
scarce that any amount of programing effort was justifiable 
just to get an answer. ·As hardware has become less 

·expensive, programs have become more complex, and software 
has grown tremendously in complexity and cost. Today, 
software is by far the most expensive part of any complex 
computer-based solution to a problem. 

Most programing is now done in high level languages. 
There are two broad classes of high level languages in use: 
special purpose languages and general purpose languages. 

Special purpose languages such as LISP, Prolog, and 
Smalltalk are based on computation models that stress 
unconventional approaches to problem solving •. They 
typically .do not address the issue of computational 
efficiency on general purpose computers. These languages 
tend to trade computational efficiency for flexibility and· 
freedom of expression for ~pecific tasks. Since these 
languages are often developed in research environments with 
ready access to powerful computers, computational efficiency 
is not a primary consideration~ 

While special purpose languages are important for their 
application areas, the very same features that make them 
powerful as a programing tool are the very things that make 
them perform poorly on limited resource conventional 
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D computers. Some of the special features are dynamic memory 
management (especially garbage collection), run-time operand 
binding, and inter-procedure communication protocols. 
Today's· trend is to either provide language-specific 
hardware, or more powerful but more expensive than average 
hardware to run programs written in these languages. 

Most application programs are written in general 
purpose languages such as FORTRAN, BASIC, COBOL, Pascal, C, 
and Ada. The early high level programing languages such as 
FORTRAN were direct extensions of the philosophy of the 
machines they were run on: sequential Von Neumann machines 
with registers. Consequently, these languages and their 
general. usage have developed to emphasize long sequences of 
assignment statements with only occasional conditional 
branches and procedure calls. 

In recent years, however, the complexion of software 
has beguri to change. The currently accepted best practice 
in software design centers around structured programing 
using modular designs. On a large scale, the use of modules 
is essential for partitioning tasks among programmers. On a 
smaller scale, procedur~s Control complexity by limiting the 
amount of information that a programmer must deal with at 
any given time. 

Procedures (often called subroutines) started out in 
early computers as a memory-saving device used at the cost 
of reduced execution speed. In modern programing languages, 
the importance of using procedures for software productivity 
is taken for granted; memory savings are an almost · 
incidental advantage. 

Modern languages such as Modula-2, Pascal, and Ada are 
designed specifically to promote modular design. The one 
hardware innovation that has resulted from the increasing 
popularity of these structured languages has been a register 
used as a stack pointer into main memory. With the 
exception of this stack pointer and a few complex 
instructions (which are not always usable by compilers), 
hardware has remained basically unchanged. Because of this~ 
the machine code output of optimizing compilers for modern 
languages still tends to look a lot like output from 
earlier, non-structured languages. 

Herein lies the problem. Conventional computers are 
still optimized for executing pro~rams made up of streams of 
serial instructions. Execution traces for most programs 
show that procedure calls make up a rather small proportion 
of all instructions. Conversely, modern programing 
practices stress the importance of non-sequential control 
flow and small procedures. The clash between these two 
realities leads to a sub-optimal, and therefore costly, 
hardware/software environment on today's general purpose 
computers. · 

This does not mean that programs have failed to become 
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more organized and maintainable using ~tructu~ed languages~ 
but rather that efficiency considerations and the use of 

_hardware that encourages writing_sequential programs has 
prevented modular languages from achieving all that they 
mig~t~ Although the current philosophy is to break programs_­
up into very small procedures, most programs still contain. 
fewer, larger, and more complicated procedures than they 
should. - · - • · - - - · 

_ How many functions should-a typical procedure have? In 
. Psychology of Communication: Seven Essays t George Miller 
gives strong evidence that the- number seven (plus or minus -­
two) applies to many aspects of thinking. The way the human 
mind copes with complicated information is by chunking 
groups of similar objects .into fewer, more abstract objects .. -
In a computer program, -this means that each procedure should 
contain approximately seven fundamental operations (such as 
assignment statements or procedure calls) inorder to be 
easily grasped. If a procedure conta.ins more thah seven 
distinct operations~ it should be bro.ken apart by chunking 
related portions _into.subordinate procedures to.reduce the 
complexity of each po:c:tion of the program. In another part 
of the book, George Miller shows that the hUrilan mind can 
only grasp two or three _levels of nesting of ideas within a 
sin'gle conte_xt. This -strongly suggests tha_t deeply nested­
loops and conditional structures ~hould be arranged as 
nestedprocedure calls, not as convoluted indented 
structures within a .procedure. 

