
Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

1

Automated Robustness Testing of
Off-the-Shelf Software Components
Nathan Kropp • Phil Koopman • Dan Siewiorek
Carnegie Mellon University
http://www.ices.cmu.edu/ballista

Institute
for Complex
Engineered
Systems

DARPA

2

The Big Picture: Ballista Project

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

2

3

Overview: Ballista Robustness Testing
u System Robustness

• Must be able to measure & test
before hardening is practical

u Automated Robustness Testing
• Operating Systems as a test case
• Need scalability
• Full-scale testing results

u Conclusions

 A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

4

System Robustness
A) Graceful behavior in the presence of exceptional conditions

• Unexpected operating conditions
• Activation of latent design defects
• Focus of the current research

B) Operation under extraordinary loads
• The other half of robustness -- but not covered in this work

u Current test case -- Operating Systems (POSIX API)
• Goal -- metric for comparative evaluation of OS robustness
• If a mature OS isn’t “bullet-proof”, what hope is there for

application software?

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

3

5

Measuring Robustness
u Software testing heritage:

• “Dirty” test cases -- see if correct error response is generated
– Can significantly out-number “clean” test cases (4:1 or 5:1) ⇒

expensive!

u Fault tolerance heritage: fault injection
• Insert an intentional defect and observe how gracefully the system

responds
– Potentially automated (potentially cheap)

• But, there are challenges
– Creating a non-intrusive injection mechanism
– Combinational explosion of potential interactions
– Repeatability / determinism
– Portability to compare systems / requirement for special hardware

6

Ballista Automated Testing Goals
u No functional specification

• Generically applicable to modules having argument lists
• No source code, no reverse compilation, … no “peeking”

u Highly scalable
• Automated operation from test case generation to hardening
• Effort to create tests sub-linear with number of functions tested

u Repeatable results
• Robustness failures repeatable on demand
• Single-function-call fault model

– Enables creation of very simple “bug report” code
– Makes it possible to create reasonably simple wrappers
– Only addresses a subset of problems (but, a big subset?)

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

4

7

Ballista Software Testing Heritage
u SW Testing requires: Ballista uses:

• Test case “Bad” value combinations
• Module under test Module under Test
• Oracle (a “specification”) Watchdog timer/core dumps

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER
TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

8

Ballista Fault Injection Heritage
Name Method Level Repeatability

FIAT Binary Image Changes Low High

FERRARI Software Traps Low High

Crashme Jump to Random Data Low Low

FTAPE Memory/Register Alteration Low Medium

FAUST Source Code Alteration Middle High

CMU- Random Calls and High Low
Crashme Random Parameters

Fuzz Middleware/Drivers High Medium

Ballista Specific Calls with High High
 Specific Parameters

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

5

9

Ballista: “High Level” + “Repeatable”
u Example test:
 read(bad_fd, NULL_buffer, neg_one_length);

u High level fault injection
• Send exceptional values into a component set through the API

u Repeatable: single function call for each test:
• System state initialized & cleaned up for each single-call test
• Combinations of valid and invalid parameters tried in turn

• A “simplistic” model, but it does in fact work...
– Crashes several commercial operating systems

10

CRASH Severity Scale
u Catastrophic

• Test computer crashes (both Benchmark and Starter abort or hang)

u Restart
• Benchmark process hangs, requiring restart

u Abort
• Benchmark process aborts (e.g., “core dump”)

u Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

uHindering
• Incorrect error code generated

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

6

11

A Challenge: Scalability
u Precursors to Ballista achieved high level repeatability

• But, they didn’t scale without significant effort

u Scaffolding
• Software testing in general requires scaffolding to be erected for

every function to be tested
• But, this makes it expensive to test a significant API

u Specification/oracle creation
• Software testing in general requires a specification for each

function
• But, specification (or even source code) may be unavailable

12

Scalable Test Generation -- Scaffolding
u Problem 1: Avoid per-function work for test scaffolding

• Scaffolding required to set appropriate state for each function
• Insight: Fewer data types than functions
• Solution: Encapsulate scaffolding in data types alone -- no per-

function scaffolding.

u Each test value instance has a constructor & destructor
• Constructor creates state required for a particular test value

– e.g., create a file, put data in it, open it for read, return that file handle
• Destructor cleans up any remaining state after the test

– e.g., close & delete a file that had been created by constructor
• Scaffolding based on data type regardless of function

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

7

13

Ballista: Scalable Test Generation

u Only 20 data types for 233 POSIX function calls

API

TESTING
OBJECTS

module_name (int param, file param)

module_name < >zero, open_for_write

INTEGER
TEST

OBJECT
...

