
Formal Methods

Michael Collins.

18-849, Section B

Spring 1999



Formal Methods

■ Why Formalisms?

■ Relationships

■ Flaws

■ Some systems

■ Conclusions



Why Formal Methods?

■ We already can build
systems.

■ Roman Engineers
built aqueducts

■ Neither group has
math for the job

■ Both groups waste(d)
time & effort



Why Formal Methods? (2)

■ Correctness is proven, not observed
◆ Automatic Proof

■ Provides a neutral description
◆ Good for documentation

◆ Good for standardization

■ Legal guarantees



Relationships

■ SW Reliability
◆ Fault Avoidance

■ Fault Tolerant Computing
◆ Vide Supra

■ Verify/Validate/Certify
◆ Serves as a validation system

■ (Ultra Dependability)



How do we use them?

■ Build a model using a Modeling Language
◆ Algebra

■ Verify the correctness of the model
◆ Theorem Provers exist (Boyer-Moore)

■ Translate the model to implementation
◆ Again, tools exist



Flaws

■ Idealized models

■ Design vs. Implementation

■ Learning curve

■ How do you prove a prover?

■ Can’t apply models to existing systems



LARCH

■ Two-level language
◆ Versions for C++, VHDL...

■ One language for modeling, one for
implementation

■ Similar systems include VDM & Z



Petri Nets

■ Purely graphical
modeling language

■ Model Concurrency

■ Can be used to
define protocols



SML

■ Theorem proving language
◆ Literally designed for provability

◆ Functional and strongly typed

■ Proofs are limited in scope
◆ No side effects

■ Similar projects include Haskell



HOL

■ Higher order logic

■ Mechanized prover

■ Most (in)famous project: Viper Chip
◆ Couldn’t handle interrupts

■ Other provers include Boyer-Moore



Conclusions

■ Formal methods are attractive in theory

■ Very few benefits right now

■ Current methods provide unsatisfactory
models

■ Engineers may have to start thinking like
mathematicians