The only question now is, why don't most, programmers 
follow these guidelines? 

The most obvious reason that programmers•avoid small, 
deeply nested pJ;:"ocedures is the cost in speed of execution. 
Subroutine parameter .setup and the actual pro9edure calling 
instructions can swamp the execution time of .a program if 
used too frequently. All but the- most sophisticated 
optimizing compiler can not help if procedures are deeply 
nested, and even those optimi~ations are limited. _ As a 
result, efficient programs tend to have a relatively shallow 
depth of procedure nesting. _ _ . . 

Another reason.that-procedures are not used more is 
that they are difficult to program. Often times the effort 
to write thepro-forma code required to define a procedure 
makes the definition of a Bmall procedure too burdensome. 
When this awkwardness is.added to the considerable 
documentatio~arid pr~ject management obstacles associated 
with creating a new procedure in_a big project, it is no 
wonder that average procedure sizes of one or two pages are 
considered appropriate. 

· There is deeper cause why procedures are difficult to. 
create in modern programing languages, and why they are used 
less frequently than the reader of a book on structured 
programing might expect: conventional programing languages 

38 

, 
.-~· 

-~: 

, ! 

n 
tJ 
Jl 
L_J 

n 
I J, 

-'-----

n , I 
I i 
'~--! 

i) 
LJ 

f l - -,J 
-~ 

"1 
lJ 
n l_J 

n 
LJ 
"'I 
) i 

i I l_• 

n , I 
LJ 

n 
. L ___ ) 

n 
lJ 



0 

' I ."-._j 

\-\I 
LJ 

! I 

I I 
~ 

and the people who use them are steeped in the traditions of 
batch processing. Batch processing gives little reward in 
testability or convenience for working with small 
procedures. Truly interactive processing (which does .. not 
mean doing batch-oriented edit-compile-link-execute-crash­
debug cycles from a terminal) is only available in a few 
environments, and is not taught to any large extent in 
universities. 

As a result of all these factors, today's programing 
languages provide some moderately useful capabilities for 
efficient modular programing. Today's hardware and 
programing environments unnecessarily restrict the usage of 
modularity, and therefore unnecessarily increase the cost of 
providing computer-based solutions to problems. 

UNIFICATION OF SOFTWARE AND HARDWARE 

Developments in the conventional programing environment 
may be reaching a dead end. Recent uniprocessor hardware 
innovations tend to focus on either special purpose 
processing for symbol manipulation or distilling 
conventional machine instruction sets with yet ~nether pass 
through the analysis-implementation-programing cycle 
discussed earlier. , 

The premise of this paper is that there is still 
considerably more mileage to be gained from uniprocessors by 
breaking out of the past cycles and looking at the 
hardware/software problem as a whole. The answer lies not 
with a new hardware architecture that mirrors current 
software, nor in changing software to suit current hardware. 
The answer lies in a redefinition of how we think about 
hardware and software. In this manner, we can aspire to 
achieve a unified hardware/ software computing. environment. 

The first step in defining a unified general purpose 
computing environment is to take to heart the philosophy of 
breaking a problem up into smaller sub-problems. Instead of 
building a computer that supports procedure calls as special 
operations, what if we design a computer to expect 
subroutine calls as its primary mode of operation? 

