TABLE OF CONTENTS

' 1.0 Introduction ettt et e 3
- 1.1 The RTX 2000, 2001A, And 2010 Microcontrollers 3
1.2 The RTX 2000 Family Programmer’s Reference Manual 5
2.0 RTX Architecturevvueeeinneeennnnnnnnn, e 9
2.1 On-Chip Stacksttt ittttee e 11
2.1.1 TheParameter Stackcooveevmneennnnn.. 11
2.1.2 TheReturn Stackvvvtiinneronnennnnnnn. 11
2.2 RTX 2000 Series Bus Architecture ettt 12
0221 DataBusesciitiiittnrnnen.. el 12
222 AddressBuSesiiiiiiie e, 13

2.3 Registers ittt ittt et e e 14 .
2.3.1 Stack Related Registers0ovuueeennnnn... 14
2.3.2 Status/Control Registersoovemeennnnn... 14
2.3.3 Internal Processor Registerso0vunn... 14
24 MemOTY « v vttt ittt e ettt 15
3.0 Operationsiiiiii e, 19
3.1 Instruction EXecutionouven et v nnennnnnnnnnn.. 19
3.2 Stack Operationoourenererennnnnnnn 21
3.3 Subroutine Calls and Returnso v v veeennnnnnns ... 22
3.4 Branching And Loopingvvvivinnnnnnneeennnnnn.. 23
3.5 Streamed Instructions N 24
3.6 Math/Logic Operationsuouuueeueennnnn.. 25
-3.6.1 Registers And /O Devices0uoeueunenn... 26
—= 36,2 MEmMOrY oo vi ettt ettt e e 26
B ’ 363 Literalsiiiiinninnnnnerennnnnnnnnn, 26
- 3.7 Stack Operationsuoueineennennnennnnnnn.. 27
370 DUP .. e e e 27
372 SWAP ... e 28
373 DROP ...ttt et e e 28
3744 OVER ...ttt ettt e, 29
37 SR i e e 29
376 R> ...ttt e ereeacoans e e 30
377 R@ ..o oo e it . 30

3.8 Interrupts .. ovvvnt it e e e e .. 31

3.8.1 Maskable Interruptsvvvi v i 31
3.8.2 Non-Maskable Interrupts NMI)0000u.... 31
3821 OntheRTX2000000vvuuuunn... 31
3822 OntheRTX2001Accovvuuuunn... 32
3823 OntheRTX20100ovvvuuunnnn... 32

SN

4.0 RTXRegiSterso vvvveeenneennenennnn.. e 35

4.1

4.2

Stack Related Registerscoviiiiinennnnnnnnn. 39
4.1.1 TOP Register (Parameter Stack) 39
4.1.2 NEXT Register (Parameter Stack) 39
4.1.3 T Register (Return Stack) . . . v v oo v v vt oo e v eeeenenn 40
4.13.1 T AtAddressO0H ' e 41
4132 T AtAddressOIHc0vvuuun... 41
4.1.3.3 1 At Address 02H (Strea.m Count/Loop Count) 42
4.1.4 IPR Register (RetumStack).............., - 43
Internal Processor Registers e e 4
Control/Status Registers . . . oo v v e vn v et tn e imnennnnnn. 45
4.3.1 The Configuration Register - Address 03H 46
4.3.2 The MD Register - Address 04H 47
4.3.2.1 MD On The RTX 2000 and RTX 2010 48
4322 MDOnTheRTX2001A 48
4.3.3 The SQ Register - Address O5SH 49
4.3.4 The SR Register - Address 06H 49
4.3.5 The PCRegister-Address07H 50
4.3.6 The Interrupt Mask Register, IMR - Address 08H 51
4.3.7 The Stack Pointer Register, SPR - Address 09H 52
43.8 AddressOAHcc0iiininnnenennnnn. 52
43.8.1 OnThe RTX 2000ooouronnnnnnn... 52
4.3.8.2 On The RTX 2001A and RTX 2010 52
4.3.9 Address OBH: IVR, SVR, And SLR 53
4.3.9.1 Write-only On The RTX 2000: SLR 53
4.3.9.2 Write-only On The RTX 2001A: SVR 53
4.3.93 Write-only On The RTX 2010: SVR 54
4.3.10 Index Page Register - Address OCH 55
4.3.11 Data Page Register, DPR - Address ODH “.. 56
4.3.12 User Page Register, UPR - AddressOEH 56
4.3.13 Code Page Register, CPR - AddressOFH 56
4.3.14 Interrupt Base/Control Register - Address 10H 57
4.3.15 User Base Register, UBR - Address 11H 57
43.16 Address 12H iiiiiiii i e, 58
4.3.16.1 On The RTX 2000 and RTX2001A 58
43.162 OnThe RTX2010: MXR 58
4.3.17 Timer/Counter 0 - Address 13H 59
4.3.18 Timer/Counter 1 - Address 14H oo 59
4.3.19 Timer/Counter 2 - Address 15H 59
4.3.20 Address 16H B e e e e e o et et eaenaaanas . 60
4.3.20.1 RTX 2000 - MLR DI I 60
4.3.20.2 RTX 2001A - RX, Scratchpad/Countmg Reglster ... 60
43203 RTX2010-MLRconeennnnnnn... 60
4.3.21 Address 17H G e ee ettt 61
43.21.1 RTX2000-MHRcc00un.... 61
43212 RTX2001A-RHcovvvvvennnnnn.. 61

4.3.21.3 RTX2010-MHR et et 61

5.0 External BusInterfacesouumuurunnonnnnnnin.

5.2

‘ASICBusInterfacettt ..
5.1.1 RTX 2000 and RTX 2001A Extended Cycle Operation
5.1.2 RTX 2010 Extended Cycle Operation

Memory Interface oo vu it nn i e
5.2.1 CodeMemory Spaceeveeuuuumnnnn..

5.2.1.1 Subroutine Calls and Returns

5.2.1.2 Branching ettt et e e e
522 DataMemory Spaceomeerernnannnnnni.

5.2.2.1 Memory Page Selection
5.2.2.2 Memory Access Mode Selection
5.2.23 Memory Access Examples

5.2.3 User Memory Space e ettt

6.0 On-Chip Peripheralscuouuiivunennnnnmnnnnnn .

6.1

6.3

6.4

Stack Controllersuveeiinnsemneennnnnnnnnn.
6.1.1 Stack Pointer Operationvumuueunnn...

6.1.1.1 Stack Pointers For the RTX 2000
6.1.1.2 RTX 2001A and RTX 2010 Stack Pointers

6.1.2 Stack Limit Operationc00uuuuunnn..

6.1.2.1 Stack Limits For the RTX 2000
6.1.2.2 Stack Limits For the RTX 2001A
6.1.2.3 Stack Limits For the RTX 2010

6.1.3 Configuration Of SubStacks

6.1.3.1 Substack Configuration On The RTX 2001A
6.1.3.2 Substack Configuration On The RTX 2010

6.1.4 Stack Error Conditions00uuurvunn...
6.1.4.1 RTX 2001A and RTX 2010 Fatal Stack Errors
Interrupt Controllervviit e ene ..
6.2.1 Interrupt Acknowledgement
6.2.2 Disabling Interrupts vovvererrrrnnnnn... L
6.2.3 Software INterrupto ovvve et
On-Chip Hardware Math Support00......
6.3.1 RTX 2000 Multiplier Operation
6.3.2 RTX 2010 Hardware Math Support
6.3.2.1 RTX 2010 Multiplier/Accumulator Operation
6.3.2.2 RTX 2010 Barrel Shifter and LZD Operation
Counter/Timerseeiiueeemnnnennnnnnnn..
6.4.1 Counter/Timer Operation000vvv.....
6.4.2 Counter/Timer INterrupts00.....
6.4.3 Clock Selection ettt

7.0 INStruction Set . .. i vttt iii ittt it e 121
7.1 General Information0.ietireonennnnnn.. 121
7.1.1 Streamed ExecutionModeo i vt iin ... 122
7.1.2 The Auto-decrementing Loop Instruction 122
C7.2 FOMmMat . ov vttt ottt ettt e e 123
7.3 Subroutine Callcoiiiinnenrennnnennnenans 127
7.4 Subroutine Return v v i vt ii it et e e e 128
7.5 Classes 8 and 9: Branchesand Loops 129
7.6 Class 10: ALU Operationscuuueneenn.. ... 136
7.6.1 CarryBit ettt s 137
7.6.2 Shift Operationsoveemeeennnnnn.. 138

7.7 Enhanced Processor-Specific Operations000..... 153
7.7.1 Streamed MAC Instructions On The RTX 2010 182

7.8 Class 11-a : ASIC Bus ACCESS « v v v v v v ev e eneee e 184
7.8.1 ASIC Bus Instructions N e eseees e 184
7.8.2 Predefined ASIC Bus Instructions 191

7.9 Class 11b-Short Literals, uinrenneeennnnnn.. 196
7.10 Class 12: User Memory ACCESS v oee e e, 201
7.11 Class 13: Long Literals000vu0enennn... 208
7.12 Classes 14 and 15: Data Memory Access 214
7.13 Undefined Opcodes « . .. vvvveveneerennnsnennnnn. 227
8.0 StepMath Functionsceuvuiiinenneeeennnennnnnn. 225
81 Introductionuiiierrnnnrennnennnn. . 225
8.1.1 Step Math Using The RTX 2000 et 225
8.1.2 Step Math Using The RTX2001A 226
8.1.3 Step Math Using The RTX 2010ovvvvvunn.. 226

82 DataFlowinStepMathccvvvvvnennnnnnn.. 227
83 17BitMathc0..... et e e 229
8.4 The Step Math Instruction Formatc0vvueen..... . 230
8.4.1 ALUMicroOpcode Field (333)c00uvununn. 231
8.4.2 Register Selection Micro Opcode Field (r) 232
8.4.3 Conditional Behavior Micro Opcode Field (yy) 233
8.4.4 Subroutine Return Micro Opcode Field (R) e 234
8.4.5 Unconditional Shift Micro Opcode Field (sss) 235
8.4.6 Signed/Unsigned Micro Opcode Field (§) 236

8.5 Operation of the 17th-Bit Adder e eeees ettt 237
8.6 Interrupting Step Math Operations 238
8.7 Some Useful Opcodes e e ecieeseterann 239
8.8 Step Multiplication Gt e ee o s e et e e 240
8.8.1 Signed Step Multiplication 240
8.8.2 Mixed Sign Multiplication Type A 242
8.8.3 Unsigned Multiplication000vvuunn.... 243
8.8.4 Mixed Sign Multiplication Type B............. e e 244

8.9 StepDivisioniiii i e 245
8.9.1 Standard Division Program 248
8.9.2 Alternate Division Programo0uuu..... 248

N

StepSquareRootciiiiinn... 249
StepBitReversalcoovvernnnnnn... 251
Step Cyclic Redundancy Check (CRC) 255
Step Math Referencecouvvuuunn.... 258

CHAPTER 1

INTRODUCTION

Introduction, Chapter 1

ly Programmer’s Reference Manual

.
ami

RTX 2000 F

1 Introduction

The Harris Real Time Express (RTX) 2000 Family of microcontrollers is a
highly integrated family of 16-bit CMOS microcontrollers designed for real-time
control systems requiring high performance with low power consumption.

1.1 The RTX 2000, 2001A, And 2010 Microcontrollers

The architecture of the RTX 2000 Series of products results in high instruction
execution rates. The highly parallel architecture allows the RTX to perform
several functions in one instruction cycle, and all instructions execute in either
one or two clock cycles. Instructions are fetched from memory and executed
‘immediately; there are no instruction "pipelines" or caches to flush when
performing branches or calls. ‘ '

The RTX 2000, 2001A and 2010 Microcontrollers have on-chip support
hardware for performing many of the functions typically needed in a real-time
system, including an interrupt controller, a memory page controller, two stack
controllers, and three 16-bit counter/timers. In addition to these "on-chip
peripherals”, the RTX 2000 provides a 16-by-16 hardware multiplier, while the
RTX 2010 provides a 16-by-16 hardware multiplier-accumulator along with a 32-
bit Barrel Shifter and a 32-bit Leading Zero Detector for Floating Point support.
Table 1.1 shows a break-out of the features of each of these products.

The RTX 2000 Class architecture was designed to execute the high-level
language Forth as its "assembly language”. The instruction set provides the
features necessary for implementing much of the Forth language directly.
Instructions are available for manipulating stacks, performing memory access,
controlling program flow, and basic math and logic operations. '

One RTX instruction may combine the functions of two or three high level Forth
instructions, resulting in an effective processor throughput which is faster than
the processor clock speed. :

Introduction, Chaprer 1 - _ 3

The stack oriented architecture of the RTX also makes it well suited for running
such computer languages as C.

RTX 2000
Interrupt
Controller

Stack
Controller

Two 256-Word
Stacks

Three 16-Bit
Timer/Countersv

1-Cycle 16-Bit
Multiplier

RTX 2001A
Interrupt
Controller

Stack
Controller

Two 64-Word
Stacks

Three 16-Bit
Timer/Counters

RTX 2010
Interrupt
Controller

Stack
Controller

Two 256-Word
Stacks

Three 16-Bit
Timer/Counters

'1-Cycle 16-Bit

Mult./Accum.

1-Cycle 32-Bit
Barrel Shifter;
Floating Point
Support

TABLE 1.1: RTX On-Chip Hardware Peripherals

RTX 2000 Family Programmer’s Reference Manual

1.2 The RTX 2000 Family Programmer’s Reference Manual

Figure 1.1 offers an overview of the interface between a user and an RTX
Microcontroller. The documentation which supports each layer of this interface
is also shown.

User Support Documentation

User ' _
Interface Application Notes
Development Quick
System Soﬂ\ﬁgﬁul;l‘?;er ence | |neference
Software Card
- RTX Forth Programmer’s Reference]
Primitives Manual 2
(77}
RTX Hardware Reference ‘g
 Hardware Manual o

FIGURE 1.1: USER/RTX INTERFACE

Introduction, Chapter 1 : 5

The Programmer’s Reference Manual describes the RTX 2000, RTX 2001A, and
RTX 2010 Microcontrollers from a programmer’s point of view, including
architecture, registers, data paths, hardware interfaces, and primitive instructions.
Topics described in various sections of this manual include: ‘

- Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

2
3
4
5
6
7
8
9

Chapter 10

Overall architecture of RTX microcontrollers
General operation of RTX microcontrollers
The RTX register set

Memory Interface

On-chip Peripheral Devices

-RTX Instruction Set

Implementation of Multi-step Math Functions
Implementing Forth on the RTX
Code Optimization Techniques

Some functional differences exist between the different members of this family
of microcontrollers. When such differences exist, the applicable sections of this
manual describe those differences. Where major differences exist, they are
broken into separate paragraphs, and are offset with a side bar for clarification.

For additional information specific to your microcontroller, please refer to the
appropriate data sheet.

RTX 2000 Family Programmer’s qu'erence Manual

N

CHAPTER 2

RTX ARCHITECTURE

RTX Architecture, Chapter 2

ly Programmer’s Reference Manual

RTX 2000 Fami

2 RTX Architecture

This chapter provides an overview of the programmer’s model of the RTX
Microcontroller architecture. Figures 2.1, 2.2 and 2.3 show block diagrams for
the RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers respectively.

The RTX microcontroller is a stack based machine with two on-chip stacks.
Most math, 1/0 and memory reference operations take their operands from the
Parameter Stack, and leave their results on the Parameter Stack. Subroutine calls
use the Return Stack for saving their return addresses.

There are twenty-three registers on the RTX 2000, twenty-four registers on the
RTX 2001A, and twenty-five registers on the RTX 2010. These registers control
processor configuration and status, hold intermediate results during computations,
and provide an interface between the processor and its on-chip peripheral
devices.

The RTX registers and stacks are interconnected through a series of 16-bit data
buses which transfer data within the processor and with the outside world.

CONTROL TIMER INTERRUPT

INPUTS INPUTS INPUTS
CLOCK AND TIMER/ INTERRUPT

CONFIGURATION MULTIPUER | -
CONTROL COUNTERS| CONTROL

3
y
3
y

MeoRY |e— RTX CORE
wekory S wrenesce| | W | | PROCESSOR [**{wreneace (=) Sl

§ t 4
[| L=

PROGRAMMABLE
STACK CONTROLLERS

4

FIGURE 2.1: RTX 2000 BLOCK DIAGRAM

RTX Architecture, Chapter 2 .9

OFF CHIP MAIN
PERIPHERALS MEMORY

T —Ts
ASIC BUS MEMORY BUS RTX 2001A
INTERFACE INTERFACE
et NG N IR "
INPUTS GO oRTROL MY
CONTROL
- A4 A A4
INPUTS e INTERRUPT | s |
i RTXCORE [~LE&q _
« » | CONTROLLERS
TIMER]1 PROCESSOR PARAMCIER
INPUTS emtp> cJL“ﬁ'i'éfasl‘l" STACK

FIGURE 2.2: RTX 2001A BLOCK DIAGRAM

OFF CHIP MAIN
PERIPHERALS MEMORY
3
! ASIC BUS MEMORY BUS RTX 201 0
INTERFACE INTERFACE
CONTROL 'C\:.I‘.gceﬁ N#:)"
INPUTS IGURA'
MEMORY
CONTROL PAGE
CONTROL
[]

INTERRUPT
INPUTS s

2568- WORD

RTX CORE [~L¥&' [

e PROCESSOR| g ™t

STACK

MAC

SHIFTER

FIGURE 2.3: RTX 2010 BLOCK DIAGRAM

10 RTX 2000 Family Programmer’s Reference Manual

2.1 On-Chip Stacks

The RTX microcontroller contains two on-chip last-in-first-out (LIFO) stack
memories. The top elements of each stack are immediately accessible through
registers. The remainder of each stack is located in on-chip RAM arrays. The
control logic associated with each stack determines which stack locations are to
be read or written, and monitors the stacks for overflow and underflow
conditions. See Section 3.1 for a description of stack operations.

Stacks on the RTX 2000 and RTX 2010 are each 256
elements deep; stacks on the RTX 2001A are 64
elements deep. :

2.1.1 The Parameter Stack

The 16-bit wide Parameter Stack provides the operands for most math, logic, and
memory reference instructions. It is used for passing parameters between
subroutines, and as a scratchpad area for temporary storage of data. -

The top two elements of the Parameter Stack are the TOP Register, which
contains the top element, and the NEXT Register, which contains the second
element. For certain instructions, TOP or NEXT are the implicit data source or
destination, and the RTX can perform operations dealing with TOP and NEXT in
one clock cycle. For more information about TOP and NEXT, see Chapter 4.

2.1.2 The Return Stack

The 21-bit wide Return Stack is used for storing subroutine return addresses and
for holding index counts for loops and repeated instructions, and can also be used
as a temporary storage area. The top element of the Return Stack is comprised
of the 16-bit wide I register and the 5-bit wide IPR Register. The RTX can move
data between the top elements of the Parameter and Return Stacks in a single
clock cycle. For more information about I and IPR, see Chapter 4. '

RTX Architecture, Chapter 2 - 11

2.2 RTX 2000 Series Bus Architecture

The RTX 2000 Series bus architecture provides for unidirectional data paths and
simultaneous operation of some data buses. This parallelism allows for
maximum efficiency of data flow. Externaldata is transferred via the ASIC Data
Bus and the Memory Data Bus. Addresses for external access are output via the
Memory Address Bus and the ASIC Address Bus.

2.2.1 Data Buses

The RTX QUAD Bus™ architecture consists of 4 independent 16-bit data buses,
all of which may be active simultaneously.

° The Memory Data Bus carries program instructions and program data
to and from Main Memory. 16-bit data words (but mot program
instructions) are passed through byte-swapping hardware which allows
the processor to control the order of storage in memory for the low
and high bytes of the word.

¢ The ASIC Bus™ is the I/O and register interface bus. This bus
provides the interface between the Parameter Stack and the processor
registers and external I/O devices. The ASIC Bus passes input data
through the on-chip Arithmetic/Logic Unit (ALU) before pushing the
data onto the Parameter Stack. This allows the RTX to perform math
(adding, subtracting), logic (masking), and shifting operations on the
data as it is being read.

¢ The Parameter Stack Bus carries data between the top-of-stack
registers and the Parameter Stack RAM.

. The Return Stack Bus carries data between the top-of-stack registers
and the Return Stack RAM.

12 ' - RTX 2000 Family Programmer’s Reference Manual

2.2.2 Address Buses

‘For off-chip communications, the RTX microprocessor has two address buses:
the 19-bit Memory Address Bus, and the 3-bit ASIC Address Bus.

. The Memory Address Bus (MA19-MAOL1) carries the address of the
Main memory location to be accessed, either for instruction fetches or
memory read/write operations. This is a 19-bit bus, along with Upper
Data Strobe (UDS) and Lower Data Strobe (LDS), which allows the
RTX to address 1 megabyte of memory.

¢ The ASIC Address Bus (GA02-GAO00) carries address information for
external ASIC devices.

See Chapter 5 for information about RTX External Bus Interfaces.

RTX Architecture, Chapter 2 13

2.3 Registers

The RTX 2000 Series microcontrollers contain three types of registers. Stack
related registers, Status/Control registers, and Internal Processor registers.
2.3.1 Stack Related Registers

Stack related registers contain the top elemenm of the Parameter and Return
Stacks. These registers are the implicit source and destination for many of the
processor operations, and are described in detail in Chapter 4.

2.3.2 Status/Control Registers

Status/Control registers are accessed through the ASIC Bus, and determine the
operating environment for the processor by controlling the processor
configuration and on-chip perlpheral devnces These registers are described in
detail in Chapter 4.

2.3.3 Internal Processor Registers

Internal Processor registers are not du'ectly accessnble to the programmer, and
are described in Chapter 4.

14 » RTX 2000 Family Programmer’s Reference Manual

24 Memory

The RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers directly address
1 Megabyte (512K 16-bit words) of memory. This memory is divided into 16
pages of 64K bytes (32K words) each, and may be made up of any combination
of ROM, RAM, or memory mapped 1/O devices.

The RTX memory interface is described in detail in Chapter 5.

RTX Architecture, Chapter 2 : _ 15

16

RTX 2000 Family Programmer’s Reference Manual

CHAPTER 3

OPERATIONS

Operations, Chapter 3 17

18 RTX 2000 Family Programmer’s Reference Manual

3 Operations

This chapter provides an overview of the internal processor operations. The
operations are described in greater detail in Chapter 7, "Instruction Set".

