FOR ENGINEERS AND ENGINEERING MANAGERS — WORLDWIDE MARCH 21, 1985

ElectronicDesig

| Forth language shapes ._
. the structure of 10-MOPs chip

rt: Single-board computers
\ w functions
Autozero chip slashes offset voltages
of stand-alone op amps

~ BENDTIE CO;ER:AT}JW -

- always assumed that someone Would bu11d acom-.
' Iputer to run Forth,” observes Charles Moore, who

invented the high- level language 15 years ago.“In f “ ' _
fact, several microprocessors already emulate the no

_Forth architecture.” But in the end it was Moore

himself who actually sat down with fellow enthusi-

astsand determlned that aForth processor was,
- feasible. = _
" The Novix NC4000A what that company s J ohn :

~" Golden calls “the first computer for which the soft-

ware was written first,” is the subject of this issue’s
cover story (p. 127). It uses an instruction set consist-
. ing of subroutines (or “words”) taken directly from

- Forth. The user’s program feeds those subroutines

via a compiler into an instruection latch that actually =~

controls the machine: All time-consuming detours
. through lookup tables and microcode are eliminated.
‘When Moore ’s team got going four years ago, they -
“spent one week outlining an architecture that would
exploit the hlghly efficient data and address stacks
for which Forth is famous. Another year passed be--
~ fore they could dec1de whlch of two dozen varlatlons
was best. . :
. “Itwas hard to get flnancmg because of the novel-
-ty of the design,” recalls Golden. Nonetheless, work
 went ahead. Moore talks of a half-dozen iterations,
““since each design turned out to have a better and
more interesting one hiding behind it.” = .
- The pace picked up when Sysorex International -
stepped in with funding and Bob Murphy of Torric "
~Corp. was brought in to help with the hardware as-
pects. From late last March through July, he and .-
Moore virtually sequestered themselves from the
world. By that time, Moore had hit upon a parallel

- architecture that Murphy dubs “octopuslike, because

it can move in many directions at once.” A major
" contribution of Murphy’s was the elegant pro-
grammable I/0 configuration.

In August they released the layout to Mostek and I

packages became available just before Christmas.
“It worked the first time as predlcted comments

Murphy. “It was intended as proof in pr1nc1ple 7adds
" Moore, “biit it turned out to be a very nice little com- i

~ puter. » In fact, Moore finds the chip “surprisingly -
comfortable to work with” and “blindingly fast.”

- But, concedlng h1s own likely partiality, he looks. for-.

‘ward to “getting more feedback” on. 1ts h1ghly
/) unusual features

 DESGNENTRY

Fast processor chip
takes its instructions

directly from Forth

Executmg 10 mllllon operatlons/s a Chlp complles
Forth subroutines into op codes, whose bits
stir slmultaneous activity in the ALU and memories.

rograms written in.high-leYel languages
generally have to be translated into the
instructions of the computer they run on.

' But the relationship between the software com- -

mands and the machine instructions is far from
perfect: A single command may evoke a se-
quence of instructions.

For better performance, an engine is occa- -

sionally designed to run portlons of aparticular
high-level language actually in microcode. But
now, for the first time, a high-level language
Forth, has been put dlrectly, without even mi-
crocode, into the logic of a single-chip proces-

~ John Golden, Novix Inc.

Charles H. Moore, Consultant

Leo Brodie, Consultant _ .
John Golden is general manager of Noviz, a Cup-
ertino, Calif., partnership formed to develop and mar-
ket the NC4000 family of processors. After earning

" BSME from the University of Michigan, he spent

three years with NASA and 17 years with Systron
Donner’s aerospace group.

Charles H. Moore graduated ‘with a BS in physzcs
from MIT and did graduate work in mathematics at
Stanford. As an independent programmer in the early

© 1970s, he created the Forth language and cofounded

Forth Inc. Lately his energy has been spent on the
NC4000 high-spéed Forth engme

- Leo Brodze a former techmcal writer at Forth Inc.,

has written two books on Forth: programming,
Starting Forth and Thmklng Forth (Prentwe-Hall)
He now s a consultant in Forth programmmg

Reprinted from ELECTRONIC DESIGN - March 21, 1985 /

sor. In other Words a Forth program becomes
the chip’s external mlcrocode
Moreover, while the Forth language i 1s itself

~ optimized for speed, the 16-bit Forth processor
goes one big step beyond. Its parallel, bit-
slice-like-architecture letsit run 100 times fast-
-er than emulated Forth processors and also

outperform conventional devices. An initial

CMOS gate-array version runs a benchmark al-

Copyi’ight,’1§85_Hayden 'Publishing Co.; Ino.'