Implementing this idea results in a machine that is 
unlike conventional processors in a very fundamental way: it 
is designed for non-sequential program execution. It 
becomes a "tree processing machine". Programs are no longer 
lists of sequential instructions with occasional branches 
and procedure. calls (figure 5). Programs are now organized 
as a tree structure, with each instruction containing 
operations and/or pointers to lower level nodes in the tree 
(figure 6). In such a·machine, the very notion of a program 
"counter" becomes obsolete. 
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If this machine could actually process pr9cedure call~ 
~imultaneously with other operations, modularity in programs 
would not be penalized. Such a machine would encourage 
better software design,· and could fundamentally alter the· 
way.programmers think about· programs •. 

Now that we have the concept of hardware that is 
efficient at implementing software procedures, how can we 
change the software to better match the hardware? The 
answer to this question lies in the concept of. a modifiable 
microcoded instruction set. · 

· · As discussed previously, reducing ·the semantic gap of a 
processor can increase processing speed by reducing me!Jlory ·· 
bandwidth requirements. The only pitfall is that.if a pre.;..· 
defined instruction set does not closely match·the 
·requirements of a language or application-program~ semantic 
mismatch negates the· usefulness of many complicated 
instructions. Since general purpose machines are expected 
to perf~rm well on a wide variety of problems in many 
different languages, the answer is to chang~. the ·instruction 
set as required to suit.each application program. This is 
most easily done with a writable microcode memory (often 
called writable control store). . _ 

With writable microcode memory, the user can modify.the 
instruction set of the machine to fit.each application 
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Figure 6. A typical program tree 
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.program or programing language support environment. 
Applidations can be initially written using a-simple, 
generic instruction set. Then new instructidns can be. added 
to eliminate performance bottlenecks in heavily used code 
sequences. 

The combination of tree;_processing hardware with 
software that can modify the machine's instruction set for 
best efficiency can produce unexpected benefits in both 
hardware and software. performance •. The next section 
discusses an architectural approach to implementing such a 
machine, and the benefits that may be derived. 

THE WISC APPROACH 

Th.e Writable Instruction Set Computer (WISC) approach 
to computer design provides a computer that efficiently 
supports· the integrated hardware/ software deve.lopment 
environment just dis~ussed~ A WISC machine has high-speed 
procedure processing capability along with the capabi11ty to 
redefine the instruction set. WISC machines implement these 
goals by using multiple hardware stacks for operand and 
procedure return address storage, and writable microcode 
memory for storing the· instruction set definitions. WISC 
machines als~ have a fixed instruction format for simplicity 
and speed of operation, and_strive to meet the criterion of 
usefully employing all available memory cycles. 

Once the decision is made to use a hardware stack in a 
design, an interesting and somewhat unexpected cascade of 
benefits is realized. These benefits lead to the 
architectural features of WISC machi.nes. 

The WISC machine discussed in this paper uses two 
. hardware stacks: .one for data parameters arid one for return 
parameters. The first benefit of using these hardware 
stacks is that the overhead cost normally associated with 

· procedure calls is greatly reduced •. During a procedure 
call, the hardware return stack eliminates the need to save 
.a return address to main memory. Additionally, the hardware 
data stack eliminates the need to save registers and data 
values to memory and/or fetch procedure input parameters 
from memory within a procedure. 

.Now, however, the unexpected benefits begin to accrue. 
A pure stack machine has no need for parameters with opcodes 
(except for memory addresses.) Since all operations are 
relative to the current position of the stack pointer, each 
opcode can be a simple parameterless field of five to ten 
bits. This greatly simplifies instruction decoding logic 
since implicit operands eliminate the need for explicit 
addressing modes, register specifications, etc. In a 
microcoded machine, this means that the opcode can directly 
access a microcode word with no decoding logic. All this 
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makes the hardware simpler, faster, and less expensive to 
develop and manufacture. 

