
Software Reliability

18-849b Dependable Embedded Systems
Jiantao Pan
Feb 2, 1999

Required Reading: Handbook of Software Reliability Engineering, Chapter 1

Best Tutorial: Handbook of Software Reliability Engineering, Michael R. Lyu
Authoritative Books: Handbook of Software Reliability Engineering, Michael R. Lyu

Introduction to Software Reliability: A state of the Art Review

2

You Are Here

3

Issues

◆ More and more computers, and more …
• Increased control by software

– Everyday life

– Critical applications

◆ Can we trust software?
• Software never breaks!?

– Therac 25

– Ariane 5

– NASA Voyager Uranus encounter jeopardy

– Telephone network outages

4

Software & Hardware Differences
◆ Major differences for software:

• Failure cause: Software defects are mainly design defects
• Wearout: Software does not rust
• Repairable system concept: Periodic restarts can help fix problems
• Time dependency and life cycle: SR not related to operational time
• Environmental factors: External environment does not affect SR
• Reliability prediction: SR human factors, not physical factors
• Redundancy: Can not improve SR using identical components
• Interfaces: Purely conceptual; not visual
• Failure rate motivators: Usually not predictable
• Standard components: Usually no standard parts. Reuse limited

◆ Additional differences:
• SW Cannot be touched
• SW has no size, material, etc
• No weight/energy(E=mc2)

5

Key Concepts
◆ Software Reliability (SR)

• the probability of failure-free software operation for a specified
period of time in a specified environment. [ANSI]

• It is not a function of operational time!

◆ SR is an attribute of software quality
• Together with: functionality, usability, performance,

serviceability, capability, installability, maintainability, and
documentation.

• Robustness is an aspect of SR

◆ Why SR is so hard to achieve:
• Complexity

– Software is not intrinsically buggy than hardware, but people tend to push
complexity into software

6

SR: Bathtub Curves

Period SW HW

A Test/Debug Infant
mortality

B Useful life Useful
life

C Obsolescence Wearout

/HJHQG

7

True?

Normalized Failure Rate of 15 OS Versions

AIX 4.1
Digital Unix 4.0

Digital Unix 3.2
FreeBSD 2.2.5

HP-UX B.10.20
HP-UX A.09.05

IRIX 6.2
IRIX 5.3

LINUX 2.0.18
LynxOS 2.4.0

NetBSD 1.3
QNX 4.24

QNX 4.22
SunOS 5.5

SunOS 4.1.3

0% 5% 10% 15% 20% 25%

15
 P

O
S

IX
 O

S
 V

er
si

o
ns

fr
om

 T
en

 V
en

d
or

s

Robustness Failure Rate

AIX 4.1
Digital Unix 4.0
Digital Unix 3.2
FreeBSD 2.2.5
HP-UX B.10.20
HP-UX A.09.05
IRIX 6.2
IRIX 5.3
LINUX 2.0.18
LynxOS 2.4.0
NetBSD 1.3
QNX 4.24
QNX 4.22
SunOS 5.5
SunOS 4.1.3

8

Software Reliability: Pieces of the Puzzle
◆ SR: Models

• Prediction
• Estimation

◆ SR: Measurement
• Metrics

◆ SR: Improvement
• Time
• Budget

◆ Other techniques (and many more emerging)
• Software Reliability Simulation

– Trace-driven, self-driven
– Observing the result
– Sensitivity analysis

• The Operational Profile

9

SR: Models
◆ Observed failure data + statistical inference
◆ Prediction Models

• In-House Historical Data Collection Model
• Musa’s Execution Time Model
• Putnam’s Model
• Rome Laboratory prediction Model: RL-TR-92-15
• Rome Laboratory prediction Model: RL-TR-92-52

◆ Estimation Models
• Classical Fault Count/Fault Rate Estimation Models

– Exponential Distribution Models
– Weibull Distribution Model

• Bayesian Fault Rate Estimation Models
– Thompson and Chelson’s Model

◆ Neural Networks for SRE New!

10

SR: Models Summary

◆ There are so many models
• You can probably find the model that can produce the

result you want!

◆ Matured to the degree that
• can be applied in practical situations

• give meaningful results

◆ There is no one model that is best in all situations
• Select the model that is most appropriate for he data set

and the environment in which the data were collected

◆ Results can not be blindly applied

11

SR: Measurement
◆ “Measurement is far from commonplace in the software

engineering world ... ”
◆ SR itself is hard to measure, so we measure other

aspects
• Product metrics

– Lines Of Code(LOC, KLOG, SLOC, KSLOC) with relation to defects

– Function Point Metric

– Complexity-Oriented Metrics

– Test Coverage Metrics

• Project Management Metrics

• Process metrics

• Fault and Failure Metrics

12

SR: Improvement

◆ Before deployment
• Software testing
• Verification, validation
• Software system analysis tools

– Fault Tree, ODC, Formal methods, etc
– Trend analysis

◆ After deployment
• Field data analysis
• Dealing with faults:

– Fault prevention
– Fault removal
– Fault tolerance
– Fault/failure forecasting

13

Relationship To Other Topic Areas
◆ It relates to any area that uses software …
◆ Traditional/Hardware Reliability

• SR is an analogy of Hardware Reliability(HR)
– SR focuses on design perfection
– HR focuses manufacturing perfection

◆ Software Fault Tolerance
• Achieve high reliability using software methods

◆ Software Testing
• Can be used to improve, measure software reliability

◆ Social & Legal Concerns
• Bugs will always exist; I am not liable.

• It is a specification problem.

• No known bugs!

14

Conclusions & Future Work
◆ Conclusions

• Models are affluent
– Too many models (but which one suits your case?)

• Measurement is naïve
– “Just how good is the software, quantitatively?”

• Improvement is hard
– Need to balance time and cost issues.

◆ Future work:
• Metrics?

– Study common failure modes

– Find better quantitative metrics to represent software reliability and quality

• Complexity?
– Find better engineering method to manage and conquer software complexity

• Standardization?
– Standard software components as building blocks

• Recreate a new area called “Software Quality Assurance”