 DESIGN ENTRY -

. Cover: F}dr'th‘ processor chip

- gorithm, the Sieve of Eratosthenes, written in
“Forth in 0.3 s, while the 68000 runs it in assem-
bly language in049s. .
Thus in one bound the NC4000 family of high-
speed processing engines leaps two barriers.
- First, it rids the system designer of the need to
build and program a custom processor, permit-
ting the use of an-off-the-shelf microprocessor
‘with comparable performance. Second, by exe-
cuting a widely used high-level language direct-
ly, it frees the programmer from the difficulties
of writing in assembly language.

The first chip to be released, the NC4000A,

- runs at a clock speed of 8 MHz. Each instruction
“executes in a single clock cycle, 125 ns, and
- performs as many as five operations simultan-
. eously—for a chip speed of over 10 million
t operations a second. Subsequent versions
- should improve that rate by an order of mag-
nitude.
' Such blazing speeds w111 make the Forth pro-
~cessor suitable for applications that might oth-

erwise be designed in bipolar MSI or bit¥s‘lice
chips. The CPU of a supercomputer is a case in

point. Here the chip’s programmability adds -
‘the advantages of adaptability to ever-chang-

ing design specifications, quick turnaround,

and reusable code for later-generation prod- ,.

ucts. These advantages also pertain to CAE
gear and to artificial intelligence applications.
Finally, the chip’s programmable I/0 buses al-
low an array of the processors to be tied to-

gether in parallel, promising superfast com- -

puting.
Forth source code consists of numbers and

~words. In Forth terminology, a “word” applies
equally to operators like “add” (written +) and - -

to subroutines (see “Words, words, words,”
below). The Forth processor executes many
Forth words with one instruction in one clock
cycle, and it also executes the calls to subrou-

~ tines in one clock cycle
The execution rate is due to three of the chip’s
architectural features. First, five ‘parallel_ buses

Forth is a high-level language
widely used in real-time control
and other high-performance ap-
plications. Its most distinctive
features are a dictionary of Forth
‘words, which the programmer ex-

pands at will, and a data stack for

passing arguments between those
words. -

Forth source code thus consists
of words and numbers, separated
by space. In the phrase 22 + the

symbol + is dubbed a word with-
the meaning “add,” and its two.ar- - of s
constitute its definition.

guments precede it. Forth words
assume that their arguments will
be waiting for them in a strictly
last-in, first-out order on the data
stack. Accordingly, the Forth
compiler, upon encountering 2 2,
pushes the numbers into the top

‘two positions on the stack, from

“which the word + pops them, ulti-

mately storing the solution (4) in

the top stack position.
A special group of defining
words lets the programmer add to

the built-in dictionary. The most -

powerful of these is : , which is
used to define new words in terms
of earlier ones. A new word named

Words, words, words

LIFT hlight be defined thus:

: LIFTHAND OPENARM LOWER
HAND CLOSE ARM RAISE;

The semicdlon marks the end of
the definition. The Forth compiler
converts this code into a list of the

‘dictionary addresses of the com-

ponent words, producing threaded

code. The new word, LIFT, now

joins the linked list of its prede-
decessors and may be used instead
of the long sequence of words that

Forth words can be nested like
this almost indefinitely. Writing a
Forth program consists of build-
ing .increasingly powerful defini-
tions, such as this one, thereby
creating a dictionary unique tothe
application. As a bonus during de-
velopment, a programmer can test
each word (no matter how low-
level) by placing its input argu-
ments on the stack and invoking

the word. Afterward, the results-

appear on the stack again and are
easily displayed.
On rare occasions, the data

stack does not suffice. So another

“defining word, VARIABLE , is avail-

able to create storage locations for

variable data. For example, once.
VARIABLE ORANGES has been-

defined, the programmer would
use ! (pronounced “store”) to store

avalue in the location, thus 50 OR- -

ANGES! . Fetching the contents of
this location is the job of the word

"@ (pronounced “fetch”). In this
case ORANGES @ would fetch 50 as .

the value of the oranges.