3.1 Instruction Execution

The RTX Microcontrollers have an Instruction Decoder which provides control
of all data paths and the Program Counter Register (®C). This hardware
determines what function is to be performed by looking at the contents of the
Instruction Register (IR), and subsequently determines the sequence of operations
through data path control. ‘

In one-cycle operations, the instruction which is to be executed is latched into IR
at the beginning of a clock cycle, then is decoded. All necessary internal
operations are performed simultaneously with fetching the next instruction. See
Figure 3.1.

Instructions which perform memory access require two clock cycles to be
executed. During the first cycle of a memory access instruction, the instruction
is decoded, the address of the memory location to be accessed is placed on the
Memory Address Bus (MA19-MAO1), and the memory data (MD15-MD00) is
read or written. During the second cycle, the address of the next instruction to
be executed is placed on the Memory Address Bus, and the next instruction is
fetched, as indicated in Figure 3.1. :

Operations, Chapter 3 19 .

Cra— — L

EXECUTION SEOUEVCE WITH NO MEMORY DATA ACCESS:

I
i
. |
| seam : Ewoor | seaw |

FinsT | secowo
| oy CLOCK | CLOCK!
cros

= . Srenaron crag | cvoe ‘

PERFORM INTERNAL OPERATIONS AND
ALU OPERATIONS, AS REQUIRED :

[
: ADORESS OF |
ucTon NEXT
ATonEs sero INSTRUCTION || FETCH | |
' K 18 PLACED ONTO 1
| m wats - ot I |
asus , :
! ASIC BUS OPERATIONS |

m SEQUENCE WITH MEMORY DATA ACCESS:

1 stom " enoor |

sgGw i END OF |
o T 3 | e =
i croie | cvae . ~ CoucunmeNT Hrse |
]
ern Aconess oF . [PERFORM ALU OPERATIONS |
LaTcHes LOCATION READ OR WRITE | PLACE ADDRESS OF . : I
L]
m ® o MEMORYDATA . || - NEXT INSTRUCTION neTAUCT |
[sus I ONTO MA19 - MAOY

FIGURE 3.1: INSTRUCTION EXECUTION

i
!
|
i
i
i
i
|
1

20 ' RTX 2000 Family Programmer’s Reference Manual

-

3.2 Stack Operation

The RTX Microprocessors utilize a Last-in, First-out (LIFO) stack architecture.
In this type of architecture, the last data element stored in the memory stack will
be the first element retrieved from that region of memory. See Figure 3.2.

NN N SN,

0|2 |3 | 2| | &3] | 23| | | [emery
0|20 |2 | O
[1] [1]

FIGURE 3.2: STACK OPERATION

This structure for information storage and retrieval provides the computer with
one central location for temporary storage of information.

The RTX takes advantage of this architecture, utilizing two separate on-chip
stacks. The first, the Parameter Stack, is used for temporary storage of data and
for passing parameters between subroutines. The second, the Return Stack, is
used to store return addresses during subroutine calls and returns. The Quad
Bus™ architecure of the RTX Microcontrollers allows both stacks to be accessed
in parallel by a single instruction, this dual stack arrangement allows overhead
to be minimized during subroutine operations. The Return Stack can also be
used for temporary storage of values when it is not being used during a
subroutine call or return.

For faster access, both the Parameter Stack and the Return Stack utilize registers
for the top elements and on-chip memory (Stack Memory) for the remaining
elements.

For more detailed information about RTX stack operation, see Section 6.1.

Operations, Chapter 3 A _ 21

3.3 Subroutine Calls and Returns |

An RTX subroutine call instruction has the address of the routine to be called
embedded in the instruction. When the subroutine call is executed, the address
of the instruction following the call instruction is pushed onto the Return Stack.
When the subroutine is completed, a Return-from-Subroutine instruction will pop
the return address from the stack, and execution will resume with the instruction
following the call.

The RTX architecture is optimized for performing subroutine calls and returns
with minimum processor overhead. A subroutine call within the same memory
page can be made in one clock cycle. A call to a location in a different memory
page takes 3 clock cycles.

Subroutine returns take 0 clock cycles if performed as part of another instruction,
and 1 cycle if executed as a separate instruction.

p) RTX 2000 Family Programmer’s Reference Manual

3.4 Branching And Looping

The RTX can perform unconditional branches or conditional branches, based on
the contents of the top elements of the Parameter and Return Stacks. All
branches take one clock cycle, regardless of whether or. not the branch is
performed.

Operations, Chapter 3 23

3.5 Streamed Instructions

~The RTX processor has a "streamed" instruction feature, in which an instruction -
is repeated a specified number of times. without repeating the instruction fetch
cycle. This feature is useful for doing fast data transfers, loops and some math

functions. o o e

‘See Chapter 7, "Instruction Set" for more details about the "streamed” instruction
feature. o o L :

2 ‘ RTX 2000 Family Prqéranme;r's‘l{q"eréncé Manual

3.6 Math/Logic Operations

Math and logic operations are performed by the ALU circuitry of the RTX. The

operations which may be performed include the simple math operators + and -, -
and the logic operators AND, OR, XOR, NOR, NAND, XNOR, and NOT.

See Section 6.3 for information about the on-chip hardware
multiplier, multiplier/accumulator, barrel shifter, and Floating
Point support features. '

The TOP register is always one input to the ALU. The second, "Y", input may
come from a variety of sources, as indicated in Figure 3.3. :

PROGRAM v :
- MEMORY : T -BUS
') [
5 Least
'R Significant =
Bits
2
a
>
External -
Memory Data
loscoosl v

~

NOTE: Data Paths are represented by solid lines. Control Paths are represented by dashed lines.

FIGURE 3.3: ALU DATA FLOW

Operations, Chapter 3 . : : 25

3.6.1 Registers And I/0 Devices

The contents of the TOP and NEXT registers are always available as operands to
the ALU, and are the implicit operands for most of the RTX Math/Logic
instructions. ‘

The contents of the other registers and external I/0 devices are addressable as
devices on the ASIC Bus.

3.6.2 Memory

Data may be fetched from, and stored to, Main Memory using the Word and

Byte access instructions (Classes 14 and 15 in Chapter 7, the "Instruction Set")
and User memory access instructions (Class 12).

3.6.3 Literals

A literal is a constant value to be pushed onto the stack, or to be used as the
second operand of an arithmetic or logic operation. The RTX processor
recognizes two types of literals - short literals and long literals.

A short literal is a 5-bit value between 0 and 31 and is encoded as a field in a
machine instruction. '

A long literal may be any signed or unsigned“l6-bit integer, and is stored in main
memory immediately following the opcode that utilizes it.

26 RTX 2000 Family Programmer’s Reference Manual

3.7 Stack Operations

The top two locations of the Parameter Stack are TOP and NEXT, and the
remainder of the stack memory is located in on-chip RAM. Because of this, the
RTX Microcontrollers have the ability to manipulate stack elements to allow
optimization of many instructions. - Descriptions of these stack manipulation’
operations are given in the following sections. These primitives can be combined
with other operations to allow one-cycle execution of multiple operations. See
Chapter 7 for information about specific instructions.

3.7.1 DUP

bup copies the top element of the Parameter Stack, and pushes the result onto the
stack, leaving the stack with two identical elements in the top two stack locations.

Parameter : Parameter
Stack Stack
Before After

Stack) fIl

Memory

FIGURE 3.4: STACK EFFECTS OF DUP

Operations, Chapter 3 27

.

3.7.2 SWAP

|
\
!

swap flips the top two elements of the Parameter Stack, causing the top element

to move to the second location, and the
location.

. Parameter . } Parameter
Stack | Stack
Before " Atter
[3]] ToP [2]
N (2]} Next |[3]]
1] Stack | (1]
Memory
. |

FIGURE 3.5;: STACK EFFECTS OF SWAP

3.7.3 DROP

1
|
|

i

DRoP pops the Parameter Stack, dropping th'e top elenient. That element is lost,

and is not used in subsequent operations.

|
|
"

i
Parameter i, Parameter
Stack Stack
Before " After
[3] TOP | [2]
(B2 NexT ([T
(1] Stack |
Memom

FIGURE 3.6: STACK EFFECTS OF DROP

I
|

28 _ - RTX 2000 EFamin Programmer’s Reference Manual

second element to move to the top

3.7.4 OVER

over copies and pushes the third Parameter Stack element into the top location.

Parameter Parameter
Stack Stack
Before - After

FIGURE 3.7: STACK EFFECTS OF OVER

3.7.5 >R

>R (called "to R") takes the information in TOP and stores it in the least
significant 16 bits (I) of the top location of the Return Stack. This causes the
current Code page value to be written to IPR, the most significant 5 bits of the

top location of the Return Stack.
| ‘Before - After Burh, st CFPR
T et o 400
| 4 What ”WM’L \W
D E OB R e
[1] [A]

FIGURE 3.8: STACK EFFECTS OF >R

- Operations, Chapter 3 . 29

3.7.6 R>

R> (called "R from") retrieves the information in the least significant 16 bits of
the top element of the Return Stack and pushes it into TOP.

Before o After
Parameter Return I?arameter Return
Stack Stack ' Stack Stack
21| |[c] (e
(1] 2] [A]
[A] SIEN

FIGURE 3.9: STACK EFFECTS OF R>
3.7.7 R@

Ra (called "R fetch") copies the top of the Return Stack to the top of the
Parameter Stack. :

Before | After
Parameter Return ﬁarameter Return
Stack Stack | Stack Stack
2| ([] |E
(1] 2]
(A] JIER [(A]

FIGURE 3.10: STACK EFFECTS OF R@

30 RTX 2000 Family Programmer’s Reference Manual

3.8 Interrupts

The RTX processor may be interrupted from several sources, both from internal
devices and from external inputs. :

The on-chip Interrupt Controller has fourteen interrupt request inputs. Thirteen
of these interrupt request inputs are maskable interrupts, and one is a Non-
Maskable Interrupt (NMI) request.

3.8.1 Maskable Interrupts

The Interrupt Controller samples the request inputs during each instruction,
prioritizes any active interrupt requests, and signals the processor when an
interrupt request is present.

For more information about interrupt acknowledgement, disabling interrupts, and
software interrupts, see Section 6.2.

3.8.2 Non-Maskable Interrupts (NMI)

The NMI is an external, edge-sensitive input which requires a rising edge to
request an interrupt.

3.8.2.1 On the RTX 2000

The NMI can cause the processor to perform an Interrupt Acknowledge
cycle in the middle of such operations as Step Math instructions, Streamed
instructions, and other operations that could result in the loss of data or
misoperation of the hardware if interrupted. For this reason, a "Return
From Subroutine" should not be performed from the NMI service routine.
Instead, the NMI handler should re-initialize the system.

Operations, Chapter 3 31

3.8.2.2 On the RTX 2001A

On the RTX 2001A, the NMI input has a glitch filter circuit which
requires that the signal that initiates the NMI must last at least two cycles
of ICLK. '

The NMI can cause the processor to perform an Interrupt Acknowledge
cycle in the middle of such operations as Step Math instructions, Streamed
instructions, and other operations that could result in the loss of data or
misoperation of the hardware if interrupted. For this reason, a "Return
From Subroutine" should not be performed from the NMI service routine.
Instead, the NMI handler should re-initialize the system.

3.8.2.3 On the RTX 2010

On the RTX 2010, the NMI has two modes of operation which are
controlled by the NMI_MODE Flag (bit 11 of the CR).

When CR bit 11 is cleared (=0), the NMI cannot be masked and can
interrupt any cycle. This allows a fast response to the NMI, but does not
guarantee that a Return From Interrupt will always provide correct
operation. The NMI_MODE Flag is cleared at Reset.

When the NMI_MODE bit is set (=1), the NMI may be inhibited by the
processor during certain critical operations, and further NMIs and
maskable interrupts are disabled until the NMI Interrupt Service Routine
has been completed and a return has been executed. In this mode, a
return from the NMI Interrupt Service Routine will allow the processor
to resume correct execution at the point where it was interrupted.

32

RTX 2000 Family Programmer’s Reference Manual

€€

CHAPTER 4

RTX REGISTERS

34

RTX 2000 erdly Programmer’s Reference Manual

¢

4 RTX Registers

The three types of registers which the RTX microcontrollers use are: Stack
Related Registers, Internal Processor Registers, and Status/Control Registers.

At power up or Reset, the RTX registers are initialized. The reset states for the
RTX 2000 are shown in Table 4.1. The reset states for the RTX 2001A are
shown in Table 4.2. The reset states for the RTX 2010 are shown in Table 4.3.
In each of these tables, the read and write capabilities of each register are
indicated in the R/W column, where: '

R-W Indicates that the register can be either read from or written to.

R Indicates a read-only register.

\' Indicates a write-only register.

R/W Indicates that the first register is read-only and the second register

is write-only (as in the case of the Timer/Counter and Timer
Preload Registers).

* Indicates that individual bits in the register may be read-only or
write-only and that the bit map for that register should be consulted.

N Indicates that the register cannot be read from or written to.

Register addresses are given in heiadecimal, denoted by "H" here and elsewhere
in this manual.

The sections which follow describe each of the registers in more detail.

RTX Registers, Chapter 4 35

\

TABLE 4.1: RTX 2000 REGISTEK INITIALIZATION

\

ASIC | INITIALIZATION ;
REGISTER |ADDR VALUES R/W | COMMENTS
TOP 0000 0000 0000 0000 | R-u "
NEXT 1111 1111 111 11| R
IR 0000 0000 0000 0000| N
1 00H | 1111 1111 1111 1111 | R-W
otH
02H
CR 034 | 0100 0000 0000 1000 | * | Interrupts disabled, BOOT=1, Byte
Order=0
MD O4H | 1111 1111 1111 11| R-W i
SR 06H | 0000 0000 0000 0000 | R-W
PC 07H | 0000 0000 0000 0000 | R-W
IMR 084 | 0000 0000 0000 0000 | R-W | ALL interrupts unmasked
SPR 09H | 0000 0000 0000 0000 | R-W | First stack lLocation
SLR 0BH | 1111 1111 1111 1111} W Limit for each stack set to 255
IVR 0BH | 0000 0010 0000 0000 | R | Read only; initialized to
"No interrupt Value®
IPR OCH | 0000 0000 0000 0000 | R-W | Initialize for Code Page 0
DPR 00OH | 0000 0000 0000 0000 | R-W | Initialize for Data Page 0
UPR OEH | 0000 0000 0000 0000 | R-W | Initialize for User Page 0
CPR OFH | 0000 0000 0000 0000 | R-W | Initialize for Code Page O
IBC 104 | 0000 0000 0000 0000 | * Interrupt Base=0, Counters on
internal clocks, no rounding,
use CPR for data accesses
UBR 114 | 0000 0000 0000 0000 | R-W | User Base Address = 0
TCO/TPO | 13H | 0000 0000 0000 0000 | R/W | ALL Timer/Counters set to
TC1/TP1 14H R/W | time-out after 65536 counts
TC2/TP2 | 154 RV :
MLR 16H 11111 1111 0000 0000 | R | Readionly; Mult. Low Product
MHR 7111 1 | e Read only; Mult. High'Product

36

RTX 2000 Family Programmer’s Reference Manual

I

TABLE 4.2: RTX 2001A REGISTER INITIALIZATION

ASIC INITIALIZATION
REGISTER |ADDR VALUES R/W | COMMENTS
TOP 0000 0000 0000 0000 | R-W
NEXT 1111 1111 111 1111 | R-W
IR 0000 0000 0000 0000 | N
I 00H | 1111 1111 1111 1111 | R-W
O1H .
02H
CR 03H | 0100 0000 0000 1000 | * Interrupts disabled, BOOT=1,
. Byte Order=0
MD O04H | 1111 1111 1111 1111 | R-W
SR 06H | 0000 0000 0000 0000 | R-W
PC 07!1 0000 0000 0000 0000 | R-W
IMR 08H | 0000 0000 0000 0000 | R-W | ALl interrupts urmasked
SPR 09 | 0000 0000 0000 0000 | R-W | Stack start addresses set to 0
SUR OAH | 0000 0011 0000 0011 | R-W | Stack underflow limits set
SVR OBH | 1111 1111 1111 1M11t]| w Write only; each stack overflow
limit set for max. stack size
IVR 0BH | 0000 0010 0000 0000| R Read only; Interrupt Vector init-
) ' ialized to "No Interrupt* value
IPR OCH | 0000 0000 0000 0000 | R-W | Initialized for Code Page 0
DPR ODH | 0000 0000 0000 0000 | R-W | Initialized for Data Page 0
UPR OEH | 0000 0000 0000 0000 | R-W | Initialized for User Page 0
CPR OFH | 0000 0000 0000 0000 | R-W | Initialized for Code Page 0
IBC 104 | 0000 0000 0000 0000| * Interrupt Base=0, Counters on
internal clocks, no rounding,
use CFR for data accesses
UBR 114 | 0000 0000 0000 0000 | R-W | User Base address set to 0
TCO/TPO 134 | 0000 0000 0000 0000 | R/M | ALl Timer/Counters set to
TC1/TP1 14H R/W | time-out after 65536 counts
TC2/TP2 15H R/M
RX 164 | 0000 0000 0000 0000 | R-W Scratchpad/Counting Register
RH 174 | 0000 0000 0000 0000 | R-W | Scratchpad Register

RTX Registers, Chapter 4

37

TABLE 4.3: RTX 2010 REGISTER INITIALIZATION

ASIC | INITIALIZATION ;
REGISTER |ADDR VALUES R/W COMMENTS
TOP 0000 0000 0000 0000 | R-W |
NEXT 111 1111 1111 1111 | R-" }
IR 0000 0000 0000 0000 | N ‘;
1 O0H | 1111 1111 1111 1111 | R-W ’1
O1H
02H ‘
CR 034 | 0100 0000 0000 1000| * | Interrupts disabled, BooT=1,
Byte;OI‘derto .
MD 04H | 1111 1111 1111 1111 | R-W ‘
SR 064 | 0000 0010 0000 0000 | R-W
PC 07H | 0000 0000 0000 0000 | R-W o
IMR 084 | 0000 0000 0000 0000 | R-W | ALL interrupts urmasked
SPR O09H | 0000 0000 0000 0000 | R-W suclfz start addresses set to 0
SUR OAH | 0000 0111 QOOO 0111] R-W | Stack underflow Limits set
SVR OBH | 1111 1111 1111 1111 W Write only; each stack overflow
~limit set for mex. stack size
IVR 08H | 0000 0010 0000 0000| R Read only; Interrupt Vector init-
falized to “No Interrupt" value
|
IPR OCH | 0000 0000 0000 0000 | R-W | Initialized for Code Page 0
DFR ODH | 0000 0000 0000 0000 | R-W | Initialized for Data Page 0
|
UPR OEW | 0000 0000 0000 0000 | R-W | Initialized for User Page 0
CPR OFH | 0000 0000 0000 0000 | R-w Initialized for Code Page 0
IBC 104 | 0000 0000 0000 0000 (* | Interrupt Base=0, Counters on
internal clocks, no rounding,
use (L‘l’R for data accesses
UBR 114 | 0000 0000 0000 0000 | R-W | User Base address set to 0
MXR 124 | 0000 0000 0000 0000 | R-W | MAC Extension Register; L2D 0 Count;
. Barrel Shifter Count
TCO/TPO | 131 | 0000 0000 0000 0000 | R/W | ALL Timer/Counters set to
TC1/TP1 | 144 " | R | time-out after 65536 counts
TC2/TP2 | 154 RN ‘
MLR 164] 0000 0000 0000 0000 | R-W | Multiplier and MAC Low Register
MHR 174 | 0000 0000 0000 0000 | R-W uultiblier, Barrel Shifter, and L2D

High Register; MAC Middle Register

38

RTX 2000 Famdy Programmer’s Reference Manual

- /l,(

T

v

4.1 Stack Related Registers

These registers contam the top elements of the Parameter and Return Stacks, and
are the implicit source and destination for many of the processor operations.

4.1.1 TOoP Register ' (Parameter Stack)

~The TOP Register contains the top element of the Parameter Stack, and has no

ASIC address assignment.

This is the primary working register for the processor, and is the implicit data

source or destination for certain instructions.

All ALU results are loaded into TOP. The output from TOP may be written to
any ASIC Bus register and to external I/O devices.

4.1.2 NEXT Register (Parameter Stack)

The NEXT Register contains the second element of the Parameter Stack, and has

‘0o ASIC address assignment.

" Durmg arithmetic operations, this reglster holds the lower 16 bits of a 32-bit

operand _ NEXT is also the source of data for all memory writes.

RTX Registers, Chapter 4 ' 39

- 4.1.3 1 Register ' (Return Stack)

The Index Register, I, can be accessed at three different ASIC addresses, and the
choice of ASIC address determines the type of operation to be performed.

As a Stack Related Register at ASIC addresses 00H (Hex) and O1H, I contains
the lower 16 bits of the top element of the 21-bit wide Return Stack. IPR
contains the other 5 bits. See Section 4.1.4 for more details about IPR.

The contents of I may be accessed in either push/pop mode, in which values are
moved to/from Return Stack memory as required, or in read/write mode in which
the Return Stack is not affected. .

In addition to its use in holding return addfess bits, at ASIC address 02H, this

register is also used to hold the count for streamed (repeated) instructions and
loop instructions. Operation of I at this ASIC address is described in more detail
in Section 4.1.3.3. T access operations and the associated addresses are shown
in Table 4.4. | '
’ TABLE 4.4: I ACCESS OPERATIONS

OPERATION | RETURN ASIC
{g-read, BIT ADDRESS
g-write) VALUE 99999 REGISTER § FUNCTION

00000 [1] Pushes the contents of [into [SI5 (with no pop of the Retumn Stack)

Pushes the contents of [l into [{eI5, then performs a Subroutine Retum
Pop-m:mmt-dmn(wlmmwmomommmsmu)

Performs a S Retun, then pushes the contents of STz intoll <<
Pushes the contents of [into [{SI3, popping the Retumn Stack

Pushes the contsnts of [] into [S] without popping the Retum Stack, then
executes the Subroutine Retum

Pushes the contents of [{e]Z into [] popping the Parameter Stack
Mumnl&bmuho%n\.mmmwmndmmmn

Puoh.lmomb;m-ofl]lhm.d left by one bit, into [fel5
(the Retum Stack is not popped) .