0
1
-1
...

OPEN FOR READ
OPEN FOR WRITE

...

TEST
VALUES

TEST CASE
(a tuple of

specific
test values)

NULL STRING
LONG STRING

...

FILE HANDLE
TEST

OBJECT

STRING
TEST

OBJECT

14

Scalable Test Generation -- An Oracle
u Problem 2: Avoid per-test work to determine pass vs. fail

• Understanding of functionality required for “pass” vs. “fail”
• Insight: Ignore functionality -- use “doesn’t crash; doesn’t hang”
• Solution: Test them all and let the watchdog timer/core dumps sort

them out.
– Test only Catastrophic - Restart - Abort failures (for now, anyway)
– Ignore pass/fail in terms of return code; just look for robustness

failures

u Example:
• read() succeeds but write() (hopefully) returns an error

when accessing a read-only file
• But we can ignore any return codes and just look for an Abort or

Restart in either case

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

8

15

So, Did It Find Anything?
Digital Unix 4.0 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)

ab
s

ai
o_

er
ro

r
ai

o_
w

rit
e

at
an

at

ol

cf
ge

to
sp

ee
d

ch
m

od

clo
ck

_g
et

tim
e co
s

cti
m

e
ex

ec
le

ex

ec
vp

fcl

os
e

fe
of

fg

et
s

fo
pe

n
fp

ut
s

fre
xp

fsy

nc

ge
tc

ge
tg

rn
am

ge

ts
isa

tty

isl
ow

er

isu
pp

er

lio
_l

ist
io

lon

gjm
p

m
kfi

fo

m
m

ap

m
q_

ge
ta

ttr

m
q_

se
nd

m

un
loc

k
op

en
di

r
po

w
pu

ts
re

m
ov

e
rm

di
r

sc
he

d_
ge

tp
ar

am

sc
he

d_
se

tsc
he

du
se

m
_i

ni
t

se
m

_u
nli

nk

se
tjm

p
sh

m
_o

pe
n

sig
de

lse
t

sig
lon

gjm
p

sig
tim

ed
wa

it
sq

rt
st

rc
at

st

rc
sp

n
str

nc
m

p
str

sp
n

ta
n

tc
flu

sh

tc
se

ta
ttr

tim
er

_d
el

et
e

tim
es

tty

na
m

e
un

lin
k

w
rit

e

P
er

ce
nt

 o
f T

es
ts

 F
ai

lin
g,

 p
er

 fu
nc

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16

What We Measured
u 233 POSIX Calls (including real-time extensions)

• That take at least one parameter
• That don’t intentionally hang or generate signals
• 92,658 tests per OS if all 233 functions are supported

u “Single-number” summary metric
• Failure rate computed for each function and then averaged

– Should weight by usage frequency for any particular application
environment

• Gives a portable comparative metric for robustness(!)

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

9

17

Was It Portable?

Ballista Robustness Tests -- 233 POSIX Function Calls

Normalized

Failure

Rate
0% 5% 10% 15% 20% 25%

Abort

Failures

Restart

Failure

1

Catastrophic

Failure

Set

1

Catastrophic

Failure

Set

1

Catastrophic

Failure

Set

AIX 4.1
DUNIX 4.0

FreeBSD 2.2.5
HP-UX 10.20

Irix 6.2

LynxOS 2.4.0
Linux 2.0.18

NetBSD 1.3
QNX 4.24
SunOS 5.5

18

Was It Repeatable + Scalable?
u http://www.ices.cmu.edu/ballista -- Digital Unix demo

• Generates single-test “bug report” programs
• Reproduces results by executing a program from the command line

u Yes, it’s scalable
• Generates ~100,000 test cases for 233 functions
• ~2000 lines of “easy” C code to test 20 data types

– (plus Ballista test harness)
• A reasonable amount of system state is tested without per-test

scaffolding
– e.g., files, memory arrays, data structures
– The encapsulation of system state within test cases really worked

• Work on a simulation backplane API for looks promising

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

10

19

Conclusions
u Ballista testing quantifies one aspect of robustness

• Scalable -- base scaffolding on data types, not functions
• Repeatable -- single-call approach is simple, but effective
• Portable -- use API for fault injection

u But, it is only a start
• Tests one aspect of system robustness
• Currently uses only heuristic tests (want broader coverage in

future)

Anybody can build a system that works when it works,
but it's how it works when it doesn't work that counts.