Forth provides many other data
structure operators. But more im-
portantly, it provides the tools
necessary for the programmer to
create whatever data structures
the application needs..

The language also includes
words essential for structured
programming. Among its control
structures are jumps, such as flag
IF aaa THEN , counted loops such as
limit index DO aaa LOOP , and indef-

inite loops, such as BEGIN aaa flag = -

UNTIL. In addition, since Forth is

extensible, the programmer ‘may
easily define application-depend- * -

ent .control structures such as

multiple-exit loops and case state-

ments.

4// —\\

give each instruction simultaneous access to

main memory, a data stack, a return address
stack, and two I/0 buses. Second, as in a bit-
slice approach, an instruction register exercises
direct control over the ALU and memory ad-
dressing. Third, an instruction sequencer —
actually a hardware implementation of a rou-
tine that exists in software in previous Forth
systems—hastens the processor’s execution of
subroutine calls.

In contrast, when Forth is run on a conven-
tional microprocessor, its words are distinct
from the processor’s instruction set. They not
only have to be compiled into those instructions
(often less than optimally) but also may require
a series of instructions taking many clock cy-
cles. Moreover, although the Forth imple-

"mentation would allot areas in main memory to

a data stack and a return stack, it would have
only one bus over which to gain access to all
three. Finally, issuing a machine-level subrou-
tine call or returning from one can take a con-

ventional microprocessor as many as 15 clock
cycles to execute. -

In what follows, “subroutine” virtually al- -
ways is used synonymously with a Forth word;
“definition” refers to a Forth word defmed in
terms of previously existing words; an “instruc-
tion” refers to a word’s machine-language
correlate—one or more 16-bit op codes—on the
Forth processor; and an “operation” refers to
any one of the 40 activities that individual bits
of the op code can control. Combinations of up
to five of these operations create a set of over
130 single-op code instructions—more, if
the permutations of reglster addressing are
included. :

Also, the terms * compller and ‘interpreter”
havea shghtly unusual sense. A compiler refers
to the software routine used to transform Forth
source code into threaded Forth object code for
the NC4000; in this object code, each definition
becomes a list of op codes, some of which are
subroutine calls. The interpreter is a routine

Extension
port Bus port

t I

"NC4000A

Return 167, .
stack

memory

Data stack 7

(top two
fe

elements)
Main

memory

Data
stack
memory

1. The NC4000 Forth processor uses separate buses to main
memory, its data stack, and its return stack, as well as to two 1/0
ports. That parallel architecture lets mstructlons execute multiple -

operatlons smultaneously

* DESIGN ENTRY

‘ . Cyover: Forth_ prpéessdr chip

: ,fhait' 1ooks up the address of each word entered

from the keyboard (or read from mass storage)

* and executed in turn. Thus Forth runs at the
speed of compiled languages while allowing the
programmer to invoke definitions and create
new ones at any time from the keyboard.

_The parallel bus architecture of the Forth
processor builds on the language’s highly struc-

tured (and streamlined) approach to handling -

data and addresses. Like reverse Polish no-
tation, it always places operands ahead of their
operator (that is, 3—2 becomes 3 2—), so that it
- can have the numbers ready and waiting for ac-

tion on a data stack. It turns everjthing elsein-
to nested subroutines; in that way, addresses
within addresses can be unraveled in sequence, -

first onto and then off what is dubbed the re-

- turn stack. In neither case is time wasted on as- -

signing and finding storage-locations.
‘This setup allows the Forth processor to dedi-
cate separate data paths, each 16 bits wide, to

the data stack, the return stack, and the main
memory, as well asan1/0 bus (Fig.1). A second