Pushes the contents of [] shifted left by one bi, into [<T5 (the Retum
Stack is not popped), then s S Retum

Pushes the contents of [{e13 into [] a3 a “stream” count, indicating that
the nexti istobe [ified number of times;
the Parameter Stack is popped

Performs a Subroutine Return, then pushes the stream count into []

<loj=+joj]l=]o

RTX 2000 Family Programmer’s Reference Manual

A

s)
¢

§oer < 0¥

4.1.3.1 1 At Address 00H

Location 00H is used to access I without causing any mei pushes or pops of the
Return Stack. .

Reading from this location pushes the contents of I onto the Parameter Stack.

Reading from this location as part of a subroutine return pushes the contents of
I onto the Parameter Stack, then performs a Return-From-Subroutine.

Writing to this location during normal operation pops the top item on the
Parameter Stack into I; the original contents of I are lost. »

Writing to this location as part of a subroutine return operation first executes the
return, then pushes the top item of the Parameter Stack onto the Return Stack.

4.1.3.2 1 At Address 01H

I at address O1H is used to push and pop the Return Stack.

Reading this location during normal operation pushes the contents of T onto the
Parameter Stack and pops the Return Stack. -

Reading this location as part of a subroutine return operation pushes the contents
of I onto the Parameter Stack without popping the Return Stack, then executes
the subroutine return. See Sectiofi 5.1.9) for more information about_operation 9
during subroutine returns. ‘ﬂ ;"ﬁ Ge o Gl o) /

Writing to this location during normal operation pushes the top item from thé
Parameter Stack onto the Return Stack, popping the Parameter Stack.

Writing to this location as part of a subroutine return operation first executes the
subroutine return, then pushes the top Parameter Stack item onto the Return
Stack. See Section 5.1.1 for more information about subroutine return operation.

RTX Registers, Chapter 4 | 41

4.1.33 1 At Address 02H (Stream Count/Loop Count)

Reading this location pushes the contents 6f I shifted left by one bit onto the
A Parameter Stack. The Return Stack is not popped.

\W‘/ Reading this location as part of a subroutine return pushes the contents of I

g,‘\/‘w 61; shifted left by one bit into TOP (the Return Stack is not popped), and then

performs a Return-From-Subroutine.

Y § Writing to this location during normal operation pushes the top Parameter Stack

item into I as a_"stream" count, indicating that the next instruction is to be

performed -5 the Parameter Stack is popped.

Writing to this location as part of a subroutine return operation executes the
subroutine return first, then pushes the stream count onto the Return Stack.

ot Gockipn 7,[,1 o e informdio
. on 5rfc.aw~w_>r\9‘fmc’*‘”“'

42 RTX 2000 Family Programmer’s Reference Manual

\

o

4.1.4 1R Register (Return Stack)

The IPR Register, at ASIC Address 0OCH (Hex), can be described as both a Stack
Related Register and as a Control/Status Register. ‘See Section 4.3.10 for more
information. This register contains the 5 most significant bits of the top element
of the Return Stack (the I Register contains the other 16 bits).

Reading from or writing directly to IPR does not push or pop the Return Stack,
but pushes or pops of the Return Stack (when reading or writing to I) do cause
the contents of IPR to be overwritten. Writing to I during non-subroutine
operations causes the current Code Page value to be written to IPR.

whor about bt 47

-
Ts this foaded ¥ PPRSEL -

RTX Registers, Chapter 4 43

4.2 Internal Processor Registers
Internal Processor Registers are not directly accessible to the programmer.
The Instruction Register, IR, is actually a;latch which contains the instruction

currently being executed. This register is loaded directly from main memory via
an instruction fetch, and is not accessible under program control.

The bits of the instruction in IR are decoded to determine which operations to
perform, to determine the location of the next instruction to be executed, and to
provide data for immediate operations.

4 ‘ RIX 20005Family Programmer’s Reference Manual

\

Y.

4.3 Control/Status Registers

The contents of the RTX microcontroller’s Control/Status Registers determine the
operating environment for the processor, and allow the processor to monitor and

‘control the various I/0 devices on the chip.

All internal registers are accessed through the ASIC Bus" ASIC addresses B/ '

through 23 (17 hexadecimal) are assigned to on-chip registers and devices, and
are described in this section. Section 7.7 describes the RTX instructions which
access the ASIC Bus.

RTX Registefs, Chapter 4 45

3

4.3.1 The Configuration Register - Address 03H
The Configuration Register, CR, controls the setup/status of the RTX processor.

Reading this location pushes the current contents of the register onto the
Parameter Stack. ‘

Writing to this location pops the top Parameter Stack item into CR, updating the
control bits. The Interrupt Base/Control Register contains additional processor
control bits. ‘

The bits in CR are assigned as shown in Table 4.5.

46 RTX 2000 Family Programmer’s Reference Manual

‘ (™ TABLE 4.5: CONFIGURATION REGISTER BIT ASSIGNMENTS

MSB |IL|RID|TRES [RES|{RES|RES|RES |RES|RES|RES [RES|SID |BOOT |BYTE|CCY|CY|LSB
ARCE[' [NMIM : '

IL Bit 15 Read-only; Interrupt Latch: When set lto 1,
. (MSB) indicates that an interrupt request is
' pending. See Section 6.2.

RID | Bit 14 Read-only; Read Interrupt Disable: Status /\
of Interrupt Disable bit. When set to 1, {
indicates that interrupts are disabled.
Resets to 1. Use SID bit to set value.
See Section 6.2.

TRES | Bit 13 | Reserved on the RTX 2000 and RTX 2001A. |
ARCE On the RTX 2010: When this bit is set, thex
PCLK cycle for every ASIC bus read is

extended. See Section 5.1 for more details.

RES | Bit 12 Reserved

1RES | Bit 11 | Reserved on the RTX 2000 and RTX 2001A.

NMIM On the RTX 2010: When this bit =1, return /
i from a Non- Interrupt can be made
See Sectior 3.5.2.3 for more info ion.

RES Bits 5-10 Reserved

b G

SID Bit 4 Write-only, (always reads as zero;*-
Set Interrupt Disable: When set to 1, th
processor will not respond to interrupts.
RID bit contains true value of Interrupt

Disable bit. See Section 6.2.

o
e
e e

BOOT | Bit 3 R/M; BOOT: Controls BOOT output pin. May
’ be used to select boot memory on power up.

BYTE | Bit 2 R/W; Byte Order: Controls order in which
a bytes of data will be read from or written
~to memory. See Section 5.2.2.1

ccy Bit 1 -R/W;. Complex Carry: Carry bit from ALU

& g extension. See Section 83
i cy Bit 0 R/M; Carry: ALU Carry output. See Sect. 8.3.
8 [. | 1 J
RTX Registers, Chapter 4 47

4.3.2 The MD Register - Address 04H

The MD Register is used to hold intermediate values during step math operations
(see Chapter 8). It may also be used as a general purpose scratchpad register.

Reading this location pushes the contents of the MD Register onto the Parameter
Stack.

Writing to this locatxon pops the top Parameter Stack item into the MD Register,
replacing its previous contents.

4.3.2.1 Mp On The RTX 2000 and RTX 2010
On the RTX 2000, MD is the Multlétep Divide Register. During

multistep divide operations, this reglster holds the divisor, whlle TOP and
NEXT hold the 32-bit dividend. \

4.3.2.2 MD On The RTX 2001A

On the RTX 2001A, MD is the Multlply/Dmde Register. This reglster
holds the divisor durmg step divide operatlons (the 32-bit dividend is in
TOP and NEXT). During step multiply operations, this register holds the
vmultlpller whnle NEXT holds the multiplicand.

'ﬂm\j l,v“\y’veﬁ S’fty) mu Hlp Jﬂegm"“

vl 1b 2004, zow TLus 5 (AW

48 RTX 2000 Family Programmer’s Reference Manual

I

\

4.3.3 The sQ Register - Address 05H
This address is a "pseudo-register" for step math operations (see Chapter 8).
Reading this location reads the contents of the MD Register, shifts the result left

%by one bit, then logically OR’s this value with the contents of the SR Register.
The result is pushed onto the Parameter Stack.

7 7/620 A Writing to this location shifts the top Parameter Stack item left by 8 bits, then
~ pops this value into the MD Register.) :

o T qeres stifheh inte foe
oY 7 7 . g Lits 7
yol

4.3.4 The SR Register - Address 06H

. The Square Root Register is used to hold intermediate values during the
calculation of square roots. It may also be used as a general purpose scratchpad
register.

Reading this location pushes the contents of the SR Register onto the Parameter
{ Stack.

PN \ Writing to this location pops the top Parameter Stack item into the SR Register,
} - replacing its previous contents. :

RTX Registers, Chapter 4 ' 49

4.3.5 The pC Register - Address 07H§

The Program Counter Register, PC, contams the lower 16 bits of the address of
- the instruction following the one currently executmg

Readmg this location pushes the contents of the PC (the address of the instruction ,?Q Y L
following the one which reads the PC) ontol the Parameter Stack) Y. \

Writing to this location during normal operatlon causes a subroutme call to the
address contained in the top Parameter Stack item; the Parameter—Stack is
popped. Writing to this location as part of a subroutlne return operation pushes
the top Parameter Stack item onto the Return Stack, then executes the subroutme
return; the Parameter Stack is popped. '

See Table 4.6 for PC Register access operaﬁions.

TABLE 4.6: PC REGISTER ALCESS OPERATIONS

OPERATION | RETURN | ASIC
(g-reed, 8Ir ADDRESS
g-write) VALUE | gggoy | REGISTER J FUNCTION
R 0 00111 Pushes the contents of (T8 into (TITE
R 1 00111 Pushes the contents of (8 into [TE15, then performs a Subroutine Retum
w) 00111 Call to the address nl G P I——
the Parameter Stack &
w 1 00111 Pushes th # ST onto the Retum Siack beto
the Subroutine Retumn

50 RTX 2000 Family Programmer’s Reference Manual

4.3.6 The Interrupt Mask Register, IMR - Address 08H

The bits in the Interrupt Mask_Register, IMR, cause individual interrupt request
inputs to the Interrupt Controller to be enabled or disabled. When a bit is set to
1, the corresponding input is masked (disabled). The IMR resets to all 0’s - all

~ interrupts unmasked. Only NMI, the Non-Maskable Interrupt cannot be masked.

Reading this location pushes the current contents of the lMR onto the Parameter
Stack. S '

~ Writing to this location pops the top Parameter Stack item into the IMR, updating

the mask values. See Table 4.7 for bit assignments. ,
TABLE 4.7: INTERRUPT MASK REGISTER BIT ASSIGNMENTS

MSB |RES|RES|SWI [EISJEI4|EI3|T2|T1]TO(EI2|RSV|PSV]RSU PSU|EI1|RES| LSB
RES - | Bits 14-15| Reserved. Always read as 0; should
be set =0 during Write operations.
N SWI Bit 13 | Software Interrupt - '
EIS Bit 12 External Input Pin 5
El4 Bit 11 External Input Pin 4
EI3 Bitb 10 | External Input Pin 3
T2 Bit 9 Timer/Counter 2 Interrupt
T Bit 8 Timer/Counter 1 Interrupt
T0 . Bit ' 7 Timer/Counter 0 Interrupt
E!é Bit 6 External Input ‘Pin 2
RSV | Bit 5 Return Stack Overflow
PsvV Bit 4 Parameter Stack‘Overflou
RSU | Bit 3 Return Stack Underflow
PSU Bit 2 Parameter Stack Underflow
EIM Bit- 1 External Input Pin 1
"RES Bit 0 Reserved. Always reads as 0.
| — | 1]

RTX Registers, Chapter 4 . 51

4.3.7 The Stack Pointer Register, SPR - Address 09H

This location contains the combined registers for the Parameter Stack Pointer and
Return Stack Pointer, which are accessed together. Bits 0-7 contain the pointer
for the Parameter Stack, bits 8-15 contain the pointer for the Return Stack.

Reading this location pushes the contents: of the register onto the Parameter
Stack. The value read for the Parameter Stack pointer will reflect the Parameter
Stack contents after the register value is pushed.

Writing to this location pops the top Parameter Stack item into the Stack Pointer
Register. :

4.3.8 Address 0AH
The assignment and utilization of this address is different for the RTX 2000,
RTX 2001A, and RTX 2010 Microcontrollers.
I 4.3.8.1 On The RTX 2000 ‘
This location is reserved on the RTX 2000.

4.3.8.2 On The RTX 2001A and RTX 2010

On the RTX 2001A and RTX 2010, this address is used for the Stack
Underflow Limit Register, SUR. This register holds the underflow limit
values for the Parameter Stack and the Return Stack, which must be
accessed together. ‘

This register can be utilized to define the use of substacks for both
stacks. See Section 6.1.3 for more stack/substack configuration
information. ?

52 RTX 2000 f‘amily Programmer’s Reference Manual

e

5

4.3.9 Address 0BH: IVR, SVR, And SLR

This address serves as two registers, and may be utilized by either the Interrupt
Controller or the Stack Controllers, depending on whether a read operation or
a write operation is being performed. .

In the read-only mode, this is the Interrupt Vector Register on all RTX 2000
Family Microcontrollers, and is used to hold the current Interrupt Vector value.
This register is initialized to the "No Interrupt” value. Reading this location
pushes the value of the current vector being generated by the Interrupt Controller
onto the Parameter Stack and clears any pending Timer/Counter interrupts.

In the write-only mode, this address is utilized for stack limit operations by the
Stack Controller. The specific function of this address differs depending on
which processor is being used.

4.3.9.1 Write-only On The RTX 2000: SLR

In the write-only mode, this address is used as the Stack Limit Register.
At Reset, this register is set to its maximum value of 255. ‘

Writing to this location loads new values into the Parameter Stack and
Return Stack Limit Registers. Bit 0-7 are assigned to the Parameter
Stack, bits 8-15 to the Return Stack, and both are accessed together.

4.3.9.2 Write-only On The RTX 2001A: SVR

In the write-only mode, this address is used for the Stack Overflow Limit
Register and holds the overflow limits for the Parameter Stack and the
Return Stack. These limits must be accessed together. The maximum
overflow limit value for each stack on the RTX 2001A is 64.

RTX Registers, Chapter 4 53

4.3.9.3 Write-only On The RTX 2010: SVR

In the write-only mode, this address is used for the Stack Overflow Limit
Register and holds the overflow limits for the Parameter Stack and the
Return Stack. These limits must be accessed together. The maximum
overflow limit value for each stack on the RTX 2010 is 256.

54 RTX 2000 Family Programmer’s Reference Manual

{ Jr\h

4.3.10 Index Page Register - Address 0CH

This 5-bit register contains bits 16-20 of the top item of the Return Stack. Bits
0-3 of the Index Page Register, (IPR), contain the contents of the Code Page
Register at the time the current subroutine was called (i.e., the memory page
number to which the processor will return when execution of the current
subroutine has been completed. Bit 4 contains the value of the Data Page
Register Select Bit (DPRSEL) at the time the current subroutine was called. See
Figure 4.1 and Section 5.2.2.

Bit A During Sub [

N
20191817,16151413121110 9 /8]7,6,5 413, 2, 1,0]

Y ~—— Type of Retum
Interrupt Retuma:
BO= 1
Subrosu:lgo Retums:
l D Retum =0
—— fae

Where DPRSEL Bit is
stored during Interrupt
or Subroutine Call

Blhmmbmﬂon = Subroutine Opeations

1PR

1]
Ronsnaiznelisie1anTin0 0 8]7.6,5 4]3.2,1,0)

FIGURE 4.1: RETURN STACK BIT ASSIGNMENTS

The Index Page Register provides a mechanism to access the upper bits of the
subroutine return address. Reads and writes to the IPR do not pop or push the

Return Stack. However, operations which push and po the Return Stack do -

overwrite the contents of IPR. These operations{’ii’nclu' 2 subroutine calls,

- addresses 01H and 02H. T what oo™ ole] B 5 % th's on covy

Reading this location pushes the contents of the IPR onto the Parameter-Stack

Writing to this location loads a new 5-bit value into the IPR. This operation
should be used with caution, because it will change the subroutine return address.

RTX Registers, Chapter 4 55

i

subroutine returns, and reads and writes to the Index egister at ASIC .Bus———""

[ehe

X

\

nok 7

4.3.11 Data Page Register, DPR - Address 0DH

When the DPRSEL bit (bit 5 of the IBC Rleglster) is set =1, this 4-bit reglster -

oV a&é $ -seestains the number of the memory page |wh1ch will be accessed by memory
? reference instructions. See Sectnons 4.3. 14 and 5.2.1.

|
K
i
\
|

' 4.3.12 User Page Register, UPR - Address OEH

This 4-bit register contains the number of the memory page which will be
‘accessed by User Memory Space instructions. See User Memory Access
Instructions in Chapter 7. . ’ ‘ . '

4.3;;13 Code Page Register, CPR - Address OFH

This register contams the number of the memory page which w1ll be accessed by

register the number for the memory page to be. accessed by memory
refere Ce mstruct:ons '

56 . : , RTX 2000 Family.Progranbner’s Reference Manual

all mstructlon fetch cycles. Additionally, .1f the DPRSEL bit is set =0, this

4.3.14 Interrupt Base/Control Register - Address 10H

The bits in this register control special ptocéssor setup and configuration values:
See Table 4.8 for the IBC Register bit assignments.. See Section 4.3.1 for -
information about additional control/status bits in CR.

TABLE 4.8: IBC REGISTER BIT ASSIGNMENTS

MSB |1B5(1B4)|1B3|1B2]1B1(IBO|TB1|TBO|CYCEXT |ROUND |DPRSEL[RES| * | * | * | = | LsB

e 1B0-1B5 [Bits 'lnterrupt Vector ’Base Address: Provides bits 10-15 of
Maslc: Ort] 10-15 | Interrupt vector generated by the Interrupt Controller
, during an INTA cycle. See Section 6.2.
X 6300 | 180 Bit 8 Timer Clock Select: Determine the source for the input
mo\9§L~ OA 781 Bit 9 clock signals for the 3 Counter/Timers. See Sec. @

CYCEXT |[Bit 7 CYCEXT on the RTX 2000 and 2001A: When =1, extends bus
Cg@@ . cycle by 1 PCLK period for every INTA cycle or User

0 Memory Instruction cycle. See Sec. 5.1.1 and 5.1.2.

CYCEXT on the RTX 2010: Allows extended cycle length

for User Memory Instruction cycles. See Sec. 5.1.

O

ROUND Bit 6 On the RTX 2000 and RTX 2010: ROUND option; when set
' to 1, the least significant 16 bits of the multiplier
O@q/p output are rounded into the most significant 16 bits.
See Section 6.3.
On the RTX 2001A: Reserved; should be set to 0 during
write operations.

DPRSEL |Bit 5 Data Page Register Select: Determines whether source
o O@Q . of bits 16-19 of Memory Address Bus are from CPR or
DPR for memory access instructions. See Sec. 5.2.2.

* Bits On the RTX 2000, these bits are reserved and should be
0-4 set to 0.
On the RTX 2010 and RTX 2001A, these are used as read-
p only stack controller flags where:
0 Fatal Stack Error Flag;
) 00 1 Parameter Stack Underflow Flag;
C)‘:(Bit 2 Return Stack Underflow Flag;
3 Parameter Stack Overflow Flag;
4 Return Stack Overflow Flag. -

RTX Registers, Chapter 4 . 57

4.3.15 User Base Register, UBR - Address 11H

The contents of this register point to the begiming of a 32 word memory block
which will be used for all User Memory Access instructions. See Section 5.2.3
for information about User Memory Space.j '

4.3.16 Address 12H
The function of this address is determined by the RTX processor being used.

4.3.16.1 On The RTX 2000 and RTX 2001A
This location is reserved on the RTX 2000 and RTX 2001A.

4.3.16.2 On The RTX 2010: MXR

The MAC Extension Register, MXR, is a 16-bit read/write register which
holds the most significant 16 bits of the MAC Accumulator. For the
Barrel Shifter instructions, this register holds the shift count. For the
Leading Zero Detector instructions, the leading zero count is stored in
this register.

58 RTX 2000 fMdly Programmer’s Reference Manual

4.3.17 Timer/Counter 0 - Address 13H

Reading this location pushes the current contents of Timer/Counter 0 onto the
Parameter Stack. See Section 6.4 for more information about Timer/Counters.

Writing to this location lbads the pre-load register for Timer/Counter 0.

4.3.18 Timer/Counter 1 - Address 14H

Reading this location pushes the current contents of Timer/Counter 1 onto the
Parameter Stack. See Section 6.4 for more information about Timer/Counters.

Writing to this location loads the pre-load register for Timer/Counter 1.

4.3.19 Timer/Counter 2 - Address 15H

Reading this location pushes the current contents of Timer/Counter 2 onto the
Parameter Stack. See Section 6.4 for more information about Timer/Counters.

Writing to this location loads the pre-load register for Timer/Counter 2.

RTX Registers, Chapter 4 | ' \ 59

4.3.20 Address 16H |

Operations using this address depend upon whether the RTX 2000, RTX 2010, TN

or the RTX 2001A Microcontroller is being used. o / \
4.3.20.1 RTX 2000 - MLR ‘

On the RTX 2000, this address is the Multiplier Low Register, MLR, and
is used with the RTX 2000 on-chip hardware multiplier.

Reading this location pushes the lower 16 bits of the multiplier output
onto the Parameter Stack. The contents of TOP are pushed into NEXT,
but NEXT is not pushed onto the stack. ‘

The MLR Register is a read-only register on the RTX 2000.

4.3.20.2 RTX 2001A - rX, Scratchpad/Counting Register

On the RTX 2001A, this address is the RX Register. The RX Register
is a general purpose Read/Write scratch pad register. Special
instructions are available to increment or decrement RX in one cycle.
This allows the RX register to be easily utilized as a 16-bit program
controlled counting register. ‘

Incrementing the register contents beyond the "all ones" state results in
a wrap to the "all zeros" state. Decrementing the register below the "all
zeros" state results in a wrap to the "all' ones" state.

4.3.20.3 RTX 2010 - MLR

On the RTX 2010, this address is for the Multiplier Low Register, MLR,
and holds the least significant 16 bits of the 32-bit product generated by
the on-chip hardware multiplier. This register is also used to hold the
least significant 16 bits of the MAC Accumulator, and Barrel Shifter.
See Section 6.3.2 for information about the Multiplier/Accumulator.
The MLR can be read or written on the RTX 2010.

