
������E�'HSHQGDEOH�(PEHGGHG�6\VWHPV
-LDQWDR�3DQ

)HE���������
Required Reading: Towards Target-Level Testing and Debugging Tools for Embedded Software

Fun Reading: http://www.cnet.com/Content/Features/Dlife/Bugs/?dd

Best Tutorial: Software-reliability-engineered testing practice; John D.Musa; Proceedings
of the 1997 ICSE, Pages 628 - 629

Authoritative Books: The Art of Software Testing, Glenford J. Myers, 1979
 Black-box Testing, Boris Beizer, 1995
The Complete Guide to Software Testing, Hetzel, William C., 1988

Software Te$ting

2

You Are Here
◆ A lot of subtle relations to other topics

VERIFICATION/
VALIDATION/

CERTIFICATION

SW RELIABILITY

3

Introduction
◆ Definitions of Software Testing

• [1]: Testing is the process of executing a program or system with
the intent of finding errors.

• [3]: Testing is any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets its
required results.

◆ Vocabulary & Concepts
• Defects, bugs, faults[ANSI], errata[Intel]
• Testing is more than debugging[BEIZER90]

◆ Software testing is an …… $57
• because we still can not make it a science

◆ Software testing is everywhere
• in every phase of software life cycle, whenever software changes
• 50%+ time in debugging/testing

◆ Software testing is not mature

4

Why testing?
◆ For Quality

•bugs kill
– in a computerized embedded world

• Defect detection (find problems and get them fixed
[KANER93])
– Better early than late

» Difficult to upgrade field software in embedded systems

• To make quality visible [HETZEL88]

◆ For Verification & Validation(V&V):
• show it works:

– clean test/positive test

• or it can handle exceptional situations:
– dirty test/negative test

◆ For Reliability Estimation [KANER93]
• E.g. reliability growth testing

5

Why software testing is difficult -- principles
◆ Software fails in different ways with physical systems
◆ Imperfection of human nature(to handle complexity)
◆ Cannot exterminate bugs

• We cannot test a typical program completely
• The Pesticide Paradox[BEIZER90]

– Every method you use to prevent or find bugs leaves a residue of subtler bugs
against which those methods are ineffectual.

– Fixing the previous(easy) bugs will tend to increase software complexity -->
introducing new subtler bugs

• The Complexity Barrier[BEIZER90]
– Software complexity(and therefore that of bugs) grows to the limits of our ability to

manage that complexity.

6

Software Testing: Taxonomy
◆ By purposes

• Correctness testing
– Black-box
– White-box

• Performance testing
• Reliability testing

– Robustness testing
» Exception handling testing
» Stress/load testing

• Security testing
◆ By life cycle phase[PERRY95]

• Requirements phase testing
• Design phase testing
• Program phase testing
• Evaluating test results
• Installation phase testing
• Acceptance testing
• Testing changes: maintenance

◆ By scope
• implied in [BEIZER95]

– Unit testing
– Component testing
– Integration testing
– System testing

• or in [PERRY90]
– Unit testing
– String testing
– System testing (α test)
– Acceptance testing (β test)

7

Correctness Testing
◆ Needs some type of oracles
◆ Black-box testing/behavioral testing

• also: data-driven; input/output driven[1]; requirements-based[3]
• Test data are derived solely from the program structure[9]
• “Exhaustive input testing”[1]
• But, what about omissions/extras in spec?

◆ White-box testing/structural testing
• also: logic-driven[1]; design-based[3]
• Application of test data derived from the specified functional

requirements without regard to the final program structure[9]
• “Exhaustive path testing”[1]
• But, what about omissions/extras in code?

◆ Other than bugs, we may find:
• Features
• Specification problems
• Design philosophy (e.g. core dumps v.s. error return code)

8

Correctness Testing Methods/Tools
◆ Control-flow testing

• Trace control-flow using control-flow graph; coverage

◆ Loop testing
• A heuristic technique; should be combined with other methods
• Applied when there is a loop in graph

◆ Data-flow testing
• Trace data-flow using data-flow graph; coverage

◆ Transaction-flow testing
• Testing of on-line applications and batch-processing software
• Has both control-flow and data-flow attributes

◆ Domain testing
• Software dominated by numerical processing

◆ Syntax testing
• Command-driven software and similar applications

◆ Finite-state testing
• Using finite-state machine model
• motivated from hardware logic design
• Excellent for testing menu-driven applications

Flow-
coverage
testing

9

When to stop testing?

◆ Trade-off between budget+time and quality
• Part of acceptance testing

◆ Stopping rules:
• When reliability meets requirement

– Statistical models
» E.g. reliability growth models

– Data gathering --> modeling -->prediction
– Not possible to calculate for ultra-dependable system

» Because failure data is hard to accumulate

• When out of resources: test case, money and/or time

10

◆ Alternatives to testing
• “human testing[MYERS79]”

– inspections, walkthroughs, reviews

• Engineering methods
– Clean-room v.s. testing

• Formal Verification v.s. Testing

◆ Flames
• Traditional coverage-based testing is flawed.
• Testing can only prove the software is flawed.
• Inspection/review more effective than testing?
• “If we have good process, good quality, we don't need much

testing”

Testing is Controversial

11

Conclusions
◆ Complete testing is infeasible

• Complexity problem

• Equivalent to Turing halting problem

◆ Software testing is immature
• Crucial to software quality

◆ Testing is more than debugging
• For quality assurance, validation and reliability measurement

◆ Rules of thumb
• Efficiency & effectiveness

• Automation

◆ When to stop: need good metrics
• Reliability

• Time & budget

12

List of References
◆ [1][MYERS79] The art of software testing
◆ [2][BEIZER95] Black-box Testing
◆ [3][HETZEL88] The Complete Guide to Software Testing
◆ [4][PHAM95] Software Reliability and Testing, pp29
◆ [5][KANER93] Testing Computer Software
◆ [6][PERRY95] Effective Methods for Software Testing, William

Perry, 1995 QA76.76.T48P47X
◆ [7][BEIZER90] Software Testing Techniques
◆ [8]http://www.cs.jmu.edu/users/foxcj/cs555/Unit12/Testing/index.

htm
◆ [9][PERRY90] A standard for testing application software,

William E. Perry, 1990