1/0 bus is 5 bits wide. A single instruction can

thus make multiple accesses to memory. With -

the NC4000A, the stacks are consigned to off-

ALU decoder

0T
. 1 TANDY u

2 T-Y

3- TORY

4 THY

5 TXORY

6 Y —T .

7Y

Ty Control . :
} . :
|Nl'|Nc||MD||,SR| o
16
out In
q) ’,16 Y multiplexer
Address bus - i Control
o , Y
16 /
) Control Control
P‘_l
’/
Instruction 16 1 16
sequencer Control
(NEXT) Shifter |« '
4 16
’/
4 /’2 "‘2
b’ .
_—l] 3/ l
—_—— A A A
L1 I 0 | 0 l 0 I ALU I Y ITNl H ISAI D?,» /. ISLISR] Instruction latch
—_— o | L shitrigne Y Bothon(11)
Arithmetic instruction 1 ‘ Shift left } p;ci’;r?%?ttes
—;Divide .
32-bit shift

Stack active
—— Return from $ubroutine, EXIT

L— Copy T into N

Y input multiplexer

Bits Input to Y

00 N register .
01 N with carry register .
10 Multiplier-divisor register :
11 _Square-root register

2. The Forth processor’s instructions each consist of a 16-bit op .code compiled
from one or more Forth words. The first four bit positions define the type of in-
struction, and the last twelve bits directly control the ALU and registers. . - /,

.
/\
/

. chip high-speed memory. In future versions,

however, they may reside on the chip itself.
The Forth processor employs a full 16-bit op

- code for all instructions. Some of these bits
‘have fixed meanings, others rely on a minimum
~of decoding in silicon logic. Since its compiler

- translates the Forth sourcecode directly into

these op codes, the programmer need not know
the arrangement of bits within each op code in

- detail. Nonetheless, a grasp of their pr1n01ple of
“operation is useful ‘ _ :

A bit at atime

An op code begmnlng W1th a lindicates an
arithmetic instruction or an 1nstructlon involv-

: mg access to maln memory or one govermng

program structure. A 1 followed by three 0s
tells the instruction sequencer that the op code
represents an arithmetic instruction (Fig. 2)

“and that it should increment the program

counter by one unless the return bit is set.
 The next three bits control the function of the
ALU, specifying which of seven possible arith-

- metic and logic actions to perform on inputs T

and Y. The T register contains the top element

- of the data stack; it supplies one of the two in-
- puts to the ALU and also receives information.
+ from the ALU. The two following bits specify
“the source of the other ALU input, Y, as one of
the following: the N register, which contains

the second stack element; N with carry, used in
the ALU operation; the multiplier-divisor MD
register; or the square-root SR register. The

next bit, Ty, causes the contents of T to be copied

into N.
The eleventh b1t marked W1th a semicolon, is
the return bit. This single bit causes a return

from subroutine operation to be performed

simultaneously with other operations, so that

~the next instruction executed is actually the

next one in the program list. The result is zero

. time overhead (in most cases) for the return

operation. -

Instruction constructi'on :

Asfor the last five bits, the one labeled SA in-
dicates that the stack is active; D? specifies a

- 32-bit shift; the next bit indicates a division-

step operation of the ALU; and the last two con-

- trol the shifter.

‘Most other Forth instructions- also comblne

several operations. For instance, the familiar -
Forth word DUP (duplicate top of data stack)

_combines the two operations, Actlvate Stack

and Copy T into N,
- Furthermore, groups of two or more Forth '

“words may be combined into single instruc-

tions. The compiler, upon seeingthe three-word
phrase, OVER SWAP —, does not simply conjoin
OVER to SWAP and — but synthes1zes them into

a single instruction executed in two simulta- - -
neous operations. Specifically, N is fed to the

ALU while the ALU is subtracting T from N. -
Besides arithmetic steps, the 4000 instruc-

tion set includes bit-wise logical instructions;

control structure instructions, like jumps and a
repeat; data and return stack operators; and -
various data fetch, data store, and extended ad- -
dressinstructions. I/0 functions are performed
by accessing internal reglsters

The Forth processor’s instructions corre-
spond either to single Forth words (Table 1) or
to multiple Forth words (Table 2). All of the in-
structions execute in a single clock cycle (except

‘those that access system memory, which re-

qulre two cycles). '
The one-cycle |ump to subroutine

Since Forth is optlmlzed for subroutines, the
4000 chip architecture aims at invoking a sub- -

routine with as little overhead as possible. It .

succeeds, for it executes the equivalent of a sub-
routine call in the minimum time possible—a

- single cycle. What’s more, in most cases its re-
- turn from a subroutine takes no time at all. '

The Forth processor achieves the single-cycle

~ call because, when the most significant bit of

the 16-bit op codeis set to 0, it indicates that the
remaining 15 bits comprise the address of the
subroutine to be called. The chip’s instrurtion
sequencer places this address on the address
bus in time to latch on the very next cycle the -
first instruction of the next word. The se-

" quencer’s early computation of the next ad-

dress hinges on its i 1ngen10us branch 1nstruc-
tion decoding.