Since intermediate operands are kept on the hardware 
data stack, each microcoded instruction need take only one 
memory reference cycle (with loads and stores taking two 
memory cycles). Since microcoded primitives can be kept 
simple enough to execute within a single memory access 
cycle, there is no need for a complex pipeline to perform 
decoding, operand-fetching, execution, and result storage. 
A simple overlapped instruction fetch/decode and instruction 
execution strategy is quite ample to use all available 
memory bandwidth. · 

As.an added bonµs of using a stack-oriented instruction 
set, procedu~e calls may be made at zero· cost in execution 
time for most cases. Since a stack-oriented opcode need 
only take roughly -0ne-quarter of a 32-bit instruction word, 
the remaining instruction word.bits are available to use as 
a procedure branching address (figure 71 • If an overlapped 
fetch/decode and execution strategy is used, procedure 
calls, procedure returns, and unconditional branches may be 
processed in parallel with operation decoding • 

....... r· T" F."• r ,.-.... -... H I 1 I . t- ·- . . -· ·· ... I- .. _) .. ::i 

Figure 7. Generic WISC instruction format. 

Now add the power of a changeable microcoded 
instruction set to the hardware stack machine just 
described. Since a fix.ed. instruction format stack machine 
is free from 6omplex opcode format interpretation and other 
complications, the hardware design is simple. And, simple 
hardware means simple microcode. 

One problem with the few writabl~ instruction sets 
available on current machines .is that the microcode is just 
too hard to write. Microcode formats of 48 to 128 bits are 
very common. That's a lot of complexity for a programmer to 
handle! In fact, such complex microcode formats make 
expectations of customizing instruction sets for 
applications unrealistic. As will be shown later, a single-

. format 32-b.it micro-instruction format is more than 
sufficient for a WISC machine. 

Since a WISC architecture can be designed with a simple 
microcode format, moderately sophisticated users (such as 
compiler writers) can customize the architecture to meet 
their needs. Use of writable microcode memory leads to an 
increase in semantic content (and therefore a reduction of 
the semantic gap) for each instruction, and therefore more 
work done per memory access. It also eliminates the problem 
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of semantic mismatch, since the instruction set can be 
modified to suit the quirks of any application or language-
support environment. · 

There is yet another benefit to the WISC approach. The 
combination of hardware stacks with writable microcode 
memory results in the blurring of the boundaries between 
high level programs, machine code, and microcode. 

Consider the·conventional processor. High level 
structured programs are converted from groups of procedures 
with stack-oriented local variables to machine code.· A 
considerable change in the look and feel of the program 
takes place as high level language operations are 
transformed into groups of primitive operations. While a 
complex machine instruction set may support such stack 
operations as frame pushes and pops, and even fetch a 
variable given a frame pointer and an off setj the paradigm 
switches from va.rial:>les and frames in high. level languages 
to registers q,nd memory pointers in machine code. 

The means of passing information between many high 
level language procedures is the stack. The way of passing 
information between conventional machine language 
instructions is through registers or discrete· memory 
locations. The fundamentq,l mechanisms are completely 
different. If an instruction could be added to microcode 
memory to replace·a procedure, it would result in re..-writing 
the calling code to format the operands in registers instead 
of in a stack frame. 

Now consider ~ WISC machine. WISC machines accomplish 
efficient procedure calling in part by the use of a data 
stack to pass inf·ormation from calling programs to 
procedures. WISC instruction formats are greatly simplified 
by using this same data stack for holding operands.. This 
means that a procedure can be transparently replaced with a 
microcoded primitive by simply replacing the procedure call 
with an opcode. There is no impact to any other aspect of 
the source code. This not only.simplifies the substitution 
of microcoded primitives for high level source code 

. fragments,. but can actually lead to a view of microcode 
memory as a cache memory for frequently used operations. 

In practice, this view of microcode memory as a cache 
mernory allows the developer to selectively optimize th~ 
hardware for each application. This could be done by pencil 
and paper analysis ~f the program,. or by using execution 
profiling software. to create a histogram of execution 
frequencies for each section of code. The most heavily 
executed procedures can then be partly or wholly transferred 
from high level code to microcode, resulting in a 
significant speed increase. In the case of providing run­
time support for the output of a compiler, the microcoded 
instruction set can be tailored to exactly implement the 
types of operations supported by the language. In either of 
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these cases, the microcode becomes a sort of cache memory 
for storing the operations that need to be executed most 
frequently. . 