60 . : RTX 2000 me'ly Programmer’s Reference Manual

,/«’

)

4.3.21 Address 17H

Operations at this address depend upon whether the RTX 2000 Microcontroller
or the RTX 2001A Microcontroller is being used. o -

4.3.21.1 RTX 2000 - MHR

On the RTX 2000, the Multiplier High Register, MHR, is used with the
on-chip hardware multiplier.

Reading this location pushes the upper 16 bits of the multiplier output
onto the Parameter Stack. The contents of TOP are pushed into NEXT,
but NEXT is not pushed onto the stack. The MHR Register is a read-only
register on the RTX 2000.

4.3.21.2 RTX 2001A - rRH

On the RTX 2001A, this address is for the RH Register. This is a 16-bit
scratchpad register for data storage, which provides faster access than
access to memory or a location buried in the stack.

4.3.21.3 RTX 2010 - MHR

‘On the RTX 2010, the Multiplier High Register, MHR, holds the most
significant 16 bits of the 32-bit product generated by the on-chip
hardware multiplier. If the IBC Register’s ROUND bit is set, this
register contains the rounded 16-bit output of the multiplier. In the
Accumulator context, this register holds the middle 16 bits of the MAC,

- or the most significant 16 bits of the Barrel Shifter. See Section 6.3.2
for information about the Multiplier/Accumulator.

RTX Registers, Chapter 4 61

ly Programmer’s Reference Manual

RTX 2000 F

62

- CHAPTER 5

EXTERNAL BUS INTERFACE

63

~ RTX 2000

Family Programmef’s Reference Manual

5 External .Bus Interfaces

Addresses for access to external memory or ASIC devices are output via either
the Memory Address Bus (MA19-MAO1) or the ASIC Address Bus (GA02-
GAO00). : :

External data is transferred by the ASIC Data Bus (GD15-GD00) and the
Memory Data Bus (MD15-MDO00), which are both bidirectional buses.

External Bus Interface, Chapter 5 65

5.1 ASIC Bus Interface

The ASIC Bus services both internal processor core registers and the on-chip
peripheral registers, and eight external off-chip ASIC Bus locations.

All ASIC Bus operations require a single cycle to execute and transfer a full 16-
bit word of data. The external ASIC Bus maps into the last eight locations of the
32 location ASIC Address Space. The three least significant bits of the address
are available as the ASIC Address Bus. Sele Table 5.1 for the address map.

TABLE 5.1: ASIC BUS MAP

ASIC BUS SIGNAL
ASIC ADDRESS

GA02 | GAO0 |GAO0O

0 0 0 18H

0 0 1 19H

0 1 0 1AH

0 1 I 1BH
1 0 ()} 1ICH

1 0 1| 1DH

66 RTX 2000 Famdy Programmer’s Reference Manual

5.1.1 RTX 2000 and RTX 2001A Extended Cycle Operation

On the RTX 2000 and RTX 2001A, bus cycle timing can be extended by
1 PCLK period to allow the use of some slow memory devices without
requiring the addition of external Wait states. When the CYCEXT bit (IBC
bit 7) is set equal to 1, extended cycles are used for all User Memory and
Interrupt Acknowledge cycles.

External Bus Interface, Chapter 5 ' » 67

5.1.2 RTX 2010 Extended Cycle Operation

On the RTX 2010, the user has the option of independently extending bus
cycle operations by 1 PCLK period for either User Memory Cycles or for
ASIC Bus Read operations. This provides the ability to interface to some
peripherals and slow memory devices without using externally generated
Wait states. ; ‘

Setting the Cycle Extend bit (CYCEXT),Vbit 7 of the IBC Register, will
cause extended cycles to be used for all accesses to User memory.

Setting the ASIC Read Cycle Extend bi:t (ARCE), bit 13 of the CR Register,
will cause extended cycles to be used for all Read accesses on the external
ASIC Bus. :

Both the CYCEXT bit and the ARCE jbit are cleared on Reset.

68

RTX 2000 F amily Programmer’s Reference Manual

5.2 Memory Interface

The RTX processors directly address 512K words of memory, divided into 16
pages of 32K words each. '

The memory page currently being addressed is selected by one of three 4-bit
"address page" registers, depending on what type of memory access is being
performed. :

The RTX addresses 3 types of memory space, each with an associated address
page register. These are Code space, Data space, and User space.

e Code Memory Space is accessed by all instruction fetch operations.
See Section 5.2.1.

¢ Data Memory Space refers to all memory locations accessed by
memory reference instructions. See Section 5.2.2.

¢ User Memory Space provides efficient access to a block of 32 words
which may reside anywhere in the processor’s memory space. See
Section 5.2.3.

The RTX instruction set includes classes of instructions for referencing each type
of memory space. With the exception of instruction fetches and streamed MAC
operations, RTX memory accesses involve the TOP and NEXT registers.

The TOP register contains the address of the memory location to be read or
written. The NEXT Register interfaces to the Memory Data Bus. For memory
writes, the value contained in NEXT is written to the location addressed by the
contents of TOP. For memory reads, the contents of the memory location
addressed by the contents of TOP are loaded into NEXT, then the stack is popped,
dropping the address and leaving the memory data in TOP.

External Bus Inteiface, Chapter 5 69

The RTX’s memory reference instructions have various forms which determine
the net stack effect of the memory read or write. Depending on the instruction
format, the contents of TOP and NEXT may be overwritten by memory data,
preserved on the stack or modified through ALU. operatlons

The RTX’s 20-bit Memory Address Bus is ¢omposed of the 16-bit address from-
the TOP register, and 4 bits from the appropnate address page reglster

The Code Page Register is used for all references to Code memory space, and
the Data Page or Code Page Register for all references to Data Space. The Code
and Data Page Registers may point to the same memory page, as in a system
containing all RAM memory, or to different pages, as in a system with mixed
ROM and RAM. Additionally, the CPR and DPR may point to the same page for
small RAM/ROM systems. User Space addresses are a special case, and are
discussed in Section 5.2.3.

The page address registets may be read or written by using ASIC Bus access
instructions (see Chapter 7). The registers may be read at any time to determine
the current active memory pages.

70 RTX 2000 fmdly Programmer’s Reference Manual

5.2.1 Code Memory Space

Code memory space contains machine instructions to be executed by the RTX [
processor. '

5.2.1.1 Subroutine Calls and Returns

RTX subroutine calls take place within the memory page specified by the Code
Page Register. Any instruction with Bit 15 (the most significant bit) set to 0 will
cause a subroutine call to the address contained in the lower 15 bits of the
instruction. The address to be called is calculated by shifting the value contained
in the instruction left by one bit and inserting a zero in the least significant bit.
For example, the machine instruction 3211H (Hex) will cause a subroutine call
to location 6422H. See Table 5.2.

Long Calls may be made to a memory page other than the current Code page by
first loading the appropriate page number into the Code Page Register, then
executing the subroutine call.

Loading a value into the Code Page Register performs two special functions.
First, the effect of loading the Code Page Register is delayed by one instruction,
so that the instruction following the load instruction is fetched from the current
code page. Second, interrupts are disabled for one clock cycle following the load
instruction. This guarantees that the instruction following the load (typically the
Call instruction) will be executed without an intervening Interrupt Service
Routine which might corrupt the contents of the registers.

Subroutine calls save their 21-bit return address on the Return Stack (the-top™ -+ "A‘?{
element is composed of the Index Register and the Index Page Registe%.yr
subsequent calls occur, the storing of subroutine return addresses in IPR and I
causes the previous contents of IPR and I to be pushed into the Return Stack.
The 21-bit return address is contained in the Index Register and the Index Page
Register and consists of the following: -

External Bus Interface, Chapter 5 71

Index Register (1), at address O1H

¢ Bit0 Set to 1 if call results from an interrupt acknowledge, 0
' otherwise. As mdlcated by "i" in Figure 5.2.

~® Bits 1-15 Word address to which to return (bits 1-15 of Program
Counter). The least significant bit of the return address is
implicitly O since instructions are always fetched on word

- boundaries.

Index Page Register (IPR)
e Bits0-3 Code page to which to i'etum

* Bit 4 Value of DPRSEL bit (see descrlptlon of Data Memory). As
indicated by "D" in Figure 5.2.

| <====IPR-==> | <-=emeccucmccmcanaans T T > |

4] 3] 2] 1| of15{14{13[12[11(10| 9| 8| 7| 6| 5] 4] 3] 2] 1] 0

-] IPR and 1
D -CPR : Program Counter ‘ i] Registers
.) (current
return address)

Top stack memory

D CPR Program Counter . - i] element of Return

Stack (previous |
return address)

: : : Second stack
D CPR Program Counter : i| memory element
: (etc.)

FIGURE 5.2: RETURN STACK STRUCTURE

72 RTX 2000 Family Programmer's Reference Manual

7

.//.\\
/
P

Example: Code executing at location 1220H in Code Page 3 calls a
subroutine located at address 3322H in Code Page 4. See Table 5.2.

TABLE 5.2: SAMPLE SUBROUTINE CALL AND RETURN

Actual
Address Address
Cycle Code Page (PC) (MA19-MAO1) Instruction
1 3 1220 31220 Set CPR = 4
2 3 1222 31222 Call location 3322H
3 4 3322 43322 1st subroutine instruction
4 4 3324 43324 2nd instruction
5 4 3326 43326 Return From Subroutine
[3 1224 31124 1st instruction after Call
Yo

5.2.1.2 Branching

Branching instructions work similarly to subroutine calls. Branches may be ™
performed across page boundaries by first loading the Code Page Register with
the new page number (the current page plus 1 for forward branches, the current
page minus one for backward branches). See Chapter 7 for specific details on
branch instructions.
If the instruction following a "Load Code Page Register" instruction is not a Call
or Branch, it will be executed, then the next instruction will be fetched from the
memory page specified by the new contents of the Code Page Register.

External Bus Interface, Chapter 5 , 73

5.2.2 Data Memory Space

Data Memory refers to memofy locations accessed by the RTX’s "Data Memory
Access” class of instructions. These would typically be RAM locations used for
variables and data storage. : ’

5.2.2.1 Memory Page Selection

The memory page referenced by data membry instructions may be selected by
either the Data Page Register or the Code Page Register. The DPRSEL bit (Data
Page Register Select bit, IBC bit 5) determines which register will be used.

When DPRSEL = 0, all main memory accesses will occur in the memory page
addressed by the Code Page Register. This is the default mode. In this mode,
code and data memory spaces to reside in the same memory page, and would
typically be used in systems with 64K bytes or less of memory. In such a
system, the Memory Address Bus bits generated by the page select logic (bits
MA19-MA16) would not be required. ; ' »

When DPRSEL = 1, all main memory accesses will occur in the memory page |
addressed by the Data Page Register. The Data Page Register may point to the
same page as the Code Page Register, or to a separate page. '

The state of the DPRSEL bit may be controlled through three methods. First,
DPRSEL is directly readable and can be set as a bit in the Interrupt Base/Control -
register. Second, it may be set or reset in one clock cycle by special forms of
the Register read/write instructions pertaining to the Data Page Register (see
"Predefined ASIC Bus Instructions” in Chapter 7). Third, DPRSEL is saved as
bit 4 of the Index Page Register during subroutine calls. The value in IPR may
be modified by a subroutine; the new value will be written into the DPRSEL bit
and take effect as soon as a Subroutine Return instruction is executed.

74 RTX 2000 Family Programmer’s Reference Manual

5.2.2.2 Memory Access Mode Selection

To support the use of shared memory interfaces with other processors, the RTX
can be configured to access Data Memory in either of two modes which
determine whether the byte order in memory will be High-Low (Mode 0) which
is the default mode, or Low-High (Mode 1). Bit 2 of the Configuration Register
is used to select the Data Memory Access Mode.

The default, Mode 0, is selected when CR bit 2 = 0. This means that the most
significant byte of data in the processor register (NEXT) will be read from or
written to the even byte address in memory, and the least significant byte of data
in NEXT will be read from or written to the odd byte address in memory.

Mode 1 is selected when CR bit 2 = 1. This means that the most significant
byte of data in NEXT will be read from or written to the odd byte address in
memory, and the least significant byte of data in NEXT will be read from or
written to the even byte address in memory. See Figure 5.3.

MODE 0 MODE 1
- Data Byte

L MS BYTE | LS BYTE | | MS BYTE | LS BYTE Order
in NEXT
Data Byte

L MS BYTE | LS BYTE j | LS. BYTE | MS BYTE order in
Memory

| Even Address | 0dd Address | | Even Address | Odd Address |

- FIGURE 5.3: MEMORY ACCESS MODES

/ In addition to allowing selection of byte order, the RTX allows the user to
choose between accessing Data Memory in either 16-bit words or 8-bit bytes.

et dpes This M"‘?j

External Bus Interface, Chapter 5 75

5.2.2.3 Memory Access Examples

Byte reads from locations 1000H and 1001H will both read a byte from word
address 1000H. CR bit 2 and bit 0 of TOP determine which byte of the memory
location will be accessed. For 8-bit writes, only bits 0-7 of NEXT are transferred
to memory. For 8-bit reads, data from memory is transferred into bits 0-7 of
NEXT; bits 8-15 of NEXT are set to 0.

Example: Reading and Writing a 16-bit value (1234H) to memory location
1000H (all values are in hexadecimal) yields the results shown in Figure 5.6 at

the end of the first cycle.
Memory Read
CRbit2=0 CR bit 2 =1
Memory 1000 1001 1000 1001
12 | 34 12 | 34
TOP 1000 1000
NEXT 1234 3412
Memory Write
CR bit2=0 CR bit 2 = 1
TOP 1000 1000
NEXT 1234 1234
Memory 1000 1001 1000 1001
12 | 34 3 | 12
| I T { S

FIGURE 5.6: 16-BIT READ/WRITE TO EVEN MEMORY ADDRESS

76 RTX 2000 Family Programmer’s Reference Manual

The least significant bit of the memory address contained in TOP may also be
used to control the Byte-swapping feature. If the LSB of TOP is 1 when
performing a 16-bit memory access, then an odd byte address is being accessed.
This means that the same word address will be read or written, but the bytes of
the word read or written to memory will be swapped.

Accessing a word with the LSB of the address set to 1 effectively inverts the Byte
Order bit.

Example: Reading and Writing a 16-bit value (1234H) to memory location
1001H (all values are in hexadecimal) yields the results shown in Figure 5.7 at
the end of the first cycle.

Memory Read
CR bit2=0 CR bit 2 = 1
Memory 1000 1001 1000 1001
12]34]
TOP 1001 1001
NEXT 3412 1234
| | | I |
Memory MWrite
CR bit2=0 CR bit 2 =1
TOP 1001 1001
NEXT 1234 1234
Memory 1000 1001 1000 1001
34 | 12 12 | 34
IR S | | IS — |

FIGURE 5.7: 16-BIT READ/WRITE TO ODD MEMORY ADDRESS

External Bus Interface, Chapter 5 77

The Byte Order bit also affects 8-bit memory accesses. If the Byte Order bit is
set to 1, the LSB of the address contained in TOP is inverted before performing
the memory read or write. Following are two examples.

- Example: Reading and Writing an 8-bit value to memory location 1000H yields
the the results shown in Figure 5.8 at the end of the first cycle:

Memory Read :
CR bit2=0 CR bit 2 = 1
Memory 1000 1001 1000 ' 1001
12 | 3 | ['12‘ 34
L]
TOoP 1000 1000
NEXT 0012 0034
— 1 | S |
Memdrz Write'
.CRbit2=0 CR bit 2 =1
ToP 1000 1000
NEXT 0012 0012
v : v
Memory 12 | nc nc | 12 nc = not changed
1000 1001 1000 1001

FIGURE 5.8: 8-BIT READ/WRITE TO EVEN MEMORY ADDRESS

78 RTX 2000 Family Programmer’s Reference Manual

Example: Reading and Writing an 8-bit value to memory location 1001H yields

the results shown in Figure 5.9 at the end of the first cycle.

Memory Read
CR bit2=0 CR bit 2 = 1
Memory 1000 1001 1000 1001
12 | 34 12 | 34
I
TOP 1001 ' 1001
NEXT 0034 0012 |<—
I |
Memory Write
CR bit2=0 CR bit 2 = 1
TOP 1001 1001
NEXT 0012 0012
—
v v
Memory nc 1?' 12 | nc nc = not changed
1000 1001 1000 1001

FIGURE 5.9: 8-BIT READ/WRITE TO ODD MEMORY ADDRESS

External Bus Interface, Chapter 5

79

5.2.3 User Memory Spéce

User Memory space is a block of 32 words which the RTX processor can access
without having to first calculate an address and load it into TOP. The logical
address to be referenced within the 32-word block is embedded in the machine
instruction which accesses the memory location.

User Memory space would typically be used to hold data which must be accessed
frequently, such as system parameters or context save areas in a multi-tasking
system. See Chapter 7 for descriptions of the User Memory Reference
Instructions.

The physical address to be accessed when addressing User Memory space is
derived from several components, shown in Figure 5.10.

The User Page Register (UPR bits 03-00) points to the memory page to be used
for User Memory Access. The User Base Address Register (UBR bits 15-06)
contains the offset for the particular 32-word block to be accessed by User
Memory Instructions. The exact word in the 32-word User block to be accessed
is specified by the address contained in the lower 5 bits of the User Access
Instruction. o ‘ 5

As indicated in Figure 5.10, bits 05-01 of the UBR Register are logically OR’ed
with the 5 address bits embedded in the User Access Instruction (IR bits 04-00),
and the results yield the next five memory address bits (MA05-MAQ1). Because
of the logical OR which takes place, only the ten most significant bits of UBR
should be used to specify the User Base Address, since setting the lower bits will
have the effect of reducing the user block size by duplicating addresses.

Finally, since User accesses are a]Ways on word boundaries, bit 0 of the UBR
should always be zero.

Table 5.3 provides some samples of addresses, as determined by the contents of
UPR, UBR, and IR.

80 7 RTX 2000 Family Programmer’s Reference Mc_mual

USER PAGE [uPR]
REGISTER [1514131211109:8/7,6,5,4]3,2, 1,0

RESERVED*
MA19
MA18
MA17
MA168

'\

4

' 3

USER BASE [UBR]
ADDRESS -
REGISTER ‘151141131211“0918'7]3_|5H4|»|3|211!0

MAOS | —
MAO4 (
uacae——C =
- .
mrct «—— -
N QENERATE

A
INsTRUCTION (1514131217109 18] 77615'4]3'27170
__Im

REGISTER

FIGURE 5.10: USER MEMORY ADDRESS COMPONENTS

External Bus Interface, Chapter 5 81

TABLE 5.3; USER MEMORY ADDRESS EXAMPLES

. UPR (4 bits) UBR (10 bits) Address fieltfi (5 bits) Actual Address (20 bits)

from IR .
OH 12404 O3H . 01246H
2H 31404 OFH _ 2315EM
aH 33104 T 2333EH

Note that in the third example some locationjs within the 32-word block will not
be accessible because bit 4 in the User Base Register is set to 1 and will cause
the corresponding bit of the address to always be set due to the OR operation.

By adjusting the contents of the User Page Register and User Base Register, an
application may have any number of 32-word User spaces (up to 1 megabyte).

The byte-swapping operations described for the Data Memory accesses do not
affect User Memory accesses. ’

82 , ‘ RTX 2000 Family Programmer’s Reference Manual

: CHAPTER 6

" ON-CHIP PERIPHERALS

On-Chip Peripherals, Chapter 6

83

ly Programmer’; Reference Manual

F

RTX 2000

|
|
I

6 On-Chip Peripherals

The RTX 2000' Series microcontrollers contain hardware to support many of the
functions typically needed in real-time control systems. These include two Stack
Controllers, an Interrupt Controller, and three 16-bit Counter/Timers.

In addition, the RTX 2000 offers an on-chip 16-by-16 Hardware
Multiplier, while the RTX 2010 offers an on-chip Multiplier/
Accumulator, Leading Zero Detector, 32-bit Barrel Shifter,
hardware floating point support, and multi-tasking stack support.

All on-chip peripheral devices are accessible through the ASIC Bus by the use
of ASIC Bus Read and Write instructions. The contents of the TOP register may
be written to the devices, and the outputs of the devices may be read through the
ALU into the TOP register.

This section contains the information necessary for programming the On-Chip
Peripheral devices. Refer to Chapter 4 for more information about the ASIC Bus
addresses for each device.

On-Chip Peripherals, Chapter 6 85

6.1 Stack Controllers

Each RTX Microcontroller contains two identical stack controller circuits, one
for the Parameter Stack, and one for the Return Stack. The RTX Stack
Controllers utilize stack pointers and stack limits for control of stack operations.
Specific details of how the stack controllers work are determined by the type of
processor being used. '

On the RTX 2000, operation of the Programmable Stack Controllers
depends on the contents of two registers, the Stack Pointer Register
(SPR), and the Stack Limit Register (SLR).

On the RTX 2001A, operation of the Programmable Stack
Controllers depends on the contents of three registers. These
registers are the Stack Pointer Register (SPR), the Stack Overflow
Limit Register (SVR), and the Stack Underflow Limit Register
(SUR).

On the RTX 2010, operation of the Programmable Stack Controllers
depends on the contents of three registers. These registers are the
Stack Pointer Register (SPR), the Stack Overflow Limit Register
(SVR), and the Stack Underflow Limit Register (SUR). To use these -
registers to perform Multitasking operations, see Section 6.1.3.2. ‘ "

86 RTX 2000 Family Programmer’s Reference Manual

6.1.1 Stack Pointer Operation

The Stack Pointers for both stacks are combined into one 16-bit register for
access through the ASIC Bus. This register may be used to read and write both
stack pointers in parallel. The stack pointers are used to determine the "top"
location in stack memory for each stack.

6.1.1.1 Stack Pointers For the RTX 2000

On the RTX 2000, the value for each stack pointer is initialized to

a value of 0 at reset, and can range from O to 255. Each stack

pointer indicates the position of the "top" item in stack memory,

which contains the data that was most recently pushed into the
. stack. See Figure 6.1. :

|
is1aanz

EIICIE: (T I T T

EEENEO0 GOGOERRED

SIR

FIGURE 6.1: RTX 2000 STACK CONTROL

On-Chip Peripherals, Chapter 6 . 87

The Stack Pointer Register is at ASIC address 09H, and may be
used to read and write both stack pointers. Bits 0-7 contain the

stack pointer value for the Parameter Stack, while bits 8-15 contain

the pointer value for the Return Stacjk (see Figure 6.2).

jSPR] R
1514131211109,:8(7,6,5,4/3,2,1,0

‘t————— PSP, Parameter
Stack Pointer

» RSP, Retum
Stack Pointer

FIGURE 6.2: RTX 2000 STACK POINTER REGISTER

During a stack push operation, the SPR is incremented by 1 before
the new item is pushed onto the sta}ck (i.e., when the operation
begins, the register contains the address of the next stack location
to be written for each stack). The Stack Pointer may be set to a
new value by writing to SPR; the value written to the register should
be one less than the address of the first location to be written.