The trade-off is, of course, a program spacez
limited to 2" addresses That is less restrictive
than it seems. For one thing, the Forth proces-

sor uses word addresses and not byte addresses;
~ the program may occupy 64 kbytes of memory.

Given the extreme compactness of the instru_c- o

DESIGN ENTRY |

Cover: Forth procé'ssor chip

Table 1. Instructions corresponding to'singie Forth words

Stack manipulation

DUP (n—nhn)
DROP (n—)
OVER : (ab—aba)
SWAP. . (ab—ba)

- Arithmetic and logic -

+ (ab —sum)
1) (ab—sum)
= (ab—a—b) -

—cC (ab—a—b)

OR (ab—or)

AND (ab —and)

XOR. (ab — xor)

2/ . (n—n/2)

2 ‘ (n—n2)

0< (n—217)
D2/ - (d—d/2)

D2’ (d —d*2)

*! (d—d)

*— (d—d)

~F (d—d)

/I (d—d)

/" (d—d)

S’ (d d)

Return stack control

R ’ (—

n)
R@ © (= n)
#l “(—n)
>R (n—)

Structure control

if
" else

#loop L

times = . (n—)
call .
EXIT

Memory and I/O access

@) (adr—n)
! i (nadr —)
@ (adr —n)
! - (nadr —)
1@ . (adr — n)
n (nadr —)

n (no name) (—n)
- n (no name) (—n)

Push copy of top of stack onto stack

‘ Discard top stack element

Push copy of second (next) stack element onto top of stack
Reverse order of top two stack elements

Add top two-elements as 16-bit two’s complement integers
Add with carry .
Subtract top eleMent from second element
as 16-bit two’s complement integers.
Subtract with carry
Bit-wise logical OR -])
Bit-wise logical AND S
Bit-wise logical XOR
Arithmetic-shift T register right one bit
Arithmetic-shift T register left one bit

.

Return'true flag (hexadecimal FFFF) if n is negatlve otherwnse false

Double-length arithmetic-shift right
Double-length arithmetic-shift left
Multiplication step ’

Signed multiplication step

Fractional multiplication step
Division step

“Last division step

Square-root step . N

Pop top of return stack onto data stack -
Copy top of return stack onto data stack

Copy loop index onto data stack

Push top of data stack onto return stack

Jump if T register contains zero

Jump unconditionally .

Jump and decrement loop counter if it is not zero
Set repeat instruction counter

“Junip to subroutine
"Return

', Fetch value at memory address (2 cycles)

Store value at memory address (2 cycles)
Fetch value at local memory address (2 cycles)*

. Store value at local memory address (2 cycles)*

Fetch value from internal register
Store value in internal register
16-bit literal fetch (2 cycles)
5-bit literal fetch*

* Distinguished from preceding instruction(s) by internal structure

~ 1‘\.///.

tion set, 64 kbytes can contain much more code
than in traditional systems. Data buffers,
moreover, may be located in the upper (other)
32 kword memory region (since the fetch and
store operators use 16-bit addresses), further
reducing program size. Finally, Forth is quite

‘amenable to run-time overlay techniques; al-

ternatively, conventional memory-mapping

" techniques could provide extra program space.
To facilitate a return from a subroutine,-

called EXIT, another one of the 16 bits in the op
code (octal 40) is reserved exclusively for this
purpose. Thus the return operation can be spec-
ified within the 4000’s machine-level op code for

simultaneous execution. In a single clock cycle,

“a word can perform its last operation and re-

turn to the word that invoked it.