This view of microcode memory as a sort of instruction 
cache is th~ final link of a chain that transforms a WISC 
machine to something beyond a conventional processor; it 
makes the WISC machine into a tree processing machine that 
merges all levels of processing into a unified 
hardware/software environment. Instead of representing 
programs as sequences of in-line instructions that are 
occasionally interrupted by procedure calls, the WISC 
processor views programs as an orderly nested series of 
procedure calls, with the final level of procedure call 
being a·call to microcode memory. 

Now that WISC machines are viewed as tree processors, 
several changes in programming take place. If a suitable 
microcoded instruction set is used, compiled object code can 
closely correspond to the original source code, resulting in 
simpler and more efficient compilers and debugging tools. 
There is no mismatch between the high level language source 
code and the actual machine code executed at run time. 

Additionally, procedures are not viewed by the 
programmer as a collection of in-line code fragments, but 
rather as tree structure. The branches of this tree 
structure represent the control flow structure of the 
program (procedure cal ls, returns, and jumps) . The lea.ves 
of the tree are represent procedure calls into microcode (figure 6 above) • · 

From the above features we can see that a WISC machine 
uses simple, and therefore fast hardware to execute high 
semantic content instructions that closely reflect the 
structure of the software.· Programmers are not penalized 
for organizing programs into small, understandable 
procedures. This results in compact tree-oriented program 
structures which are composed of hierarchically arranged 
solutions to sub-problems. Thus programs can be 
simultaneously optimized for .small memory space, fast 
execution speedi and low development cost. This allows the 
hardware/software environment to deliver cost-effective 
solutions to the user's problems. 

DESIGN OF A 32~BtT WISC MACHINE 

In order to reify the conceptual design just presented, 
it is necessary to define the high level design of a WISC 
machine. For the purposes of this paper, the design of a 
32-bit WISC machine called the CPU/32 will be discussed in detail. 

It turns out that after a WISC machine is specified as 
having hardware stacks and a ~ritable instruction set, the 
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single most important part of the design is the instruction 
format. The key to high-speed processing with zero-cost 
procedures is to use a fixed length instruction format that 
~ontains both an opc6de and a procedure address. 

The CPU/32 u~es a 9-bit opcode (figure 8). These 9 
bits.can form the page address for a page of microcode 
memory, eliminating.virtually all instruction decoding 
logic. This allows for up to 512.opcodes in the machine. 

BIT: I 31 23 I 22 
! 

I .·-·1 F) l.-, r-·1 T'·. c­
. l_. . _.. '·-· 11 L 

I 

... -.. IiD RF e: .. -.. H .1 1. -• ._ ~ .._J .::, 

Figure 8. CPU/32 instruction format. 

CALL··· 
D~IT 

CONTROL 

The remaining 23 bits of the 32 bit instruction format 
are dedicated to address and control information. If all 
instructions are aligned on byte boundaries that are evenly 
divisible by 4, then the high 21 bits of the remaining 23 
bits in the instruction can address an instruction word ih 
memory (with the low order 2 address bits masked to 0). ·The 
lowest order 2 bits of each instruction can then be used as 
a branching mode selection: procedure call, procedure 
return, or unconditi6nal jump. These 23 bits can be used to 
execute an unconditional jump~ proceduie call, or (ignoring 
the address field) procedure return. in parallel with opcode 
execution. The CPU/32 can process procedure calls for free! 

As additional embellishments, this instruction format 
allows ta.tl-end recursion elimination by substituting an 
unconditional branch for a procedure call as the last 

·instruction of a procedure, and facilitates conditional 
branching and looping by having the branch destination 
address readily 1 available. 

