
http://www.ices.cmu.edu/ballista

Prof. Philip Koopman
koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

(and more than a dozen other contributors)

Institute
for Complex
Engineered
Systems

&Electrical Computer

2

Where We Started: Component Wrapping
u Improve Commercial Off-The-Shelf (COTS) software robustness

3

Overview: Automated Robustness Testing
u System Robustness

• Motivation
• Ballista automatic robustness

testing tool
u OS Robustness Testing

• Unix
• Windows
• Comparing Linux to WinNT

u Testing Service
• Technology Transfer
• Application to Non OS APIs

u Conclusions

A Ballista is an ancient siege
weapon for hurling large
projectiles at fortified defenses.

Ariane 5 Flight 501 Robustness Failure _
u June, 1996 loss of inaugural flight

• Lost $400 million scientific payload (the rocket was extra)
u Efforts to reduce system costs led to the failure

• Re-use of Ariane 4 Inertial Reference System software
• Improperly handled exception caused by variable overflow during

new flight profile (that wasn’t simulated because of
cost/schedule)

– 64-bit float converted to 16-bit int assumed not to overflow
– Exception caused dual hardware shutdown (because it was

assumed software doesn’t fail)
u What really happened here?

• The narrow view: it was a software bug -- fix it
– Things like this have been happening for decades -- Apollo 11

LEM computer crashed during lunar descent
• The broad view: the loss was caused by a lack of system

robustness in an exceptional (unanticipated) situation

u Our research goal: improved system robustness

6

Good Exception Handling Improves Robustness
"If builders built buildings they way computer programmers write

programs, the first woodpecker that came along would have
destroyed all civilization" -- Gerald Weinberg

u Exception handling is an important part of dependable systems
• Responding to unexpected operating conditions
• Tolerating activation of latent design defects
• (Even if your software is “perfect,” what about other people’s software?)

u Robustness testing can help evaluate software dependability
• Reaction to exceptional situations (current results)
• Reaction to overloads and software “aging” (future results)
• First big objective: measure exception handling robustness

– Apply to operating systems
– Apply to other applications

u It’s difficult to improve something you can’t measure …
so let’s figure out how to measure robustness!

8

Measurement Part 1: Software Testing
u SW Testing requires: Ballista uses:

• Test case “Bad” value combinations
• Module under test Module under Test
• Oracle (a “specification”) Watchdog timer/core dumps

u But, software testing is expensive
• Key idea: use a very simple oracle!

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

9

Measurement Part 2: Fault Injection
u Use repeatable, high level fault injection for inexpensive testing

Name Method Level Repeatability

FIAT Binary Image Changes Low High

FERRARI Software Traps Low High

Crashme Jump to Random Data Low Low

FTAPE Memory/Register Alteration Low Medium

FAUST Source Code Alteration Middle High

CMU- Random Calls and High Low
Crashme Random Parameters

Fuzz Middleware/Drivers High Medium

Ballista Specific Calls with High High
Specific Parameters

10

Ballista: Scalable Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

u Ballista combines test values to generate test cases

11

Ballista: “High Level” + “Repeatable”
u High level testing is done using API to perform fault injection

• Send exceptional values into a system through the API
– Requires no modification to code -- only linkable object files needed
– Can be used with any function that takes a parameter list

• Direct testing instead of middleware injection simplifies usage

u Each test is a specific function call with a specific set of parameters
• System state initialized & cleaned up for each single-call test
• Combinations of valid and invalid parameters tried in turn
• A “simplistic” model, but it does in fact work...

u Early results were encouraging:
• Found a significant percentage of functions with robustness failures
• Crashed systems from user mode

u The testing object-based approach scales!