Of course, since the address bus to main
memory is 16 bits wide, the processor can access
a full 64 kwords of memory (128 kbytes). Ex-
tended address instructions are available to
enlarge that to a full 4 Mbytes, through a 5-bit
field embedded within fetch and store oper-
ations. In addition, the local data fetch and
store operations use their 5-bit embedded
literal field in the op code to access the first
32 words of main memory in a single instruc-
tion, or within two cycles (otherwise it would

Table 2. Instructions correspdn‘ding to multiple Forth words - |

- Stack manipulation

Extended address data fetch

~ Full literal fetch

DUP @ SWAP nn —-(decrementing fetch)

DUP nn X!

‘DUP nn I@ XOR

Internal data store

SWAP DROP DROP DUP nn X@ + nn X@ +c
SWAP — SWAP —c nn X@ —] - nn X@ —¢

OVER + OVER +c nn X@ SWAP — nn X@ SWAP —c¢
OVER — OVER —c nn X@ OR nn X@ XOR
OVER SWAP — OVER SWAP —c nn X@ AND

OVER OR : " OVER XOR .-)

OVER AND R > SWAPR) , .

R > DROP Extended-address data store

n + n +c¢ Local data fetch
n— n —c¢ nn@ + nn@ +c¢
n SWAP — n SWAP —c n@ — nn@ —c¢
n OR n XOR nn @ SWAP — nn @ SWAP —c
-n AND : nn @ OR nn @ XOR
nn'@ AND
Short literal fetch ‘
nn + "~ nn +c Local data store
nn — ' nn —c¢ DUP nn'! DUPnn! +
nn SWAP — nn SWAP —c DUPnn! — DUP nn | SWAP —
nn OR ‘ nn XOR DUP nn! OR DUP nn ! XOR
nn AND DUP nn ! AND
Data fetch .
@ + @ +c Internal data fetch
@ —) @ —c ‘nnl@ + nnl@ —)
@ SWAP — @ SWAP —c¢ nn I@ SWAP — nn @ SWAP OR |
@ OR . @ XOR nn I@ XOR nn I@ AND
@ AND - DUP nnl@ + DUP nnl@ —
DUP @ SWAP nn + (incrementing fetch) DUP nn I@ SWAP —DUP nn |@ OR

DUP nn i@ AND

Data store DUP nn I! DUPnn It +
DUP ! - DUP nn Il — DUP nn I SWAP —
SWAP OVER ! nn + (incrementing store) DUP nn I! OR DUP nn Il XOR -
SWAP OVER ! nn — (decrementing store) ‘DUP nn It AND nn I@!

DESIGN ENTRY

Cover: Forth processor chip

take four). These can be treated as a set of
32 fast, 16-bit pseudoregisters.

As for actual on-chip registers, the Forth
processor has a total of 17, all 16 bits wide and
all accessible in one clock cycle. T and N contain
the top two elements of the data stack, the ele-
ments below being transferred to and from the
off-chip data stack. A third contains the two
8-bit stack pointers. The others include two
arithmetic registers (multiplier-divisor and
square root); the program counter; the return
index, or I, register; and a read-only register
containing FFFF,, for the quick generation of
logical true and one that keeps count for the
“times” instruction. (In this feature, the in-
struction currently latched is repeated a spec-
ified number of times, freeing the address bus
for jobs like fast data transfer) The remaining
eight are four special registers for each of the
two I/0 ports.

"These eight lend a remarkable degree of
" flexibility to the chip’s 16-bit bus port and 5-bit
extension port. Each port is represented by a
register, and the flow of bits in the ports can be
specified by writing to direction registers. Then
the output bits can be selected individually by
writing to the mask registers. Finally, output
bits can also be programmed either to latch on

the value last written or to enter a three-state
condition after the/write operation by having
their three-state condition after the write oper-
ation by having their three-state registers
written to. Port bits marked asinput bits can be
programmed to yield either the value actually
received or the value as compared with an ex-
pected value, all in one cycle.

As a final chip feature, a single pin provides
one-level interrupt capability, causing exe-
cution of interrupt code at octal 40.