The CPU/32's block diagram is shown in figure 9~ The 
CPU/32's resources include a data stack, an ALU with a data 
register (Data Hi) and a transparent latch, an auxiliary 
(Data Lo) register that can connect with the Data Hi 
register for 64-bit shifting, a return stack with a bi-

. dire.ctional data path to .the memory addresser for procedure 
call address manipulation, a memory addresser, program 
memory, and microcoded controller. All of the resources are 
connected to a central data bus, with acces~ to I/O services. 
through an appropriate host interface. All data paths and 
registers in the CPU/32 are 32-bits wide. 

There are several interesting aspects to the CPU/32. 
One feature that is not always .. found on hardware-based stack 
designs is that the Data Hi register above the ALU can hold 
the top data stack element. This allows the use of a 
single-ported data stack RAM. Another is that the stack 
pointers can be loaded with values from the data bus. This 
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Figure 9e The WISC CPU/32. 
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makes accessing deeply buried stack elements relatively easy 
by eliminating the need for repetitive stack pushing and 
popping. · 

The use of a transparent latch on the ALU inputs allows 
connecting any data.bus resource. to one side of the ALU 
within one clock cycle, but also allows the latch to retain 
an intermediate value without disturbing the contents of the 
Data Hi register. This capability results in a savings of a 
clock cycle any time the top of stack element in Data Hi 
needs to .be swapped with a cell in the data stack RAM. 

The CPU/32 has no program·counter. Each instruction 
contains the address of the next instruction. The only · 
exception to this is when procedure returns are being 
processed, in which case the return stack value is passed 

. directly through the memory address logic to access the next 
sequential instruction in the calling program. 

While there is no program counter, there is an 
incrementer within the program memory logic that is used to 
add a one word displacement to procedure call addresses 
before they are saved on the stack. This incrementing is 
required in order to generate correct return addresses. The 
incrementer is also useful in block memory moves. 

The micro-instruction register forms a one,,...stage micro-
.instruction pipeline that eli~inates wasted time which would 
otherwise result from waiting for micro-program memory· 
access. The only drawbacks to this design are that a two 
micro-cycle minimum is imposed on all op-codes, and delayed 
micro-instruction branches must be used for condition code 
testing. However, the small, high speed memory used to 

.implement the micro-program memory and data stack memory 
allows for two micro-code cycles within each memory cycle 
time, essentially eliminating the impact of these drawbacks 
on system performance. 

The micro-instruction format is shown in figure 10. 
Each micro-instruction uses 30 of the available 32 bits. 

The entire instruction decoding path, from the return 
address stack all the way through to the micro-instruction 
register 1 is totally independent of the data bus. This 
allows ALU and data stack operations to proceed while 
simultaneously fetching and decoding instructions. This 
structure allows nearly 100% of the memory bandwidth to be 
used productively. 

In the CPU/32, each instru~tion is fetched and decoded 
during a two micro-cycle period, waits in the micro­
instruction pipeline for one clock cycle, then executes in 
two or more additional microcycles. The average instruction 
execution rate is just under one instruction per two micro­
cycles. 
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BITS 
0-3 
4-7 
8-9 
10-11 
12-13 
14-15 
16-19 
20 
21 
22-23 
24-26 
21 ... 28 
29 
30 
31 

1'' ;- ·:i·: 

USAGE 
Bus source select 
Bus destination select 
Data stack pointer control 
Return stack poiriter control 
ALU multiplexer shift control 
unused 
ALU function select 
ALU mode select 
ALU carry-in &. shift-in 
Data Lo register shift control 
Microcode conditional branch select 
Microcode next address generation 
Increment microcode page register 
Fetch & decode next macro-instruction 
Memory address increment control 

Figure 10. CPU/32 micro-instruction format. 

An interesting software implication of the opcode 
format and system design is that opcodes interspersed with 
procedure calls must be compacted into single instructions 
in order to get zero-cost procedure calls. the procedure 
6all in each instruction takes effect after the opcode has 
been completed. The only times that procedure calls are not 
zero-cost are in deeply nested procedures where there are no 
opcodes before the first procedure call in each successive 
level. Subroutine returns are zero-cost if the last 
instruction in a procedure is an opcode reference. 