During a stack Read operation, the pointer indicates the next item
which can be popped from the stack memory. After that item has
been popped, the stack pointer is decremented by 1. Since reading
the stack pointer pushes a value onto the Parameter Stack, the value
read will be 2 more than the number of items on the Parameter
Stack prior to reading the Stack Pointer Register.

Stack Underflow on the RTX 2000 - The SPR monitors the total

number of items on the stacks, and will generate a "stack

underflow" interrupt request if more items are popped from the
stack than were pushed onto it. The underflow signals are fed to
the Interrupt Controller (see Section 6.2) and may be masked
through the Interrupt Mask Register (IMR).

88

RTX 2000 Family Programmer’s Reference Manual

IS
oA

6.1.1.2 RTX 2001A and RTX 2010 Stack Pointers

On the RTX 2001A and RTX 2010, the value for each stack pointer
is initialized to a value of 0 at reset. On the RTX 2001A the stack
pointer values can range from 0 to 63; on the RTX 2010 they can
range from 0 to 256.

Each stack pointer indicates the position of the "top" item in stack
memory, which contains the next stack element to be accessed in a
stack write operation. After a stack write ("push”) operation, the
stack pointer is incremented.

In a stack read operation, the stack memory location with an address
one less than the pointer location will be accessed. After a stack
read ("pop") the pointer is decremented. See Figure 6.3.

[3]
15141312/1110,8,8 [7,6,5,4,3,2, 1,0
|]
18141312(14109,8(7,8:6,4,3,2, 1,0

FIGURE 6.3: RTX 2001A/2010 STACK CONTROL

On-Chip Peripherals, Chapter 6 89

On the RTX 2001A, bits 0-5 contain the stack pointer value for the
Parameter Stack, while bits 8-13 contain the pointer value for the
Return Stack. See Figure 6.4.

15,148 12|11,10,9,8[7,6,5,4[3,2,1,0
; PSP, Parameter Stack
Pointer
Reserved *

RSP, R Stack
Pointer

Reserved *

FIGURE 6.4: RTX 2001A STACK POINTER REGISTER

On the RTX 2010, bits 0-7 contain the stack pointer value for the
Parameter Stack, while bits 8-15 contain the pointer value for the
Return Stack. See Figure 6.4.

15,4/8,12|11,10,9,8(7,6,5,4[3,2, 1,0
Vs N—

) S PSP, Parameter Stack

Pointer

RSP, Ret Stack
Pointer

FIGURE 6.5: RTX 2010 STACK POINTER REGISTER

90 RTX 2000 Family Programmer’s Reference Manual

6.1.2 Stack Limit Operation

Stack limits are used to prevent data stored in the stack from being overwritten. E
Since the stacks wrap around, existing data on the stack will be overwritten by
the new data when an overflow occurs. Underflows occur when an attempt is
made to pop data off an empty stack, causing invalid data to be read from the
stack. Since the processor can take up to four clock cycles to respond to an
interrupt, the values set into the stack limit registers should include a safety
margin which allows valid stack operation until the processor executes the
interrupt service routine.

On the RTX 2000, RTX 2010, and RTX 2001A, a buffer zone may
be set up so that stack error interrupts are generated prior to an
actual overflow. In addition, the RTX 2001A and RTX 2010
Underflow Limit Registers provide the capability to define an
underflow buffer.

The RTX 2000 Family processors utilize ASIC Address 0BH for the
16-bit, write-only register which contains the maximum stack size
limits for the Parameter and the Return Stacks. On the RTX 2000,
this register is called the Stack Limit Register, (SLR). On the RTX
2001A and RTX 2010, it is called the Stack Overflow Limit
Register, (SVR). '

6.1.2.1 Stack Limits For the RTX 2000

On the RTX 2000, the maximum limit for the Parameter Stack is in
bits 0-7 of the Stack Limit Register; bits 8-15 contain the maximum
limit for the Return Stack (see Figure 6.6). These limit values
determine the number of items which may be pushed onto each
stack before the Interrupt Controller will generate a "Stack
Overflow" interrupt signal. The Limit Register for both stacks must
be initialized on powerup or reset, if stack error interrupts are to be
used.

On-Chip Peripherals, Chapter 6 ‘ 91

151413121110918/7,6,5,4/3,2,1,0
151413121 AL Q)

Y_, PSL, Parameter
" Stack Limit

» RSL, Retum
Stack Limit

FIGURE 6.6: RTX 2000 STACK LIMIT REGISTER

6.1.2.2 Stack Limits For the RTX 2001A

The RTX 2001A and RTX 2010 Microcontrollers utilize two
registers to provide stack limit control. They are the Stack
Overflow Limit Register, SVR at ASIC address OBH, and the Stack
Underflow Limit Register, SUR at ASIC address 0AH; SVR is write-
only register.

Overflow limits: The overflow limit is the number of items which
may be pushed onto the stack before an interrupt will be detected.
Bits 0-5 of the Stack Overflow Limit Register contain the maximum
limit for the Parameter Stack, and bits 8-13 contain the maximum
limit for the Return Stack (see Figure 6.7).

15 u,mzlnm.o,air.e.s.da,z. 1,0

PVL: Parameter
Stack Overfiow Limi

Reserved, shouid be set
= 0 during Write operations

RVL: Return Stack
Overflow. Limit

Reserved, should be set
= 0 during Write oporgﬁonl

FIGURE 6.7: RTX 2001A STACK OVERFLOW LIMITS

92 RTX 2000 Family Programmer’s Reference Manual

Underflow limits: Bits 3-7 of the Stack Underflow Limit Register
contain the underflow limit for the Parameter Stack, and bits 11-15
contain the underflow limit for the Return Stack. See Figure 6.8.

15,14/13/12|1110,9,8]7,6,5,4/3,2, 1,0
——

PSF: Parameter Stack
Start Flag

Parameter Substack bit:

= 0: two 32 word stacks
= 1: one 64 word stack

Reserved *)

PSU: Parameter
Stack Underflow Limit
0 - 31 words from
bottom of stack

RSF: Return Stack
Start Flag

Retum Substacks bit:
= 0: two 32 word stacks
= 1: one 64 word stack

Reserved *

— RSU: Return Stack

Underflow Limit
0 - 31 words from
bottom of stack

FIGURE 6.8: RTX 2001A STACK UNDERFLOW LIMITS

6.1.2.3 Stack Limits For the RTX 2010

The RTX 2010 Microcontroller utilizes two registers to provide
stack limit control. They are the Stack Overflow Limit Register,
SVR at ASIC address OBH, and the Stack Underflow Limit

Register, SUR at ASIC address 0AH.

‘Overflow limits: The overflow limit is the number of items which
may be pushed onto the stack before an interrupt will be detected.
Bits 0-7 of the Stack Overflow Limit Register contain the maximum
limit for the Parameter Stack, and bits 8-15 contain the maximum

limit for the Return Stack (see Figure 6.9).

On-Chip Peripherals, Chapter 6

93

S

15,14,13,12[11|10|9 |8'7|6|5|4|3|2 11,0
. /\.
~ Y——— PVL: Parameter

: Stack Overflow Limit.
Number of words from
top of current substack
RVL: Return Stack
Overflow Limit.
Number of words from
top of current substack

FIGURE 6.9: RTX 2010 STACK OVERFLOW LIMITS

Underflow limits: Bits 3-7 of the Stack Underflow Limit Register
contain the underflow limit for the Parameter Stack, PSU, and bits
11-15 contain the underflow limit for the Return Stack, RSU. See
Figure 6.10. In addition, this register is utilized to define the use
of substacks for both stacks (see Section 6.1.3). All Stack
Underflow Limit Register values must be accessed together.

SUR
15/14/1312]1110,98[7,6,5,4]3,2,1,0
,__/\\ 7

/ PSF: Parameter Stack
Start Flag

Parameter Substack bits:
= 00: eight 32 word stacks
= 01: four 64 word stacks
= 10: two 128 word stacks
= 11: one 256 word stack

PSU: Parameter
Stack Underflow Limit
0 - 31 words from
bottom of substack

RSF: Return Stack
Start Flag

Return Substack bits:

- = 00: eight 32 word stacks
= 01: four 64 word stacks
= 10: two 128 word stacks
= 11: one 256 word atack

RSU: Return Stack
Underflow Limit

0 - 31 words from
bottom of substack

FIGURE 6.10: RTX 2010 STACK UNDERFLOW LIMITS

94 RTX 2000 Family Programmer’s Reference Manual

6.1.3 = Configuration Of Substacks

The enhanced Stack Controller logic on the RTX 2001A and RTX
2010 allows the stack related registers to be used for configuring
substacks.

6.1.3.1 Substack Configuration On The RTX 2001A

Each 64-word stack may be subdivided into two substacks under
hardware control for simplified management of multiple tasks. Each
substack is 32 words deep. Stack size is selected by writing to bit
1 of the Stack Underflow Limit Register for the Parameter Stack,
and bit 9 for the Return Stack. See Figure 6.7. '

Substacks are implemented by making bits-5 or 13 of the Stack
Pointer Register control bits (i.e. they are not incremented when the
stack size is 32 words). Using this, a particular substack is selected
by writing a value which contains both the stack pointer value and
the substack number to the Stack Pointer Register.

Each stack has a Stack Start Flag which ‘may be used for virtual
stacks. This is bit O of the SUR for the Parameter Stack, and bit 8
of the SUR for the Return Stack. If the Stack Start Flag is one, the
stack starts at the bottom of the stack or substack (location 0). If
the Stack Start Flag is 0, the substack starts in the middle of the
stack. In a stack 64 elements deep, this is location 32; In a stack 32
elements deep, this is location 16. An exception to this occurs if
the overflow limit in the Stack Overflow Limit Register is set for a
location below the middle of the stack. In this case, the stacks
always start at the bottom locations. '

On-Chip Peripherals, Chapter 6 95

Manipulating the Stack Start Flag provides a mechanism for creating
~ a virtual stack in memory which is maintained by interrupt driven
~ handlers.

Possible applications for substacks include use as a recirculating
buffer (to allow quick access for a series of repeated values such as
coefficients for polynomial evaluation or a digital filter), or to log
a continuous stream of data until a triggering event (for analysis of
data before and after the trigger. without having to store all of the
incoming data), as in the case of a digital oscilloscope or logic
analyzer.

See;, Table 6.1 for control bit settings for possible stack/substack
configurations. In Table 6.1, note the following:

1. SPR is the Stack Pointer Register; SVR is the Stack Overflow
Limit Register; SUR is the Stack Underflow Limit Register.

2. PO through P15 are the SPR bits; . V0 through V15 are the SVR
bits; U0 through U15 are the SUR bits.

3. The Overflow Limit is the stack memory address at which an
overflow condition will occur during a stack write operation.

4. The Underflow limit is the stack memory address below which an
underflow condition will occur during a stack read operation.

5. The Fatal limit is the stack memory address at which a fatal error
condition will occur during a stack read or write operation.

6. Stack error conditions remain in effect until a new value is
written to the SPR.

7. Stacks and substacks are circular. After Wwriting to the highest
location in the stack, the next location to be written to Will be
the lowest Llocation; after reading the lowest location, the

highest location will be read next.

96 RTX 2000 Family Programmer’s Reference Manual

9 41dvy) ‘spiayduag dmyd-up

L6

NOLLVINOIINOD MIVISINS VIZ XLA :I'9 ATIVL

CONTROL BIT SETTINGS: PARAMETER STACK CONFIGURATION:
STACK STACK RANGE -
|[SPR] SIZE LOWEST | HIGHEST FATAL UNDERFLOW LIMIT OVERFLOW LIMIT
PS5 | VS | v4 U2 U1 | UO | (WORDS) | ADDRESS | ADDRESS LiMir Sj4)3]|2}]1 0O |S|4]3]2 1 o
o|XxXjJojojojx 32 -0 31 31 O |0 Jusjusjusjusjo|o |vajva]vi|vo
01X f1 ojojo 32 0 31 15 0o 1 Jus Jusjudsjuzjo o |vajva]|vi]|vo
0]X 1 0101} 32] 31 31 O o fusjusjusjualo |1 Jvafvza]vi]vo
1 Xlo0]Jojo]Xx 32 32 63 63 1 0 |us |us Ju4jus] 1 0 jvajvz|vi|vo
1 X 11 ojojo 32 32 63 47 1 1 Jus jus Jusa jus | 1 0 jva|v2|vt|vo
1 X 11 ojo]1 32 32 63 83 1 0 Jue |us fusa jus] 1 1 Jvajv2ivi|vo
XjJojxj]ojg1 X 64) 63 63 O Ju7 jue Jus |us |usa|o |va]valvza]|wvi|vo
X |1 Xj0}]1] 64 0o 63 31 1 Ju7 Jus [usfud Juafo Jvajva|vz|vi|vo
X |1 Xj101}1 1 84 (4] 63 63 O fu7 Jue Jus Jus Jusa | 1 Jva]va|va|wvi {vo
CONTROL BIT SETTINGS: RETURN STACK CONFIGURATION: 4
) STACK STACK RANGE
SVR SIZE LOWEST | HIGHEST FATAL UNDERFLOW LIMIT OVERFLOW LIMIT
lPlS V13 |vi2]uto| Ue | Us | (WORDS) | ADDRESS | ADDRESS LMt 5|4 l 3 |2 1105 |4}]3]2 1 [}
ofjxj0jojo|x 32 (] 31 31 ofjo IU‘M uigjut2juit i o | o fviijvio|ve |vs
olX |1 ojojo 32 o 3 15 [} 1 [nafuigjurzfuir| o | o |vi1jvio|ve |vs
0]XxX 11 ojo |1 32] 31 31 0 | 0 jutajurauI2furr| 0 | 1 jvitfvio|ve |vs
1 XJ]ojJojolx 32 32 63 63 1 0 |utajurgjur2furt | 1 0 |viti]vio|ve |ve
1 X 11 ojojo 32 32 63 47 1 1 Ju14fuijurzfuir | 1 0 Vit vio|ve |vs
1 X 11 ojo|1 32 32 - 63 63 1 0 jut4jugfui2juin | 1 1 Vi1 jvio]ve | vs
XjJo|Xx]o |1 X 64] 63 63 0 Juisjuldjuisjui2futr | o fvizjviiJvio| ve | vs
X |1 X]oj1 o 64 o 63 31 1 Juisjutauidfur2jutt| o Jviz|vii Jvio|ve | ve
X |1 Xj]o}|1 1 64 .0 63 63 0 |uisfutajuigfut2uir] 1 fviz|vii {vio]ve | vs

6.1.3.2 Substack Configuration On The RTX 2010

Each 256-word stack may be subdivided into up to eight 32-word
substacks, four 64-word substacks, or two 128-word substacks.
This is accomplished under hardware control for simplified
management of multiple tasks. Stack size is selected by writing to
bits 1 and 2 of the SUR for the Parameter Stack, and bits 9 and 10
for the Return Stack.

Substacks are implemented by making bits 5-7 of the SPR (for the
Parameter Stack) and bits 13-15 of the SPR (for the Return Stack)
control bits. For example, if there are eight 32-word substacks
implemented in the Parameter Stack, bits 5-7 of the SPR are not
incremented, but instead are used as an offset pointer into the
Parameter Stack to indicate the beginning point (i.e. substack
number) of each 32-word substack implemented. Because of this,
a particular substack is selected by writing a value which contains
both the stack pointer value and the substack number to the SPR.

Each stack has a Stack Start Flag which may be used for virtual
stacks. This is bit 0 of the SUR for the Parameter Stack, and bit 8
of the SUR for the Return Stack.

If the Stack Start Flag is one, the stack starts at the bottom of the
stack or substack (location 0). If the Stack Start Flag is 0, the
substack starts in the middle of the stack. In a stack 256 elements
deep, this is location 128; In a stack 128 elements deep, this is
location 64; In a stack 64 elements deep, this is location 32; In a
stack 32 elements deep, this is location 16.

An exception to this occurs if the overflow limit in the Stack
Overflow Limit Register is set for a location below the middle of
the stack. In this case, the stacks always start at the bottom
locations. ~ See Tables 6.2 and 6.3 for the possible stack
configurations. Manipulating the Stack Start Flag provides a
mechanism for creating a virtual stack in memory which is
maintained by interrupt driven handlers.

98 RTX 2000 Family Programmer’s Reference Manual

Possible applications for substacks include use as a recirculating
buffer (to allow quick access for a series of repeated values such as
coefficients for polynomial evaluation or a digital filter), or to log
a continuous stream of data until a triggering event (for analysis of
data before and after the trigger without having to store all of the

incoming data). The latter application could be used in a digital '

oscilloscope or logic analyzer.

On-Chip Peripherals, Chapter 6

99

001

IONUDH 20u243[2Y s, sounuviSolq Knuv.y 000Z XIY

NOLLVINOLINOD JMJVISINS 0107 XLA

T9 ATAVL

CONTROL BIT SETTINGS . PARAMETER STACK CONFIGURATION
SVR SUR FATAL LIMIT UNDERFLOW LIMIT OVERFLOW LIMIT
VZ Ve VS . V4 |U2 UtlUo} 7 (] S 4 3 2 1 0}7 8 [] 4 3 2 1 0 7 [S 4 3 2 1 0
X X X o0 0O O XJP7 P8 PS5 1 1 1.1 1JP7 P8 PS 0O U6 US U4 U3I|P7 P8 PS O V3 V2 Vi VO
X X X 1 O O OjP?7 P8 P5 0 1 1 1 1|P7 PB P5 1 UB U5 U4 .U3|P?7 P68 P5 0 V3 VZ Vi VO
X X X 1 O O 1]JP7 P68 PS5 1 1 1 1 1|P7 P6. PS5 0O U6 U5 U4 U3|P7 P8 P5 .1 V3 V2 Vi VO
X X o0 X]lo 1 xX|P? P8 1 1 1 1 1 1|P?7 P6 O U7 U6 U5 U4 U3|P7 P8 O V4 V3 V2 VI Vo
X X 1 X O 1 O)jP7 P& O 1 1 1 1 1}JP7 P8 1 U7 U6 US U4 U3I|P7 PB 0O V4 V3 V2 VI VO
X X 1 X O 1 1{P7 P8 1 1 1 1 1 1]P?7 P6 0O U7 U6 U5 U4 UI|[P? P8 1 V4 V3 V2 Vi VO
X o0 X X 1 0 X|P? 1 1 11 1 1 1|P7 0 O U7 U8B US U4 U3|P? O V5 V4 V3 V2 Vi Vo
X 1 X X 1 0 0jP7 O 11 1 1t 1 1]P7 1 0 U7 U Us U4 U3JP? O V5 V4 V3 V2 Vi Vo
X 1 X X 1. 0 1|P7 1 1 1 1 1 1 1|P7 0. 0 U7 U6 US U4 U3|P?7 1 V5 V4 V3 V2 Vi Vo
0 X X X 1 1. X1 1 1 11 11 1J0 0O 0. U7 U US U4 UI|] O VB V5 V4 Vi V2 VI Vo
1 X X XJ]1- -1 0]0 1 1 1 1 1 1 1} (o] 0 U7 Us US U4 U3] 0O v8 V5 V4 Vv3 'v2 vi Vo
1 X X X 1 1 111 1 1 11 1 1 110 O O U7 U8B U5 U4 U3| 1 VB V5 V4 V3 V2 Vi Vo
CONTROL BIT SETTING PARAMETER STACK CONFIGURATION
SVR : SUR - FATALLIMIT UNDERFLOW LIMIT OVERFLOW LIMIT
V1S V14.V1S V12|U10 U9 UB| 7 [] 5 43 2 1 0|7 [5 4 3 2 1 [7] 5 4 3 2 1 0
X X X o0 0O O X|P15 P14 P13 1 1 1 1 1]|P15 P14 P13 0 U14 U113 U12 U11|P15 P14 P13 0 V11 VIO V9 va8
X X 4 1 0 00 LPIS P14 P13 0 1 1 1 1]lP15 P14 P13 1 U14 U13 U12 U11|P15. P14 P13 0 V11 VIO V9 V8
X X X 1 0 0 1JPIS P14 P13 1 1 1 1 1|P15 P14 P13 O U4 UI3.U12 UNM|P15 P14 P13 1 Vi1 VIO V9 v8
X X o0 X 10 1t X|PIS5P14 1 1 1 1 1 1]PI5S P14 0 U155 U14 U13 U12 U1 |P15 P14 O V12 Vi1 Vi0 V9 V8
X X 17X 0 1 O|PISPI4 O 1 1 °1 1 1|P15 P14 1 UIS U4 U3 U12 UI11|P15 P14 O V12 V11 VIO V9 Vs
X X 1 X 10 1 1IPIS P14 1 1.1 1 1 1]P15S P14 0 U15 U4 U3 U12 UNM|P1S P14 1 V12 Vi1 VIO V9 v8
X 0 X X i 0X |P15 1 1 1 1 1 1 1|P1S O 0 U5 U14 U13 U12 U11|P1S 0O . V13 V12 V11 VIO V9 VB
X 1 X X 1 0 O|PI1S 0O 1 1 1 1 1 1]PI1S 1 0 U5 Ut4 U13 U12 U11lP15 0 VI3 V12 V11 VIO V9 V8
X 1 X X 1 0 1]|P15 1 11 1 1 % 1|PI15S 0 0 U15 U14 U13 U12 U11]P15 1 V13 V12 V11 VI0 V9 V8
0 X X X 1 1 X111 1 1 1171 110 O 0 U15 U14 'U13 U12 U11| 0O V14 VI3 V12 Vi1 V10 V9. Vv8
1 X X X 1 1.0}]0 1 11 1 1 1 1} 1 0 O U5 U4 U13 U12 U11| 0 V14 VI3 V12 Vi1 V10 V9 V8
1 X X X 1 1 111 1 1 1111110 0 0 U1S U14 U13 U12 U11{ 1 V14 VI3 V12 V11 VI0 Vv V8
s

duaq diyd-ug

1Y

9 421doy)