In application

One of the goals of the processor is to min-
imize hardware interfaces. The englne s flex- -
ible I/0 structure interfaces simply, using very
little glue logic, with a variety of chips and
buses. And the chip is fast enough to allow func-

tions implemented elsewhere in hardware to be
replaced by software. All told, these features
make the 4000 versatile enough to fulfill a
variety of roles even within a single system. For
example, while one senves as the system CPU,

" another might be the graphics processor and
yet another the disk controller. _

In this last role, the Forth processor needs
only three inexpensive support chips: a differ-
ential driver-receiver, an 8-bit flip-flop, and an

Bis

Output Select

Output control
sngnals

B14

Input Select

Bus
port

NC4000

} 6 lines unused

8-bit 1/0 bus

Step)

Step Direction

y Which Head? (2)
8 Write Enable
Motor On
Reserved (2)

Input
buffer

Output

Forth Bo-B; flip-flop
engine Input status
signals
N Write Protect
Receive ! a Track 0
X, i i Error
Extension |e— D'gﬁ:g:‘_'al Return Sector -
port Iy receiver Index
2o Transm Ready
Reserved (2)
Return
Control Status

Write
Enable

signals signals

To drives

3. A Forth processor can readily be programmed to act as-a disk drive controlier.
Because of its highly programmable 1/0 ports, it needs minimal external logic.

: 'v8-bit 'buffer '(Fig. 3).In fact,‘ the flip-,f"l\op and
. buffer could be eliminated if the bus portis not

being used for any purpose other than funnel-
ing control and status bits. Asitis, they prevent
~ stray external voltages from damaglng the chip
and leave six lines free for other components to
"be wired onto that 16-bit bus.
~In this configuration, the 16-bit bus. port i is
treated as two 8-bit ports. The low-order byte
- acts like an I/0 bus, relaying both output con-
 trol signals and input status signals. Two of the
: remaining bits are used as select lines. - »
- The subroutine needed to move the head is
simple (see the program, below). Under its
guldance the processor writes output control
signals to the drive by selecting the output flip-
flop and then writing the appropriate bits to the
“1/0 bus control and status lines. To move the
head, the direction bit is set, then pulses are ap-
plied to the step line until the head reaches the

I desired position.

v The virtue of brevnty

As is typical with Forth code, all the defini-
tions are short. A few words at the beginning of
the listing describe the hardware situation and

 freethe programmer from having to bother
- with such details any further. For instance, the

- word CONTROL lowers line D5 of the bus port,
which has been configured to select the output

. flip-flop on the 8-bit I/0 bus. Thus CONTROL is

- invoked whenever a control signal has to be
~ written to the drive. The word DIRECTION takes

" aflag from the data stack and writes it to the

. direction-of-step bit in the control signal. Simi-
larly, STEP writes a1 or 0 to the step bit.

- The remaining definitions then become quite
readable. The definitions of INWARD and OUT- -
WARD invoke both CONTROL and DIRECTION.
STEP-PULSE cycles the step signal once with an
approprlate delay, while STEPS performs a
given number of step cycles.

Given these words, the programmer may
control the hardware interacti'vely while con- -
tinuing to develop the more algorithmic sec- -
tions of the program. For instance, typing OUT-
WARD 128 STEPS causes the head to move out
128 steps. .

Reading datais s1m11arly easy. The processor
waits for the sector bit in the status signals to
change state, then starts looking for bits at the -
input. The driver-receiver is connected to the -
Forth processor’s extension port by two lines.
Each time a magnetically encoded bit passes
under the head, a pulse is sensed on the read line .

" in that port. Appropriate Forth software assem-

bles these pulses into words by readlng and
shifting.

The Forth processor also provesimmediately
useful in situations that are complex enough to
require the programmability of coded engines
but where current processmg speeds are insuf-.
ficient. An example is the simulation of hard-
ware designs in software. In fact, when the
Forth processor was designed, it was simulated
in Forth software on an LSI-11.00

Program for controlling a disk-drive head

: CONTROL :
7FFF DUP B mask I!
B1Il;
:mRECﬂON(t mwaM«—)
FFBF B mask I!.
BIl; ‘ :
: STEP (t=step motor —)
FF7F B mask I!
BIl;)
:lNWARD CONTROL —1 MRECﬂON—-
: OUTWARD CONTROL . 0 DIRECTION—;
: STEP-PULSE 0 STEP 20 DELAY —1STEP
: STEPS (#pulses —) 1-#DO STEP-PULSE

20 DELAY ;
#LOOP ;

- NOVIX

10590 North Tantau Avenue

Cupertino, CA 95014
(408) 996-9363
Telex: 352112

