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The Big Picture: Ballista Project
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Overview: Ballista Robustness Testing
u System Robustness

• Must be able to measure & test
before hardening is practical

u Automated Robustness Testing
• Operating Systems as a test case
• Need scalability
• Full-scale testing results

u Conclusions

      A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.
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System Robustness
A) Graceful behavior in the presence of exceptional conditions

• Unexpected operating conditions
• Activation of latent design defects
• Focus of the current research

B) Operation under extraordinary loads
• The other half of robustness -- but not covered in this work

u Current test case -- Operating Systems (POSIX API)
• Goal -- metric for comparative evaluation of OS robustness
• If a mature OS isn’t “bullet-proof”, what hope is there for

application software?
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Measuring Robustness
u Software testing heritage:

• “Dirty” test cases -- see if correct error response is generated
– Can significantly out-number “clean” test cases (4:1 or 5:1) ⇒

expensive!

u Fault tolerance heritage: fault injection
• Insert an intentional defect and observe how gracefully the system

responds
– Potentially automated (potentially cheap)

• But, there are challenges
– Creating a non-intrusive injection mechanism
– Combinational explosion of potential interactions
– Repeatability / determinism
– Portability to compare systems / requirement for special hardware
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Ballista Automated Testing Goals
u No functional specification

• Generically applicable to modules having argument lists
• No source code, no reverse compilation, …  no “peeking”

u Highly scalable
• Automated operation from test case generation to hardening
• Effort to create tests sub-linear with number of functions tested

u Repeatable results
• Robustness failures repeatable on demand
• Single-function-call fault model

– Enables creation of very simple “bug report” code
– Makes it possible to create reasonably simple wrappers
– Only addresses a subset of problems (but, a big subset?)
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Ballista Software Testing Heritage
u SW Testing requires: Ballista uses:

• Test case “Bad” value combinations
• Module under test Module under Test
• Oracle   (a “specification”) Watchdog timer/core dumps
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Ballista Fault Injection Heritage
Name Method               Level        Repeatability

FIAT Binary Image Changes    Low High

FERRARI Software Traps                Low High

Crashme Jump to Random Data    Low    Low

FTAPE  Memory/Register Alteration     Low   Medium

FAUST Source Code Alteration            Middle High

CMU- Random Calls and                High   Low
Crashme      Random Parameters

Fuzz Middleware/Drivers                High   Medium

Ballista Specific Calls with                 High   High
     Specific Parameters
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Ballista: “High Level” + “Repeatable”
u Example test:
   read(bad_fd, NULL_buffer, neg_one_length);

u High level fault injection
• Send exceptional values into a component set through the API

u Repeatable: single function call for each test:
• System state initialized & cleaned up for each single-call test
• Combinations of valid and invalid parameters tried in turn

• A “simplistic” model, but it does in fact work...
– Crashes several commercial operating systems
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CRASH Severity Scale
u Catastrophic

• Test computer crashes (both Benchmark and Starter abort or hang)

u Restart
• Benchmark process hangs, requiring restart

u Abort
• Benchmark process aborts (e.g., “core dump”)

u Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

uHindering
• Incorrect error code generated
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A Challenge: Scalability
u Precursors to Ballista achieved high level repeatability

• But, they didn’t scale without significant effort

u Scaffolding
• Software testing in general requires scaffolding to be erected for

every function to be tested
• But, this makes it expensive to test a significant API

u  Specification/oracle creation
• Software testing in general requires a specification for each

function
• But, specification (or even source code) may be unavailable
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Scalable Test Generation -- Scaffolding
u Problem 1:  Avoid per-function work for test scaffolding

• Scaffolding required to set appropriate state for each function
• Insight: Fewer data types than functions
• Solution: Encapsulate scaffolding in data types alone -- no per-

function scaffolding.

u Each test value instance has a constructor & destructor
• Constructor creates state required for a particular test value

– e.g., create a file, put data in it, open it for read, return that file handle
• Destructor cleans up any remaining state after the test

– e.g., close & delete a file that had been created by constructor
• Scaffolding based on data type regardless of function
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Ballista: Scalable Test Generation

u Only 20 data types for 233 POSIX function calls

API

TESTING
OBJECTS

module_name (int param, file param)

module_name < >zero, open_for_write

INTEGER
TEST

OBJECT
...

0
1
-1
...

OPEN FOR READ
OPEN FOR WRITE

...

TEST
VALUES

TEST CASE
(a tuple of

specific
test values)

NULL STRING
LONG STRING

...

FILE HANDLE
TEST

OBJECT

STRING
TEST

OBJECT
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Scalable Test Generation -- An Oracle
u Problem 2:   Avoid per-test work to determine pass vs. fail

• Understanding of functionality required for “pass” vs. “fail”
• Insight: Ignore functionality -- use “doesn’t crash; doesn’t hang”
• Solution: Test them all and let the watchdog timer/core dumps sort

them out.
– Test only Catastrophic - Restart - Abort failures (for now, anyway)
– Ignore pass/fail in terms of return code; just look for robustness

failures

u Example:
• read() succeeds but write() (hopefully) returns an error

when accessing a read-only file
• But we can ignore any return codes and just look for an Abort or

Restart in either case
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So, Did It Find Anything?
Digital Unix 4.0 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)
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What We Measured
u 233 POSIX Calls  (including real-time extensions)

• That take at least one parameter
• That don’t intentionally hang or generate signals
• 92,658 tests per OS if all 233 functions are supported

u “Single-number” summary metric
• Failure rate computed for each function and then averaged

– Should weight by usage frequency for any particular application
environment

• Gives a portable comparative metric for robustness(!)
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Was It Portable?

Ballista  Robustness  Tests  --  233  POSIX  Function  Calls

Normalized
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Was It Repeatable + Scalable?
u http://www.ices.cmu.edu/ballista  -- Digital Unix demo

• Generates single-test “bug report” programs
• Reproduces results by executing a program from the command line

u Yes, it’s scalable
• Generates ~100,000 test cases for 233 functions
• ~2000 lines of  “easy” C code to test 20 data types

– (plus Ballista test harness)
• A reasonable amount of system state is tested without per-test

scaffolding
– e.g., files, memory arrays, data structures
– The encapsulation of system state within test cases really worked

• Work on a simulation backplane API for looks promising
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Conclusions
u Ballista testing quantifies one aspect of robustness

• Scalable -- base scaffolding on data types, not functions
• Repeatable -- single-call approach is simple, but effective
• Portable -- use API for fault injection

u But, it is only a start
• Tests one aspect of system robustness
• Currently uses only heuristic tests (want broader coverage in

future)

Anybody can build a system that works when it works,
but it's how it works when it doesn't work that counts.