101

£9 AT4VL

SADVLSENS DNDISVLILTINNW 0102 XLA

. _CONTROL BIT SETTINGS PARAMETER STACK CONFIGURATION
STACK RANGE
SVR SUR STACK SIZE LOWEST ADDRESS HIGHEST ADDRESS
V7?7 V6 VS V4 U2 Ut Uo WORDS 7 8 S 4 3 2 1] 7 8 S 4 3 2 1 0
X X X o]Jo o x) 32 P7 P8 PS 0 0O o0 o O |P7 P8 PS5 1 .1 1 1 1
X X X 1 [I} (] 32 P7 P8 PS 0 0 0o o0 o0 |P? Pes PS 1 1 1 1 1
X X X 1 0o o 1 32 PT P8 PS5 0 o o0 0 0 |P7 P8 P5 1 1 1 1 1
X X o Xx}|o 1 X 64 P7 P6 0 0 0 0o o0 o |P? P8 1 1 1 1 1 1
X X 1 X 0 1 (] 64 P? P68 0 0 0 o 0 0 |[P7 P8 1 1 1 1 1 1
X X 1 Xl]o 1 1 64 P7 P8 O 0 0o o [} 0O |P?7 P8 1 1 1 1 1 1
X o X X 1 0o X 128 PP 0 o0 o o o 0o 0 |P7 1 1 1 1 1 1 1
X 1 X X 1 0o (o] 128 PP 0 0 o 6 o (o} 0 |P7 1 1 1 1 1 1 1
X 1 X X 1 0 1 128 P7T 0 o0 0o o0 o o o |P7 1 1 1 1 1 1 1
o X X X 1 1 X 256 0 0o o 0 0o o 0o o 1 1 1 1 1 1 1 1
1 X X X 1 1 0 256 0o o0 o 0o 0o o 0 o 1 1 1 1 1 1 1 1
1 X X X 1 1 1 256 0 0O 0 o 0O 0 O 0 1 1 1 1 1 1 1 1
CONTROL BIT SETTINGS RETURN STACK CONFIGURATION
STACK RANGE
SVR SUR STACK SIZE LOWEST ADDRESS HIGHEST ADDRESS

V15 V14 V13 vi2ju10 U9 us WORDS 7 8 L] 4 3 2 1 [7 6 5 4 3 2 1 0
X X X o o o0 X 32 P1S P14 P13 0 0O o0 o 0 |P1S P14 P13 1 1 1 1 1
X X X 1 o o0 o 32 P15 P14 P13 © 0o o (o} 0 |P15 P14 P13 1 1 1 1 1
X X X 1 o o 1 32 P15 P14 P13 0 o o0 (o] 0 |P15 P14 P13 1 1 1 1 1
X X o0 X (] 1 X 64 P15 P14 0 0 0o o 0o 0 |P15 P14 1 1 1 1 1 1
X X 1 X] 1 [\] 64 P15 P14 0 0o 0o o0 (o] 0 |P1S P14 1 1 1 1 1 1
X X 1 X 0o 1 1 64 PIS5PI4 0 0 0 0 o0 0 |P15 P14 1 1 1 1 1 1
X 0 x X 1 0 X 128 P15 0 o 0o o0 o [0} 0 P15 1 1 1 1 1 1 1
X 1 X X 1 0o 0o 128 P1s 0 0 o 0o o 0 0 P15 1 1 1 1 1 1 1
X 1 X X 1 (1] 1 128 P1IS 0 O 0 0o o (o} 0 |P15 1 1 1 1 1 1 1
0o X X X 1 1 X 256 o o 0 o 0o o0 (o] 0 1 1 1 1 1 1 1 1
1 X X X 1 1 (] 256] o o 0 0o o 0 (o] 1 1 1 1 1 1 1 1
1 X X X 1 1 1 256 (o] 0 0 0. 0 o0 0O o 1 1 1 1 1 1 1 1

Rk
B SRR

6.1.4 ‘Stack Error Conditions

Stack errors which may occur on the RTX 2000, RTX 2001A, and RTX 2010
Microcontrollers are overflow and underflow. . '

An overflow occurs when an attempt is made to push data onto a full stack.
Since the stacks wrap around, the result is that existing data on the stack will be
overwritten by the new data when an overflow occurs.

An underflow occurs when an attempt is made to pop data off an empty stack,
causing invalid data to be read from the stack.

A buffer zone may be set up using the stack limits to cause a stack error interrupt -
to be generated prior to an actual overflow or underflow occurs.

6.1.4.1 RTX 2001A and RTX 2010 Fatal Stack Errors

In addition to the overflow and underflow stack errors, the RTX
2010 and RTX 2001A provide a fatal error flag.

A Fatal Stack Error occurs when an attempt is made to push data
onto or to pop data off of the highest location of the substack. It
does not generate an interrupt (since the normal stack limits can be
used to generate the interrupt). The fatal errors for the stacks are
logically OR’ed together to produce bit 0 of the Interrupt Base
Control Register, and they are cleared whenever SPR is written to.
The implication of a fatal error is that data on the stack may have
been corrupted or that invalid date may have been read from the
stack.

102 . RTX 2000 Family Programmer’s Reference Manual

6.2 Interrupt Controller

The RTX 2000 Series Interrupt Controller prioritizes 13 interrupt requests, masks
undesired interrupts, signals the processor core when a valid interrupt has
occurred, and provides a vector to an interrupt handler to service the interrupt.

Inputs to the Interrupt Controller come from both internal and external sources.
Internal sources are the stack overflow and underflow signals, the three
counter/timers, and the Software Interrupt signal. External sources are the Non-
Maskable Interrupt'(NMI) input, and the External Interrupt pins EI1-EIS. EI
pins 3, 4, and 5 may be shared with the Counter/Timers for external event
counting. See Section 6.4 for details.

Except for NMI, the interrupt inputs may be individually enabled or disabled
through the Interrupt Mask Register (IMR) at ASIC address 08H. Each bit of the
IMR corresponds to one interrupt level; Table 6.2 shows the bit associated with
each level. Setting a bit to 1 disables the corresponding level. Note that the
Interrupt Disable bit in the Configuration Register must be 0 for any maskable
interrupts to be recognized by the core.- The NMI input may not be disabled
through the IMR.

When the RTX receives an interrupt request, it saves the current contents of the
Program Counter and Code Page registers in the IPR and I registers, which form
the logical top element of the Return Stack, then initiates an Interrupt
Acknowledge (INTA) cycle. During the INTA cycle, the Interrupt Controller
generates a vector to the appropriate interrupt service routine. The RTX sets the
Code Page Register to 0, then reads the vector from the Interrupt Controller to

determine the address of the first instruction to execute for the interrupt service

routine.
The vector provided by the Interrupt Controller consists of three parts:

* Bits 10-15 Come from bits 10-15 of the Interrupt
Base/Control Register (IBC).

. Bits 5-9 Come from the interrupt vector and depend on
the interrupt level; see Table 6.2.

* Bits 04 Are always 0.

On-Chip Peripherals, Chapter 6 103

-

‘The interrupt vector points into a 544 byte table located in Code Page 0 of the
RTX memory. Each interrupt service routine is allocated 32 bytes in this table.
If the service routine will not fit in 32 bytes, it may make calls to any address
in the RTX’s memory space. The interrupt service routine must include a
Return-From-Subroutine instruction.

The interrupt service Table must be located on a 1024-byte address boundary;
that is, address bits 0-9 must be 0. The IBC register should be initialized with

the upper 6 bits of the address. of the table. For example, if the table is located

at location 1000H, IBC bits 15-10 should be set to 00010 binary. Table 6.2
shows the interrupt service routine address associated with each interrupt level.

The Interrupt Controller samples the interrupt request inputs during each
instruction at the rising edge of PCLK (except when executing in streamed
mode). If one or more inputs are active, the Interrupt Controller generates the
vector corresponding to the input with the highest priority, and signals the core
processor that an interrupt request is present. The core then initiates an INTA
cycle. For the timer interrupts, which are edge triggered interrupts, the INTA
cycle from the processor clears the highest priority timer interrupt and allows the
Interrupt Controller to process lower priority interrupts.

The Interrupt Vector Register, IVR, which is a read-only register at ASIC address
0BH, contains the current vector being generated by the Interrupt Controller. If
no interrupt request is present, bits 5-9 of the register will contain 10000 binary.

The IVR vector may be polled for interrupt request information. Note that a
particular request level must be unmasked in order for the interrupt controller to
generate a vector for it.

Conditions may occur in which an interrupt request goes active and then inactive
prior to the INTA cycle. An example would be a stack operation that overflows
the stack and a subsequent stack operation that corrects the condition. If the
interrupt is active long enough, an INTA cycle will be initiated. This results in

the generation of a "No Interrupt" vector as a valid address and program

execution will transfer to the location indicated. Programmers should install a
service routine for "No Interrupt” to account for this situation.

104 RTX 2000 Family Programmer’s Reference Manual

Example:'

The interrupt vector table is located at 2000H. The IBC regiSter should be loaded
with the binary value 00100xxxxxxxxxx where xooooooox depends on system
configuration. The Interrupt Controller would generate the following vectors:

No interrupt - - 2200H
NMI 21EOH
EIl pin 21COH
Timer 0 2100H
SWI 2040H

On-Chip Peripherals, Chapter 6

105

TABLE 6.2: INTERRUPT CONTROLLER

Priority Source IMR Type Vector Address
. Bit (binary)
0 Non-Maskable none | Edge vvwv w1 1110 0000
Interrupt NMI
1 EI1 pin 1 Level | vwwv w01 1100 0000
2 Parameter Stack 2 | Level | vvvv w01 1010 0000
underflow
3 Return Stack 3 Level | vvvv w01 1000 0000
underflow
4 Parameter Stack 4 Level | vvvv w01 0110 0000
overflow
5 Return Stack 5 Level | vvwv w01 0100 0000
overflow
[EI2 pin 6 Level | vvvv w01 0010 0000
7 Timer 0 7 Edge vvvv w01 0000 0000
8 Timer 1 8 Edge vvvv vv00 1110 0000
9 Timer 2 9 Edge vvvvy vv00 1100 0000
10 EI3 pin 10 Level | vvvv vv00 1010 0000
1" El4 pin 1" Level | vvvv w00 1000 OOOOM
12 EIS pin 12 | Level | vvvv w00 0110 0000
13 Software 13 Level | vvvv w00 0100 0000
Interrupt :
N/A No Interrupt N/A N/A vvvv w10 0000 0000

Where:
vvvvvy = bits 10-15 from IBC register

106 RTX 2000 Family Programmer’s Reference Manual

6.2.1 Interrupt Acknowledgement

If interrupts are enabled when the processor receives the Interrupt Controller’s
signal, it enters an Interrupt Acknowledge (INTA) cycle. During this cycle, the
processor saves the current execution address on the Return Stack, disables

interrupts as described in Section 3.5.2, then reads a vector from the Interrupt.

Controller which points to the address of a service routine to handle the
particular interrupt. Section 6.2 describes the Interrupt Controller interface in
more detail. '

The INTA cycle sets the least significant bit of the return address saved on the
Return Stack to a 1, to indicate that the subroutine (Interrupt Service Routine)
was called as a result of an interrupt.

When the service routine executes a Return-From-Subroutine instruction to
resume execution from the point where the processor was interrupted, the set
LSB of the Return Stack causes interrupts to be enabled automatically. The
Interrupt Service Routine can also re-enable interrupts, but is then subject to
being interrupted by another interrupt.

On-Chip Peripherals, Chapter 6 107

6.2.2 Disabling Interrupts

The processor can enable or disable all maskable interrupts at any time by
controlling the state of the Set Interrupt Disable bit in the Configuration Register
(CR bit 4). Setting this bit to 1 disables interrupts; this is the state of the bit
when the RTX is reset. The processor will not recognize interrupts until the bit
is reset to 0 by writing to the CR register.

The CR register contains two bit positions associated with the Interrupt Disable
bit. ,

The Set Interrupt Disable (SID) bit is a write-only bit which is used to set or

reset the bit under program control; this bit will always read as 0 no matter what
the bit is set to. This provides a convenient mechanism for quickly enabling

interrupts, whereby the CR register is read onto the Parameter Stack (reading the

SID bit as a 0), then immediately rewritten, effectively clearing the SID bit to 0

(enabled). This process requires only two clock cycles, eliminating the extra

time it would take to read the register, mask the bit, then rewrite the register.

The Interrupt Disable Status bit (CR bit 14) is a read-only bit which contains the
true state of the Interrupt Disable bit.

CR bit 15 indicates the status of the core interrupt request input from the
interrupt controller. This bit may be polled to determine interrupt status when
core interrupts are disabled.

108 RTX 2000 Family Programmer’s Reference Manual

6.2.3 Software Interrupt

The RTX has a single level Software Interrupt capability. A special form of one
of the RTX I/O write instructions sets a flip-flop attached to one input of the
Interrupt Controller. If the interrupt level associated with the Software Interrupt
is unmasked (see Section 6.2), this input causes the Interrupt Controller to
generate a vector pointing to the service routine corresponding to the Software
Interrupt.

A separate I/O instruction clears the Software Interrupt Request flip-flop. The
service routine for the Software Interrupt must execute this instruction before re-
enabling interrupts or returning to normal program execution to prevent another
SWI cycle from being executed. This interrupt request input is level-sensitive
and will continue to generate interrupts until the flip-flop is reset. See
"Predefined ASIC Instructions” in Chapter 7 for the machine instructions which

set and clear the flip-flop. ' ’

Due to internal delays in generating the interrupt request, and the fact that the
Software Interrupt is assigned to the lowest priority level, the interrupt will not
be serviced for two instructions following execution of the Software Interrupt
instruction. This means that the instructions immediately following the Software
Interrupt should not assume that the interrupt has been serviced.

Inserting two Nops between the Software Interrupt Instruction and the instruction
which follows it will guarantee that the software interrupt will be serviced before
the following instruction is executed. '

On-Chip Peripherals, Chapter 6 _ : 109

6.3 On-Chip Hardware Math Support

- For math intensive applications, the RTX 2000 Microcontroller is
provided with a 16-bit on-chip hardware multiplier.

The RTX 2010 is provided with a 16-bit on-chip hardware
Multiplier/Accumulator, - 32-bit Barrel Shifter, Leading Zero
Detector, and hardware Floating Point support.

The RTX 2001A does not have these features.

6.3.1 RTX 2000 Multiplier Operation

The hardware multiplier on the RTX 2000 multiplies two 16-bit
numbers, yielding a 32-bit product, in one clock cycle. The

. multiplier can treat the input operands as either signed (two’s
complement) or unsigned integers, and can optionally round the
result to 16 bits.

The multiplier’s input operands come from the TOP and NEXT
registers. The multiplication function is activated by a special form
of the ASIC Bus write instructions to the Multiplier High (MHR) or
Multiplier Low Register (MLR) address.

The form of the instruction used determines whether the operands
will be treated as signed or unsigned values. See Section 7.7.1 for
the exact instruction coding. Note that the multiply instructions do
not pop the Parameter Stack; the contents of TOP and NEXT remain
intact. .

The product is stored in the Multiplier High and Muitiplier Low
Registers. The Multiplier High Register contains the upper 16 bits
of the product, while the Multiplier Low Register contains the lower
16 bits.

The registers may be read in either order, and there is no

requirement that both registers be read. Reading either register

moves its value into the TOP register, and pushes the original value
. in TOP into NEXT. The original value of NEXT is lost; it is not

110 RTX 2000 Family Programmer’s Reference Manual

pushed onto the Parameter Stack. This permits overwriting the
original operands left in TOP and NEXT, which were not popped by
the multiply operation. See Figure 6.8.

If 32-bit precision is not required, the multiplier output may be
rounded to 16 bits. This is accomplished by setting the ROUND bit
in the Interrupt Base/Control Register to 1. The ROUND bit
functions independently of signed or unsigned mode.

If the ROUND bit is set to one, all operations that use the multiplier
automatically round the lower 16 bits of the result into the upper 16
bits. The rounding is achieved by adding 8000H to the least
significant 16 bits (during the same cycle as the multiply). Thus,
if the ROUND bit is set, after a multiply the result will be as
follows:

e If the most significant bit of the MLR is set (=1), the MHR is
incremented and the MSB of MLR will be 0.

e If the most significant bit of the MLR is not set (=0), the MLR is
left unchanged, and the MSB of the MLR will be 1.

The multiply instructions disable interrupts during the multiplication
cycle, and for the next two clock cycles. Reading either result
register also disables interrupts during the read, and for the next
clock cycle. This allows a multiplication operation to be performed,
and both the upper and lower registers to be read sequentially, with
no danger of an interrupt service routine corrupting the contents of
the registers between reads. :

On-Chip Peripherals, Chapter 6 111

| »
= |muLmPuEer READ RESULTS ToP
|57 | > | e s | w
Ia. ‘ [V e T

|
| I
I
] . ONE CLOCK CYCLE

ONE CLOCK CYCLE
FOR MULTIPLY OPERATION ——rq—- FOR EACH READ/PUSH OPERATION ————»

FIGURE 6.8: RTX 2000 MULTIPLIER OPERATION

Example 1: A typical multiplication sequence without rounding

Set ROUND bit to 0 (if not already set)

Load multiplier and multiplicand into TOP and NEXT
Execute appropriate signed or unsigned "multiply"
instruction (interrupts are disabled)

Read lower result register (interrupts are disabled)
Read upper result register (interrupts are disabled)

ukh W=

The -32-bit product is now on the Parameter Stack, the most
significant 16 bits are in TOP, the least significant 16 bits are in
NEXT, and interrupts are enabled.

Example 2: A typical multiplication sequence with rounding

Set ROUND bit to 1 (if not already set)

Load multiplier and multiplicand into TOP and NEXT
Execute appropriate signed or unsigned "multiply"
instruction (interrupts are disabled)

Read upper result register, MHR (interrupts are disabled)
Exchange TOP and NEXT registers (interrupts are disabled)
Discard top stack item (interrupts are enabled)

Sk W=

The 16-bit product is-now in the TOP Register and interrupts are
enabled.

112 RTX 2000 Family Programmer’s Reference Manual

6.3.2 RTX 2010 Hardware Math Support

In addition to an on-chip multiplier, the RTX 2010 provides
additional hardware ‘on-chip to support ~ Multiply-Accumulate
operations, 325bit shift operations, and Leading Zero Detection.

6.3.2.1 RTX 2010 Multiplier/Accumulator Operation

The Hardware Multiplier/Accumulator (MAC) on the RTX 2010
functions as both a Multiplier, and as a Multiplier-Accumulator.

When used as a Multiplier alone, it multiplies two 16-bit numbers,
yielding a 32-bit product in one clock cycle.

When used as a Multiplier-Accumulator, it multiplies two 16-bit
numbers, yielding an intermediate 32-bit product, which is then
added to the 48-bit Accumulator. This entire process takes place in
a single clock cycle. ‘

The MAC’s input operands come from three possible sources (see
Figure 17): :

¢ The TOP and NEXT Registers
¢ The Parameter Stack and memory
¢ The ASIC Bus and memory

These inputs can be treated as either signed (two’s complement) or
unsigned integers, depending on the form of the instructions used.
In addition, if the ROUND option is selected, the Multiplier can
round the result to 16 bits. Note that the MAC instructions do not
pop the Parameter Stack; the contents of TOP and NEXT remain
intact. -

For the Multiplier, the product is read from the Multiplier High
Product Register, MHR, which contains the upper 16 bits of the
product, and the Multiplier Low Product Register, MLR, which
contains the lower 16 bits.

On-Chip Peripherals, Chapter 6 . 113

For the Multiplier-Accumulator, the accumulated product is read
from the Multiplier Extension Register, MXR, which contains the
upper 16 bits, the MHR, which contains the middle 16 bits, and the
MLR, which contains the low 16 bits.

The registers may be read in any order, and there is no requirement
that all registers be read. Reading from any of the three registers
moves its value into TOP, and pushes the original value in TOP into
NEXT.

If the read is from MHR or MLR, the original value of NEXT is lost,
i.e. it is not pushed onto stack memory. This permits overwriting
the original operands left in TOP and NEXT, which are not popped
by the MAC operations.

If the read is from MXR, the original value of NEXT is pushed onto
the stack.

In addition to this, any of the three MAC registers can be directly
loaded from TOP. This pops NEXT into TOP and the Parameter
Stack into NEXT.

If 32-bit precision is not required, the multiplier output may be
rounded to 16 bits. The RTX 2010 ROUND mode functions
exactly like the RTX 2000 ROUND mode. See Section 6.3.2.1 for
details.

The multiply instructions suppress interrupts during the
multiplication cycle. Reading MHR or MLR also suppresses
interrupts during the read. This allows a multiplication operation to
be performed, and both the upper and lower registers to be read
sequentially, with no danger of a non-NMI interrupt service routine
corrupting the contents of the registers between reads (for
compatibility with the RTX 2000). The Multiply-Accumulate
instructions do not suppress interrupts during instruction execution.

114

RTX 2000 Family Programmer’s Reference Manual

6.3.2.2 RTX 2010 Barrel Shifter and LZD Operation .

The RTX 2010 has both a 32-bit Barrel Shifter and an 32-bit
Leading Zero Detector (LZD) for added floating point and DSP
performance. The input to the Barrel Shifter and Leading Zero
Detector is TOP and NEXT. See Figure 6.9. '

DATA STACK sus
]
‘ v v I »
s
’ ' E= | |
. ‘"':A:c_.“ o As__ amm.ml
. fa2
5 .
i §310 | 581
‘ ‘ y * v ‘ ‘ h 4
7 T
=

FIGURE 6.9: RTX 2010 FLOATING POINT/DSP LOGIC

The Barrel Shifter uses a five bit count stored in the MXR Register
to determine the number of places to right or left shift the double
word operand contained in TOP and NEXT. The output of the Barrel
Shifter is stored in MHR and MLR, with the most significant 16 bits
in MHR and the least significant 16 bits in MLR.

The Leading Zero Detector is used to Normalize the double word
operand contained in the TOP and NEXT Registers. The number of
leading zeroes in the double word operand are counted, and the
count stored in MXR. The double word operand is then logically
shifted left by this count, and the result stored in MHR and MLR.
Again the upper 16 bits are in MHR, and the lower 16 bits are in
MLR. This entire operation is done in one clock cycle.

On-Chip Peripherals, Chapter 6

115

6.4 Counter/Timers

The RTX 2000 Family of microcontrollers contains three identical 16-bit
Counter/Timers. Each counter may be configured as either an external event
counter, in which case its clock input comes from an RTX input pin, or as a
timer, in which its clock input comes from the processor’s internal TCLK signal.
Each Counter/Timer circuit consists of a pre-load register, a 16-bit down-
counter, clock selection circuitry, and an interrupt output. See Figure 6.10.