A possible compiler optimization that can easily 
increase efficiency is the ~ubstitution of an unconditional 
branch for a procedure call if the last primitive within a 
procedure is itself a procedure call (this is often called 
tail-end recursion elimination). Another possible 
optimization is a "bubbling-up" of the first opcode of a 
procedure to a calling program when the calling program 
would otherwise be forced to execute a.null op-code in a 
series of consecutive procedure calls. 

The system software for the CPU/32 obviously plays an 
important part in the establishment of a productive 
computing environment. While languages such as C are very 
well suited to the WISC architecture, eventually a new 
language will evolve to exploit the new capabilities of 
tree-oriented processors. Such a language would likely 
have: small, easily defined procedures; interactive 
development, compilation, and testing at the procedure 
level; easy access to a microcode assembler; extensibility 
of both data and compiler control structures; a high level 
infix syntax; a library of commonly needed functions; and 
support for module archiving and reuse. 
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THE WISC TECHNOLOGIES CPU/32 

Now that the design fo~ the CPU/32 has~be presented, 
the question is, can such a machine·actually be built? The 
answer is,·of course, yes. WISC Technologies' CPU/32 is a 
commercial system tha.t implements all of the philosopby and · 
architectural features discussed i~ this p~per. 

Additional CPU/32 implementation f.eatures not 
previously discussed are a DMA memory transfer capability 
with·the host computer, hardware and software interrupt 
support,. and support for byte-oriented memory ac.cess. 

CONCLUSION 

WISC Technologies' CP0/32 is an implementation of anew 
way of thinking about computing environments: .tree-organized 
program structures that emphasize modular programing for 
general-purpose computing. Preliminary use of WISC.machines 
indicates that performance is equal to or better than other 
high-performance general purpose uniprocessors overbroader 
·classes of problems than mightbe expected. In particula+, 
expert syste~ programs with their tree~traversal emphasis 
are particularly well suited to WISC-type architectures. 

If the past patterns of hardware and software evolution 
.. can.be broken, we might yet see·quantum leaps in programmer 

productivity. I think that WISC computers are more than 
just another novel architecture. I think that they are a 

new way of looking at the bottom line of computing: getting 
problems solved. 
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Stack·· 
Oriented WISC Machine 

Stack-oriented, writable. instruction set 
computers, WISC, are for forward­

looking project planners searching for 
state of the art techniques to solve a wide 
variety of problems. Solutions are easy to 
formulate, implement, and test with the 
CPU/ 16 combination of hardware and 
software. 

The writable instruction set gives a new 
tool to the project team. It provides the 
ability to custom design - with software 
- an optimal set of hardware functions. 
When efficiently programmed, stack­
oriented WISC machines can execute pro­
grams faster than conventional machines 
based on complex instruction set com­
puters (CISC) or reduced instruction set 
computers (RISC). This versatile new tech­
nique encourages development of fully 
integrated hardware and software systems 
to solve each new problem. 

CPU/16 is a high-speed, stack-oriented 
WISC machine that includes a processor 
and memory on two printed circuit boards 

WISC Technologies • Box 429, Star Route 2 · • 
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populated with cpmmon TTL compon­
ents. The boards tun as a master processor 
in an IBM PC, XT, or AT host. Micro­
code for .the WISC· processor is written 
easily with the microassembler, and is 
loaded from the host along with the ap­
plication program before the master takes 
over. Control can be returned to the host 
at any time, freeing it to execute other 
programs in a normal manner. 

Assembled and tested CPU/16 boards are 
available, complete with all documenta­
tion and software to create customized, 
high-speed . processors. With them a pro­
grammer or engineer ·can implement and 
test solutions via modifiable microcode. 
Additional hardware and software in de­
velopment will expand a growing family of 
stack-oriented WISC products. 

The CPU/16 processor occupies two slots 
in the IBM PC, XT, AT, and compatibles. 
Package includes microassembler, cross­
compiler, diagnostic programs (all with 
source code) and complete schematics. 

La Honda, California 94020 • USA 