TCLK TCLK INTA CYCLE
RISING RISING ASIC READ
_ EDLGfI EDGE COMMAND
<N . , I
) | | |
REGISTER| | | |
REGITeR| | oo IEW| [Execure] [ACTVATE | INTERRUPT
2 TPO TIMER / COUNT MEOUT ™ Reser
2 COUNTER l INTERRUPT
g REGISTER '-% EXECUTE ‘T\ﬂé‘g‘mﬁ .| INTERRUPT | JINTERRUPT
TP1 COUNTER COUNT | |inTerrupt| |CONTROLLER[™| RESET
REGISTER ‘-OT‘:?‘ EXECUTE| Qﬂé‘g‘&e || INTERRUPT
J] LI COUNTER COTNT INTERRUPT RESET
N g
1

FIGURE 6.10: TIMER/COUNTER OPERATION

6.4.1 Counter/Timer Operation

Writing to a counter’s ASIC Bus address loads a 16-bit value into its pre-load
register. This value is loaded into the counter on the counter’s next input clock
cycle. Each subsequent input clock cycle decrements the counter by 1. The
counters are free-running in that they do not stop when they reach 0, but rather
reload from the pre-load register and continue counting. Loading a counter with
0 is equivalent to loading it with 65536.

116 RTX 2000 Family Programmer’s Reference Manual

The counters clock synchronously with the processor’s internal TCLK signal.
- This prevents the clocking from occurring during an I/O read, and means that the
contents of each counter may be read at any time without disturbing the count or
interfering with the counting process. This also means that the processor clock
must be running for counting (from either an internal or external clock) to take
place, and that the maximum counting rate with an external clock source cannot
exceed one-half the processor’s clock rate.

When a counter is written, the value is not loaded until one TCLK or EI pulse
later, depending on which is the source to the counter.

6.4.2 Counter/Timer Interrupts

Each counter generates an interrupt signal when it reaches 0. These signals are
routed through the Interrupt Controller, and may be masked by setting the
appropriate bits in the Interrupt Mask Register. -

The counter interrupts are reset during the corresponding Interrupt Acknowledge
cycle. This means that it is possible that there will be an interrupt request
present when the interrupt levels associated with each counter are unmasked,
especially if the counters have been running for some time before being loaded
with a count value.

On-Chip Peripherals, Chapter 6 117

6.4.3 Clock Selection

The clock selection circuit determines the source for each counter input clock.
Each counter may be clocked from either the processor’s internal TCLK signal,
or from one of the processor’s External Input (EI) pins. The 3 EI pins EI3, El4,
and EIS are shared with the interrupt controller. Each pin may either be an input
to the Interrupt Controller, or a clock input to a counter. Bits 8 and 9 in the
Interrupt Base/Control Register determine the usage of each pin. See Table 6.3.

TABLE 6.3: TIMER/COUNTER EI PIN ASSIGNMENTS

IBC bit 9 IBC bit 8 EI3 El4 EIS
0 0 INT10 INT11 | INT12
0 1 CLKO INT11 | INT12
1 0 CLKO CLK1 INT12
1 1 CLKO CLK1 CLK2

Notes:
INTn - input to Interrupt Controller, level n
CLKn - clock input to Counter/Timer n

If a counter input is not assigned to an EI pin, it is decremented
by the processor’s TCLK signal.

If an Intérrupt Controller input is not assigned to an EI pin, it
is held inactive.

118 ’ "RTX 2000 Family Programmer’s Reference Manual

CHAPTER 7

INSTRUCTION SET

Instruction Set, Chapter 7

119

N

ly Programmer’s Reference Manual

RTX 2000 Fami

120

et
s

ST

7 Instruction Set

This section describes each of the i
available on the RTX processor. Since Forth is "assembly language" for the
processor, the instruction set is described in terms of Forth primitives;
Appendix A presents the opcodes in Forth format. This chapter presents each
of the instructions in terms of their stack and register effects.

7.1 General Information

Instructions are always aligned on word boundariés, ‘with the most significaht
byte of the instruction at the even address, and the least significant byte at the
next higher odd address. All instructions are 16 bits long, with the exception of

- long literals which require 16 bits for the instruction and 16 bits for the literal

value. .

All RTX instructions execute in either one or two clock cycles. All instructions
which do not perform memory accesses execute in a single clock cycle.

Instructions which perform memory accesses or load long literal data require two

clock cycles. This consistency of execution time makes it possible to write code
with very predictable behavior.

Instruction Set, Chapter 7 ' 121

ction gperation codes ("opcodes")

I
|
i
i
1
B
1
i
1
|
[
i

\ 7.1.1 Streamed Execution Mode

The RTX processor has a "streamed" instruction feature, in which an instruction
is made to repeat a specified number of times by writing a count value into the
Index Register. This feature is useful for doing fast data transfers, loops and
some math functions.

The count is written into the Index Register using an ASIC Bus write instruction
to the Index Register at ASIC Address 02H. See Section 4.3.1.3 for details. ‘
- The value written must be 1 less than the desired number of repetitions.

Only the first cycle of a two cycle instruction is repeated. The second cycle is
performed only once, after the first cycle has been repeated the desired number
of times. : '

Interrupts are disabled during streamed instruction execution. Only a Non-
maskable interrupt (NMI) will interrupt streamed execution. '

the CR Register). If this bit is set, (MODE]1), then the NMI is suppressed

I The RTX 2010 provides the ability to set the NMI MODE Flag (bit 11 of
until the streamed instruction has been completed.

7.1.2 The Auto-decrementing Loop Instruction

The RTX provides a fast auto-decrementing loop instruction called nexr. The
NEXT instruction branches based on a count previously pushed onto the Return \
Stack (in 1). "

The wext branch instruction tests the contents of the I Register at the end of each
loop. If the contents are not 0, the I Register is decremented, and a branch
(typically to the beginning of the loop) is executed; if the I Register contains 0,
the Return Stack is popped, and execution continues with the instruction
following the conditional branch instruction.

122 RTX 2000 Family Programmer’s Reference Manual

~

7.2 Format

All processor instructions are 16 bits; with the following general fields:

15 cecenneen 12]11 coveene.. Bl7 «et 6] 5 |4 ceirinannnnnnn 0|
Class ALY SC R Data

Class = General type of instruction:
~ 8,9 : Branches and Loops
10 : Math/Logic Functions
11 : - Register and Short Literal Operations
12 : User Memory Access
13 : Long Literals ‘
14 : Memory Access By Word
15 : Memory Access By Byte

Each class is discussed separately.

ALU - ALU function to be performed.

SC - Subclass. Function depends on Class field.
R - Return bit. When set, causes a Retum-From-Subroutine.‘
Data - Depending on Class, indicates shift operation, short literal data,

ASIC Bus address, or memory address.

Opcode descriptions use the format which follows.

Instruction Set, Chapter 7 ' 123

PRIMARY CLASSIFICATION ‘[Functional Title]

Functional representation of the instruction

B 1 S 1

binary

Description:
Number of cycles:

Processor operations:

Notations: N = T

*N = T
N = (T)

N => Pstack
Rstack => PC

Parameter Stack effect:

Describes the net effect of the operation.

Total number of processor cycles required.

- The register and memory operations performed by

the processor during each cycle of the instruction.

Contents of NEXT Regisyter (N), are uritteh to TOP (T)

Contents of NEXT are written to TOP with 1’s
complement performed if “i" bit in instruction is 1

Contents of NEXT are written to the Memory location
addressed by TOP

Contents of NEXT are pushed'onto the Parameter Stack
Return Stack popped into Program Counter (PC) Register

Net effect of instruction on Parameter Stack, shown
before -- after
1’s complement of "a", if "i" bit is set

the result of ALU operation “op", performed between "a"
and "b". The order of the operands is significant for
subtraction operations only.

~ the result of performing the shift operation on value a.

Notations:
. *a
a-op-b
shiftlal
124

RTX 2000 Family Programmer’s Reference Manual

The right-hand item in each list is the top stack element. "T" and "N" are used B
to represent the contents of TOP and NEXT before the instruction is executed.
For example, : : :

NT-*T

shows that the instruction starts with values in TOP and NEXT, and ends with the
contents of NEXT being dlscaeded and the contents of TOP bemgw covd Mitna / ,)

When reading the "Processor operations" descriptions, it is important to keep in
mind that the RTX performs the indicated operations in parallel when executing
an instruction. Thus, the original contents of a register may be used as an
operand for an instruction even though the register is loaded with a new value -
during execution of the instruction.

For example, the contents of TOP and NEXT may be used as operands for a math
operation which replaces the contents of TOP with the results of the operation and
pops the Parameter Stack into NEXT.

In the descriptions of Processor operations for two cycle instructions, the values
shown for "T" and "N" during the second cycle of the instruction represent the
values loaded into TOP and NEXT during the first cycle of the instruction, not the
contents of TOP and NEXT before the instruction was executed.

For example,

Processor operations:

1st cycle: N = T m = N
2nd cycle: N = T T => N

Parameter Stack effect:
NT--Nm

should be interpreted as described on the following page.

Instruction Set, Chapter 7 125

i

During the first cycle, the contents of NEXT are written to TOP, overwriting the
contents of TOP. At the same time, the contents (m) of the memory location
addressed by the original contents of TOP are loaded into NEXT.

During the second cycle, the new contents of NEXT (the memory data) are
- written into TOP, while the new contents of TOP (the original contents of NEXT)
are written back into NEXT. The net effect of this operation is to replace the
contents of TOP with the contents of the memory location addressed by the
contents of TOP.

126 ' RTX 2000 Family Programmer’s Reference Manual

7.3 Subroutine Call

Any instruction which has bit 15 set to 0 will perform a Subroutine Call. The
contents of the Code Page Register and the address of the instruction following
the Call are pushed onto the Return Stack. The Program Counter Register is
then loaded with the address contained in the instruction.

The address bits in the instruction represent the word address to be executed.
The actual address may be calculated by shifting the value left by 1 bit, and
inserting a 0 in the least significant bit. For example, an instruction code of
2A45H would cause a call to location 548AH: '

2A45: 0010 1010 0100 0101
shift and insert 0: 0101 0100 1000 1010 = 548AH

If a Subroutine Call is to be made to a Code page other than the one containing
the Call instruction, the instruction immediately preceding the Call must load the
correct page number into the Code Page Register.

Oaaaaaaalaaaaa'aaa

Description: Subroutine-Call.
Number of cycles: 1

Processor operations:

IPR, | => Rstack Save return address on Return Stack
PC =>1 .
CPR => IPR
aaaaaaaaaaaaaaal => PC Load Call address into Program Counter

Parameter Stack effect:

no change

Instruction Set, Chapter 7 . . 127

7 .4 Subroutine Return

Any non-call/branch instruction which has the Subroutine Return bit (bit 5) set
will cause a Return-From-Subroutine operation. The Return Stack is popped into
the Program Counter Register and Code Page Register, causing execution to ‘
resume with the instruction following the call to the current subroutine. The
Subroutine Return bit is shown in the opcode formats as "R".

1

" Description: Return-From-Subroutine.

Number of cycles: "1 if coded as a separate instruction; 0 if coded as
part of the last instruction in a subroutine

Processor operations:
I = PC IPR => CPR ~ Rstack => 1, IPR
Parameter Stack effect:
no change
The Subroutine Return bit may not be used in the following circumstances:
® A Branch or Call instructioﬁ. All bits of tht; instruction are signiﬁcant.
* Any instruction which pops the Return Stack. "Return Stack pop"
instructions which have the Return bit set behave as non-popping "Index
" Register Read" instructions.
In these situations, a stand-alone return instrﬁction must be added as the last

instruction of the subroutine. This would typically be a No Operation (NOP)
instruction with the Return bit set. .

128 v RTX 2000 Family Programmef’s Reference Manual

7.5 Classes 8 and 9: Bfanches and Loops

These instructions cause either a conditional or unconditional branch. The RTX
Branch Instruction treats each Code Memory page as 64 "blocks" of 512 words
-each. Bits 15-10 of the Program Counter determine the block number; bits 9-0
determine the word offset within the block.

In order to perform branches in a single clock cycle, RTX branch instructions
encode the branch address within the instruction.

The limited number of bits available for encoding the address requires that all
branch destinations must be within the same, next, previous, or first memory
block. Except for the "Branch to block 0" instruction, the longest branch which
the processor can perform is + 1K words.

RTX branch instructions have the following general form:

100‘ccbbaa-aaa'a'aaa

cc - Determine conditions for branching. See Table 7.1.

"bbaaaaaaaaa” Branch address.

"bb" - Block Select. Determines new value of bits 15-10 of
‘ Program Counter. See Table 7.2.

"aaaaaaaaa"

Replaces bits 9-1 of Program Counter (word offset
from address 0 in the new block).

Bit 0 of the Program Counter Register is set to 0 (word aligned instructions).
The resulting branch address is designated "ADR" in the instruction descriptions.

Instruction Set, Chapter 7 . 129

TABLE 7.1: BRANCH CONDITIONS

cc | Branch conditions

00 | Branch if contents of TOP

0. Don’t pop stack.
01 | Branch if contents of TOP = 0. Pop stack.

10 | Unconditional branch

11.] If contents of Index Register # 0, branch and decrement I

TABLE 7.2: BLOCK BRANCHING ASSIGNMENTS

bb result

00 Branch within same memory block (no change to bits 15-10)

01 Branch to next memory block (add 1 to value represented
by bits 15-10) '

10 Branch to Block 0 (set bits 15-10 to 0)
1" Branch to previous block (add -1 to value represented by

. bits 15-10)
1 1)

The most important thing to note when calculating the address field for a branch
instruction is that, when the branch instruction is executed, the Program Counter
will already be pointing to the instruction following the branch instruction. The
"bb" field will be - applied to this address, not the address of the branch
instruction. '

This is only important when the branch instruction is the last instruction in a 512
word block. In this case, the Program Counter is already pointing to the first
word in the next block, and the "bb" field must be calculated based on that block
number, not the block containing the branch instruction.

Example: A branch instruction is located at address 07FEH, the last instruction ,
in block #1 (bits 15-10 = 000001). When this instruction executes, the Program
Counter is pointing to the instruction at 0800H, the first instruction in block #2.
- To perform a branch to a location in block #2, the "bb" field must be set to 00
(branch to same block) rather than 01 (branch to next block).

130 RTX 2000 Family Programmer’s Reference Manual

Branch Address Examples:

(bbaaaaaaaa = bits 0 - 9 of opcode)

Example 1: Branch to same block
g address of branch instruction:
address to branch to:
bbaaaaaaaaa :
resulting address:
PC-Register bits 15-10
PC-Register bits 9-1
PC-Register bit 0

Final branch address

0001 0100 1010 0100
0001 0100 1111 0000
1001 000 001111000

=> 0001 01
= 00 1111 000

=> 0001 0100 1111 0000

Example 2: Branch to next block
address of branch instruction:
address to branch to:
bbaaaaaaaaa :
resulting address:

PC-Register bits 15-10

PC-Register bits 9-1
PC-Register bit 0

Final branch address

0001 0100 1010 0100
0001 1000 0101 1110
1001 001 000101111

=> 0001 01
+ 1
=> 0001 10
= 00 0101 111
0

=> 0001 1000 0101 1110

Example 3: Branch to block 0
address of branch instruction:
address to branch to:
bbaaaaaaaaa :
resulting address:

PC-Register bits 15-10
PC-Register bits 9-1
PC-Register bit 0

Final branch address

0001 0100 1010 0100
0000 0000 1100 1010
1001 010 001100101

=> 0000 00
= 00 1100 101
0

=> 0000 0000 1100 1010

address to branch to:

bbaaaaaaaaa : -

resulting address:
PC-Register bits 15-10

PC-Register bits 9-1
PC-Register bit 0

Final branch address

Example 4: Branch to previous block
address of branch instruction: 0001 0100 1010 0100
0001 0000 1101 1110
1001 011 001101111

=> 0001 01
-1
=>'0001 00
= 00 1101 111
: 0

=

=> 0001 0000 1101 1110

Instruction Set, Chapter 7

131

BRANCH : Unconditional Branch

Unconditional Branch

11]0(0fj1)J0]|]b|b|lajJalaljalalalalala I

Description: Branch to address indicated by bbaaaaaaaaa.
‘Number of cycles: 1

Processor operations:

ADR => PC

Parameter Stack effect:

no change

132 RTX 2000 Family Programmer’s Reference Manual

BRANCH Branch if T=0, Pop stack

Branch if T=0, Pop stack

1100|001 |b|b|laJalalalalalalala

Description:

IfT=0 Performs branch. Pops the Parameter Stack.
IfT+0 Pops the Parameter Stack. |

Number of cycles: 1

Processor operations:
IfFT=0 N = T Pstack = N ADR => PC

IfFT #0 N o= T Pstack => N

Parameter Stack effect:
IfT=0 NT--N
IfT+0 . NT--N

Instruction Set, Chapter 7 133

Branch if T=0, don’t pop stack

Branch if T=0, don’t pop stack

1{0]J0Jo]Jo|lb|b|lajJalalalalalalala

Description:

IfT=0 Performs branch. Pops the Parameter Stack.
IfFT+0 No effect.

Number of cycles: 1

Processor operations:
fT=0 N = T Pstack => N ADR => PC

HT+0 no operation

Parameter Stack effect:

f¥T=0 NT --N
KT +0 NT--NT

134 RTX 2000 Family Programmer’s Reference Manual

BRANCH

Branch if I # 0

10011bbaaaaa|aaaa

Description: This branch instruction is referred to as the "Next"
instruction, and is useful for implementing a fast auto-
decrementing loop.

IfFI+0 Branch and decrement the Index Register (1), if I is not equal
to 0.
IfI=0 If I contains 0, the Return Stack is popped. Execution

continues with the next sequential instruction.

Number of cycles: 1

Processor operations:
IfFI+0 -1 = | AR = PC

IfI=0 Rstack => 1

Parameter Stack effect:

no change

- Instruction Set, Chapter 7 135 :

AN

7.6 Class 10: ALU Operations

This class of instructions allows the processor to perform arithmetic and logic
‘operations between the contents of the TOP and NEXT registers. These
ooperations fall into two general categories: Single step and Multi-step. Multi-
step Math operations are discussed in Chapter 8. The single step operations
category covers those functions which may be completed in one clock cycle:

Addition , - Stack manipulations
‘Subtraction Boolean logic operations
1-bit shifting (*2 and /2) :

All ALU operations are performed between the contents of the TOP Register and
another operand which is determined by the instruction. - The results of the
operation are loaded into TOP. The ALU function to be performed is encoded
as a field in the instruction and is shown in the opcode formats as either "ccec”
or "aaa". ‘ v

Table 7.3 lists the ALU functions the RTX can perform. "T" indicates the
contents of the TOP Register. "Y" indicates the source for the second ALU
input. For single step math functions, Y is always the NEXT Register. For other
classes of instructions, the source for Y will vary, depending on the instruction.

The "Resulting Carry" column indicates the new value which will be latched into

the processor’s Carry bit as a result of the operation. y T
TABLE 7.3: RTX ALU FUNCTIONS— '
ccce aaa function ’/,/’ﬁgéulting Carry
0010 001 TAND Y no change
0011 no change
0100 010 y ALU carry
0101 B with borrow ALU carry
0110 011 T OR Y) no change
0111 T NAND Y no change
1000 100 T + Y ALU carry
1001 T + Y with carry ALU carry
1010 101 T XOR Y no change
1011 T XNOR Y no change
1100 110 - ALU carry
1101 - with borrow ALU carry
[

T

136 RTX 2000 Family Programmer’s Reference Manual

7.6.1 Carry Bit

The Carry-out signal from the ALU is bit 0 (CY) of the Configuration Register,
CR, and may be used for performing multi-precision addition and subtraction’
operations. The Configuration Register bit may be directly set or read under
program control. '

All addition and subtraction operations set the carry bit, but only the "add with
carry” (cccc = 1101, see Table 7.3), "subtract with borrow" (cccc = 1101) and
"swapped subtract with borrow" (cccc = 0101) use the value of the carry bit
during calculations. None of the Boolean logic functions use or affect the carry.

Addition operations add the two ALU inputs, then optionally add the Carry-in
bit (CY) to the least significant bit (LSB) of the sum. ‘The Carry-out bit of the
ALU becomes the new value for CY; 1 indicates an overflow out of the most
significant bit (MSB).

Subtraction operations add the minuend (A in the examples below) to the 1’s
complement of the subtrahend (B in the examples), then optionally add the Carry-
in (borrow) bit to the LSB of the sum. The Carry-out of the ALU indicates the
borrow status; CY = 0 means that the result of the subtraction was negative and
that a borrow should be performed from the next most significant stage of the
subtraction.

TABLE 7.4: Examples: Cout = ALU Carry-out

A B Carry-in .without carry/borrow with carry/borrow

A+B Cout A-B Cout A+B Cout A-B Cout
0 O 0 0 0 0 1 0 0 -1 0
0 O 1 0 o 0 1 1 0 0 1
0 1 0 1 0 -1 0 1 0 -2 0
0 1 1 1 0 -1 0 2 0 -1 0
1 0 0 i 0 1 1 1 0 01
1 0 1 1 0 1 1 2 0 11
1 1 0 2 0 0 1 2 0 -1 0
1 1 1 2 0 0 1 3 0 0 1
-1 0 0 -1 0 -1 9 -1 0 -2 1
-1 0 1 -1 0 -1 1 0 1 -1 1
-1 1 0 0 1 -2 1 0 1 -3 1
-1 1 1 0 1 2 1 1 1 -2 1

Instruction Set, Chapter 7 137

7.6.2 Shift Operations

The single step math/logic functions allow the output of the ALU to be shifted
as a 16-bit quantity, or the output of the ALU and the contents of the NEXT
Register to be shifted as a 32-bit quantity in either direction before being loaded
into the TOP (and NEXT) registers.

The shift function is embedded in the instruction, and is shown in the opcode e
formats as "ssss". Each of the shift functions is described in Tables 7.5 and 16, , ML
which use the following notations:

Zn Bit n of ALU output (15 - 0) &~

TNn Bit n of NEXT Register before shift (15 - 0)

Cy Old value of Carry bit as a result of ALU operation

C New value of Carry bit as a result of the shift operation

T15,Tn,T0 MSB, typical bit, and LSB of TOP Register after the shift
operation

N15,Nn,N0 MSB, typical bit, and LSB of NEXT Register after the shift
operation

The first 8 shift functions affect only the TOP Register. The remaining shift
functions affect either just the NEXT Register, or the TOP and NEXT registers
combined as a 32-bit quantity.

In the 32-bit form, the TOP Register represents the most significant word of the
32-bit quantity and the NEXT Register the least significant. -

138 : RTX 2000 Family Programmgr's Reference Manual

AR

R

TABLE 7.5: 16-BIT SHIFT FUNCTIONS

SSSS

shift

effect

Statds

TOP Register

of C

T15

n

T8

NEXT Register

N15| Nn

(1]

0000
0001

0010

0011

0100

0101

0110

0111

1000

1001

0<

2*
2%c
cuz/

c2/

lv2s

2/

N2*

LNZ*c

no shift operation is performed

Sign extend: The sign bit (bit
15) of TOP is propogated to all
bit positions in TOP.

Left Shift: TOP is shifted
left by 1 bit, with 0 shifted
into the LSB. MSB is shifted
into the carry bit.

. Rotate Left: TOP is shifted left

by 1 bit, with the carry bit
shifted into the LSB. MSB is
shifted into the carry bit.

Right shift Out of Carry: TOP is
shifted right by 1 bit, with the
carry bit shifted into the MSB.
The LSB is discarded and 0 is
shifted into the carry bit.

Rotate Right Through Carry: TOP
is shifted right by 1 bit, with
the carry bit shifted into the
MSB. The LSB is shifted into
the carry bit.

Logical Right Shift: TOP is
shifted right by 1 bit, with 0
shifted into the MSB and carry
bits. The LSB is discarded.

Arithmetic Right Shift: Bits
14-1 of TOP are shifted right by
1 bit. Bit 15 remains unchanged
and is shifted into the carry
bit and bit 14. The LSB is
discarded.

Left Shift of NEXT: NEXT is
shifted left by 1 bit, with 0
shifted into: the LSB. TOP and
the carry bit are unchanged.

Rotate NEXT Left: NEXT shifts
left 1 bit, with the carry bit
shifted into the LSB. TOP and

" the carry bit are unchanged.

cy
cy

Z15

215

29

215

cy

cy

z15
215

214

Z14

cy

cY

215

Z15

z215

2n
215

Zn-1

2n-1

Zn+1

Zn+1

Zn+1

Zn+1

Zn

Zn

29
Z15

cYy

21

Z1

21

ral

2P

zp

|15 | TNn

TN15 | TNn
TN15 | TNn

TN15 | TNn
TN15 | TNn

TN15 | TNn

TN15 | TNn

TN15 | TNn

TN14 [TNn-1

T™N14 TNn-1

TND
TN

TND

TN

TND

TNG

TND

TND

cY

Instruction Set, Chapter 7

139

TABLE 7.6: 32-BIT SHIFT FUNCTIONS

shift
ssss

name

effect

IStatus

of C

TOP Register

T15

Tn

™

N15

_NEXT Register

Nn

1010

1011

1100

1101

1110

11

D2*

|p2*c

cUD2A4

cD2/

jup2/

|02/

32-bit Left Shift: TOP and

NEXT are shifted left 1 bit,

with the MSB of NEXT shifted into
the LSB of TOP, the MSB of TOP
shifted into the carry bit, and

0 shifted into the LSB of NEXT.

32-bit Rotate Left: TOP and NEXT
are shifted left 1 bit, the MSB
of NEXT is shifted into the LSB
of TOP, the carry bit is shifted
into the LSB of NEXT, and the
MSB of TOP is shifted into the
carry bit.

32-bit Right Shift Out of Carry:
TOP and NEXT are shifted right by
1 bit, the carry bit shifts into
the MSB of TOP, the LSB of TOP

is shifted into the MSB of NEXT,
the LSB of NEXT is discarded,

and 0 shifts into the carry bit.

32-bit Rotate Right Through Carry:

TOP and NEXT are shifted right by|

1 bit, the carry bit shifts into

the MSB of TOP, the LSB of TOP is
shifted into the MSB of NEXT, and
LSB of NEXT shifts into the carry

32-bit Logical Right Shift: TOP
and NEXT are shifted right 1 bit
with 0 shifted into MSB of TOP
and the carry bit, the LSB of TOP
is shifted into the MSB of NEXT,
and LSB of NEXT is discarded. .

32-bit Arithmetic Right Shift:
Bits 14-0 of TOP and all of NEXT
are shifted right 1 bit; Bit 15
of TOP remains unchanged and is
shifted into the carry bit and
bit 14. The LSB of TOP is shifted
into the MSB of NEXT; the LSB of

NEXT is discarded.

215

215

TND

z215

214

214

cy

cy

Zn-1

2n-1

Zn+1

Zn+1

0 |Zn+1

zZ15

2n+1

TN15

TN15

ral

21

21

21

TN14

TN14

29

zp

']

29

TNn-1

TNR-1

TNn+1

TNn+1

TNNn+1

TNn+1

0

CY |

N1

N1

TNY

™1

140

RTX 2000 Family Programmer’s Reference Manual

L

-

ALU/SHIFT OPERATIONS Shift T

Invert/Shift T

Description:
Ifi=0 Performs shift operation ssss. Original contents of NEXT are
+ left intact unless affected by shift operation.

Ifi=1 Inverts TOP, performs shift operation ssss. Original contents
of NEXT are left intact unless affected by shift operation.
Note that if both i and ssss are 0, this is a 1-cycle No
Operation (NOP) instruction. :

Number of cycles: 1

Processor operations:

- Ifi=0 shift[tl = 7T
Ifi=1 shift[*r] = T
Parameter Stack effect:
Ifi=0 T -- shift[m
Ifi=1 T -- shiftr*n)
Instruction Set, Chapter 7) 141

ALU/SHIFT OPERATIONS

N=>T, Invert/shift

N=>T, Invert/shift

1011.1i00R0ssssl

Description: |

Ifi=0 Loads contents of TOP with contents of NEXT, then performs
shift operation ssss. Original contents of NEXT are left intact
unless affected by a shift operation. ‘

Ifi=1 Loads contents of TOP with contents of NEXT, inverting the
value, then performs shift operation ssss. Original contents
of NEXT are left intact unless affected by a shift operation.

Number of cycles: 1

Processor operations:

Ifi=0
Ifi=1

shift(N] => T

]
v
-

shift[*N]

Parameter Stack effect:

Ifti=0 NT-- N shiftIN]
Ifi=1 N T -- N shift[*N]
RTX 2000 Family Programmer’s Reference Manual

142

// ;.\

__r.,/

ALU/SHIFT OPERATIONS T-op-N Shift

T-op-N Shift

110[1]10)c]elec|lc]o|[o|R|O]s]|s|s|s I

Description: Loads TOP with results of ALU operation cccc and shift
operation ssss on TOP and NEXT registers. Original contents
of NEXT are left intact unless affected by shift operation.

Number of cycles: 1

P Processor operations:

shift[T-op-N] => T

Parameter Stack effect:

NT --N shift[T-op-N]

- Instruction Set, Chapter 7 143

ALU/SHIFT OPERATIONS Invert/Shift, Pstack=>N

Invert/Shift, Pstack= >N

1010000io1n[0ssss

Description:

Ifi=0 Performs shift operation ssss on TOP and original contents
of NEXT. Pops stack into NEXT.

Ifi=1 Inverts TOP and performs shift operation ssss on TOP and
original contents of NEXT. Pops stack into NEXT.

Number of cycles: 1

' Processor operations:
Ifi=0 Pstack => N shift(tl = T

Ifi = 1‘ pstack => N shift[*T]

"
v
-

Parameter Stack effect:
‘Ifi =0 N T -- shift(T

Ifi=1 N T -- shift[*1]

144 . RTX 2000 Family Programmer’s Reference Manual

' ALU/SHIFT OP N=>T, Invert/Shift, Pstack= >N

N=>T, Invert/Shift, Pstack=>N

Description:
Ifi=0 Moves NEXT into TOP, performmg shift operatlon SSSS.
Pops stack into NEXT.
Ifi=1 Moves NEXT into TOP, mvertmg it, and performmg shift
~ operation ssss. Pops stack into NEXT.
Number of cycles: | 1

Processor operations:
Ifi=0 shiftiN] => T Pstack => N

Ifi=1 shift[*N] => T Pstack => N

Parameter Stack effect:
Ifi=0 ‘NT -- shift[n]

Ifi=1 NT -- shift[*N)

Instruction Set, Chapter 7 : 145

@

ALU/SHIFT OPERATIONS T-op-N, Shift, Pstack= >N

T-op-N, Shift, Pstack=>N

1] 0|1 I 0 I c|ec l c|lc]O|]1]|R|O]s|s]|s sAI

Description: Loads TOP with results of ALU operation cccc and
shift operation ssss on TOP and NEXT registers.
Pops stack into NEXT.

Number of cycles: 1

Processor operations:

shift[T-op-N] => T Pstack => N

Parameter Stack effect:

N T -- shift[T-op-N]

146 RTX 2000 Family Programmer’s Reference Manual

ALU/SHIFT OPERATIONS - T=>N, Invert/Shift | :

T= >N, Invert/Shift

L1010000i'10R0ssss|

Description:
Ifi=0 Copies TOP into NEXT, replacing original contents of NEXT.
Performs shift operation ssss.
Ifi=1 Copies TOP into NEXT, inverting TOP and replacing original
- contents of NEXT. Performs shift operation ssss.
Number of cycles: 1

Processor operations:
Ifi=0 T = N shift(Tl = T

Ifi=1 T = N shift[*t] => T

Parameter Stack effect:
Ifi=0 NT-- T shift[n

Ifi=1 N T -- T shift[*T]

Instruction Set, Chapter 7 147

ALU/SHIFT OPERATIONS T <=>N, Invert/Shift

T < =>N, Invert/Shift

K of1[o]1 1[1]i]1]o Rlo]s]s]s s |

Description:

Ifi=0 Exchanges the contents of TOP and NEXT, then performs
shift operation ssss.

Ifi=1 - Exchanges the contents of TOP and NEXT, inverting TOP
(original contents of NEXT) then performs shift operation
§SSS. '

Number of cycles: 1

Processor operations:
Ifi=0 T = N shiftiN] = T

Ifi=1 T = N shift[*N] = T

Parameter Stack effect:
Ifi=0 ' NT - T shiftn]

Ifi=1 N T -- T shiftr*n

148 RTX 2000 Family Programmer’s Reference Manual

ALU/SHIFT OPERATIONS ~ T-op-N, T=>N, Shift

T-op-N, T= >N, Shift

1010cccc1‘0R058ss—|

boscription: ~ Loads TOP with results of ALU operation ccce and shift

~ operation ssss on TOP and NEXT registers. Loads NEXT
with original contents of TOP.

Number of cycles: 1

Processor operations:

T => N T-op-N => T

Parameter Stack effect:

NT--T shiftT-op-N]

Instruction Set, Chapter 7 149

| ALU/SHIFT OP N=>Pstack, T= >N, Invert/Shift

N=>DPstack, T= >N, Invert/Shift

t o olo'olov i|1 1{r]o0 slsﬁ s|s

Description:
Mi=0 v Pushes original contents of NEXT onto stack, copies TOP into
NEXT, and performs shift operation ssss.
Ifi=1 " Pushes original contents of NEXT onto stack, copies TOP into
NEXT, inverts TOP, and performs shift operation ssss.
Number of cycles: 1

Processor operations:
Ifi=0 N = Pstack T o= N shift(ri = 7

Ifi=1 N = Pstack T o= N ‘shift(a Tl = T

Parameter Stack effect:
Ifi=0 ~ NT -- N T shift[mn

Ifi=1 NT -- NT shift*n

150 o RTX 2000 Family Programmef’s Reference Manual

ALU/SHIFT OP - N=>DPstack, T <= >N, Invert/Shift

N=>Pstack, T< =>N, Invert/Shift

1{foj1]jo)1]1]1[il1]1|rR|ols|[s]s]s

Description:

Ifi=0 Pushes NEXT onto stack, pushes TOP to NEXT, copies
original contents of NEXT to TOP, and performs shift
operation ssss. :

Ifi=1 : Pushes NEXT onto stack, pushes TOP to NEXT, and copies
original contents of NEXT to TOP. Inverts TOP (original
contents of NEXT), and performs shift operation ssss.

Number of cycles: 1

Processor operations:

Ifi=0 N => Pstack T = N shiftN]

n
v
-

Ifi=1 N => Pstack T = N, shift[*N]

"
v
-4

Parameter Stack effect:
Ifi=0 NT--NT shiftiN

Ifi=1 © NT -- NT shiftr*N

Instruction Set, Chapter 7 151

ALU/SHIFT OPERATIONS N= >Pstack, T-op-N, Shift

 N=>Pstack, T-op-N, Shift

1010cccc11R03'sss

Description: Pushes NEXT onto stack, pushes TOP into NEXT,
' loads TOP with results of ALU operation cccc and
shift operation ssss on-original contents of TOP and

NEXT registers.
Number of cycles: 1
Processor operations:

N => Pstack T => N _ shift{T-op-N] => T

Parameter Stack effect:

NT--NT shift[T-op-N]

'

152 - RTX 2000 Family Programmer’s Reference Manual

=

7.7 Enhanced Processor-Specific Operations

Each member of the RTX 2000 Family of Microcontrollers has on-chip
hardware which is specifically designed to support operational requirements
in the field of applications for which that Microcontroller is intended.

Utilization of these microprocessor hardware features to achieve enhanced
performance is possible through use of the product specific instructions for

each microcontroller. :

\
Itnszruczion Set, Chapter 7 - . 153

Unsigned Multiply

Description: The Unsigned Multiply operation is initiated. The contents
of the TOP and NEXT registers are multiplied, with the 32-bit
result available in the Multiplier output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: |

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect

154 RTX 2000 Family Programmer’s Reference Manual

RTX 2000 Specific Instructions - Signed Multiply

Description: The Signed Multiply operation is initiated. The contents of
the TOP and NEXT registers are multiplied, with the 32-bit
result available in the Multiplier output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Gtapter 7 155

'RTX 2000 Specific Read Multiplier High Register

MHR@

Description: The middle 16 bits of the Multiplier High Register (MHR)
- are pushed onto the Parameter Stack. The contents of TOP
are pushed into NEXT, but NEXT is not pushed onto the
stack; the contents of NEXT are lost. Interrupts are disabled
during the execution of this instruction.

Number of cycles: 1

Processor operations:

MHR = T ' T = N

Parameter Stack effect:

NT -- T MHR

156 ' " RTX 2000 Family Programmer’s Reference Manual

RTX 2000 Specific Read Multiplier Low Register

MLR@
1jof1|1)1|1j1|iJolojr|[1])o|l1]|1]0
Description: The low 16 bits of the Multiplier Low Register (MLR) are

pushed onto the parameter stack. The contents of TOP are
pushed into NEXT, but NEXT is not pushed onto the stack;
the contents of NEXT are lost. Interrupts are disabled during
the execution of this instruction.

Number of cycles: 1

Processor operations:

MR = T T == N

Parameter Stack effect:

NT -- T MLR

Instruction Set, Chapter 7 157

RTX 2001A Specific Instructions Increment rx

Increment RX

Description: Increments the contents of RX by one. Incrementing the
contents of the register beyond FFFF Hex results in a wrap
to 0000 Hex.

Number of cycles: 1

Processor operations:

(RX) -> (RX) +'1

Parameter Stack effect:

no change

158 RTX 2000 Family Programmer’s Reference Manual

RTX 2001A Specifi‘c Instructions Decrement RX

‘Decrement RX

Description: Decrements the contents of RX by one. Decrementing the
contents of the register beyond 0000 Hex results in a wrap
to FFFF Hex.

Number of cycles: 1

Processor operations:

(RX) -> (RX) - 1

Parameter Stack effect:

no change

Instruction Set, Chapter 7 ' ’ 159

RTX 2010 Specific Instructions 0=

Description:

If TOP = 0 Change TOP to FFFF (implement Forth 0=).
If TOP # 0 Change TOP to 0000 (implement Forth 0=).
Number of cycles: 1

Processor operations:
IfTOP=0 FrFrF = 71

If TOP + 0 0000 => T

Parameter Stack effect:

160 RTX 2000 Family Programmer’s Reference Manual

RTX 2010 Specific Clear MAC Accumulator

- CLEARACC

Description: Clear the MAC Accumulator (MXR, MHR, MLR).
Number of cycles: 1

Processor operations:

0 => MLR 0 => MHR 0 => MXR

Parameter Stack effect:

no change

Instruction Set, Chapter 7 A ' 161

RTX 2010 Specific Double Shift Left Logical

DSLL

Description: Double Shift Left Logical Shift the double word operand
in TOP and NEXT left logically by the 5-bit count stored in
the MXR Register. The result is stored in MHR and MLR

Number of cycles: 1

Processor operations:

DSLL (T:N) => MHR:MLR

Parameter Stack effect:

no effect

162 . RTX 2000 Family Programmer’s Reference Manual

DSRA

Description: Double Shift Right Arithmetic Shift the double word
operand in TOP and NEXT right arithmetically by the 5-bit
count stored in the MXR Register. The result is stored in
MHR and MLR. :

Number of cycles: 1

Processor operations:

DSRA (T:N) => MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 163

RTX 2010 Specific Double Shift Right Logical

DSRL

Description: Double Shift Right Logical Shift the double word operand
» in TOP and NEXT right logically by the 5-bit count stored in
the MXR Register. The result is stored in MHR and MLR.

Number of cycles: 1
Processor operations:

DSRL (T:N) => MHR:MLR

Parameter Stack effect:

no effect

164 RTX 2000 Family Programmer’s Reference Manual

N
/

RTX 2010 Specific

‘MHR!

Description: Store the contents of TOP into the MAC Accumulator MHR.
NEXT is popped into TOP and Pstack is popped into NEXT.

Number of cycles: 1

Processor operations:

T => MHR N = T Pstack => N

~ Parameter Stack effect:

Instruction Set, Chapter 7 , 165

S %

RTX 2010 S;;eciﬁc Read Multiplier High Register

MHR@

Description: The middle 16 bits of the MAC register (MHR) are pushed
onto the Parameter Stack. The contents of TOP are pushed
- into NEXT, but NEXT is not pushed onto the stack; the
contents of NEXT are lost. Interrupts are disabled during the
execution of this instruction.

Number of cycles: 1

Processor operations:

MHR = 7T T = N

Parameter Stack effect:

NT -- T MHR

166 RTX 2000 Family Programmer's Reference Manual

RTX 2010 Specific Store MAC Low Register

MLR!

Description: + Store the contents of TOP into the MAC Accumulator MLR.
NEXT is popped into TOP and Pstack is popped into NEXT.

Number of cycles: 1

Processor operations:

T => MR N = T Pstack => N

Parameter Stack effect:

MLR --

Instruction Set, Chapter 7 167

RTX 2010 Specific Read Multiplier Low Register

MLR@
1lojr{1fj1|1|1]iJofo|rR|1)Jo|l1]|[1]0
Description: The low 16 bits of the MAC register (MLR) are pushed onto

the parameter stack. The contents of TOP are pushed into

- NEXT, but NEXT is not pushed onto the stack; the contents
of NEXT are lost. Interrupts are disabled during the
execution of this instruction.

Number of cycles: 1

Processor operations:

MLR = T Té>n

Parameter Stack effect:

NT -- T MLR

168 : ‘ RTX 2000 Family Programmer’s Reference Manual

N

RTX 2010 Specific Mixed Sign Multiply Accumulate

MULACM
1(ofrf{rfr]1r|1|ijJolo|rR|[1]Oo]1]1]0
Description: The Mixed Mode (signed and unsigned) Multiply

Accumulate operation is initiated. The contents of the TOP
and NEXT registers are multiplied (TOP contains the signed
value and NEXT contains the unsigned value), the 32-bit
result is added to the 48-bit accumulator (MXR, MHR, MLR).
This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

(T*N)+MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 169

o

RTX 2010 Specific ~ Signed Multiply Accumulate

MULACS

Description: A Signed Multiply Accumulate operation is initiated. The
contents of the TOP and NEXT registers are multiplied, the
~ 32-bit result is added to the 48-bit acumulator (MXR, MHR,

MLR). ThlS instruction does not modify the stack.

Number of cycles: 1

Processor operations: o - ' ;

(T*N)*MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect

170 » RTX 2000 Family Programmer’s Reference Manual

RTX 2010 Specific =~ Unsigned Multiply Accumulate

Description: The Unigned Multiply Accumulate operation is initiated.
The contents of the TOP and NEXT registers are multiplied,
the 32-bit result is added to the 48-bit accumulator (MXR,
MHR, MLR). This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

(T*N)+*MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 ‘ . 171

RTX 2010 Specific » Mixed Sign Multiply -

MULM

v Description: ~ The Mixed Sign Multiply operation is initiated. . The
contents of the TOP and NEXT registers are multiplied, with
the 32-bit result available in the MAC output registers MHR,

MLR. The operand in TOP is assumed to be signed and the

operand in NEXT unsigned. Interrupts are disabled during
the execution of this instruction. This instruction does not
modify the stack. ‘

Number of cyclos: v 1

.Proc&sor operations:
T*N => MHR:MLR
Parameter Stack effect:

no effect -

172 | RTX 2000 Family Programmer’s Reference Manual

RTX 2010 Specific Signed Multiply

Description: The Signed Multiply operation is initiated. The contents of
- the TOP and NEXT registers are multiplied, with the 32-bit
result available in the MAC output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 173

N

RTX 2010 Specific Signed Multiply And Subtract

Description: The Signed Multiply and Subtract from Accumulator
operation is initiated. The contents of the TOP and NEXT
registers are multiplied, the 32-bit result is subtracted from
the 48-bit accumulator (MXR, MHR, MLR). This instruction
does not modify the stack. . '

Number of cycles: 1

Processor operations:

MXR:MHR:MLR-(T*N) => MXR:MHR:MLR

Parameter Stack effect:

no effect

174 , RTX 2000 Family Programmer’s Reference Ménual

\
\

TR

3

RTX 2010 Specific Unsigned Multiply

MULU

Description: The Unsigned Multiply operation is initiated. The contents
of the TOP and NEXT registers are multiplied, with the 32-bit
result available in the MAC output registers MHR, MLR.
Interrupts are disabled during the execution of th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>