12

CRASH Robustness Testing Result Categories

u Catastrophic
• Computer crashes/panics, requiring a reboot
• e.g., Irix 6.2: munmap(malloc((1<<30)+1), ((1<<31) -1)));
• e.g., DUNIX 4.0D: mprotect(malloc((1 << 29)+1), 65537, 0);

u Restart
• Benchmark process hangs, requiring restart

u Abort
• Benchmark process aborts (e.g., “core dump”)

u Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

u Hindering
• Incorrect error code generated
• Found via by-hand examinations, not automated yet

13

Digital Unix 4.0 Results

14

Comparing Fifteen POSIX Operating Systems

Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

1 Catastrophic

2 Catastrophics

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

1 Catastrophic

1 Catastrophic

HP-UX 10.20

Abort Failures
Restart Failure

1 Catastrophic

15

Failure Rates By POSIX Fn/Call Category

16

C Library Is A Potential Robustness Bottleneck

Normalized Failure Rate

Portions of Failure Rates Due To System/C-Library

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

HP-UX 10.20

1 Catastrophic

2 Catastrophics

1 Catastrophic

1 Catastrophic

1 Catastrophic

C Library
System Calls

17

Common Failure Sources
u Based on correlation of failures to data values, not traced to

causality in code

u Associated with a robustness failure were:
• 94.0% of invalid file pointers (excluding NULL)
• 82.5% of NULL file pointers
• 49.8% of invalid buffer pointers (excluding NULL)
• 46.0% of NULL buffer pointers
• 44.3% of MININT integer values
• 36.3% of MAXINT integer values

18

Data Analysis Using N-Version Comparisons
u Use N-version software voting to refine data

(and use manual sampling to check effectiveness)
• Eliminate non-exceptional tests -- 12% of data; method ~100% accurate

– e.g., reading from read-only file

• Identify Silent failures

u Silent failures -- 6% to 17% additional robustness failure rate
• 80% accurate when one OS reports “OK” while at least one other OS

reports an error code
– ~2% were bugs involving failure to write past end of file
– 28% of remainder due when POSIX permits either case
– 30% of remainder due to false alarm error codes (many in QNX)
– ~40% of remainder just out of scope of POSIX standard

• 50% accurate when one OS reports “OK” but another OS dumps core
– Half of remainder due to order in which parameters are checked
– Half of remainder due to FreeBSD floating point library

Abort failures (e.g., fabs(DBL_MAX))

19

Estimated N-Version Comparison Results

*

*

*

**

*

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)
0% 10% 20% 30% 40% 50%

O
pe

ra
tin

g
S

ys
te

m
T

es
te

d

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort %
Silent %
Restart %

* Catastrophic

20

Is Dumping Core The “Right Thing?”
u AIX has only 10% raw Abort failure rate -- on purpose

• Wish to avoid Abort failures in production code
• Ignores some NULL pointer reads by setting page 0 to read permission
• BUT -- 21% adjusted Abort failure rate; 12% Silent failure rate

u FreeBSD has 20% raw Abort failure rate -- on purpose
• Intentionally aborts to flag bugs during development cycle
• 31% adjusted Abort failure rate; BUT -- 17% adjusted Silent failure rate

u Future challenges:
• Flag defects during development

– Boundschecker-like systems need a workload to find problems

• And still tolerate robustness problems once system is fielded
– Truly Portable exception handling for POSIX API
– Perhaps wrappers to manage complexity of exception handling

(e.g., Bell Labs XEPT work)

21

But What About Windows?

7/28/98:
“Windows NT Cripples US
Navy Cruiser”

(not exactly true, but…)

22

Widows Systems Tested
u One major new datatype needed: HANDLE

• Also ported testing client to Win32 API

u Desktop Windows versions on Pentium PC
• Windows 95 revision B
• Windows 98 with Service Pack 1 installed
• Windows 98 Second Edition (SE) with Service Pack 1 installed
• Windows NT 4.0 with Service Pack 5 installed
• Windows 2000 Beta 3 Pre-release (Build 2031)
• 143 Win32 API calls + 94 C library functions tested

u Windows CE
• Windows CE 2.11 running on a Hewlett Packard Jornada 820 Handheld PC
• 69 Win32 API calls + 82 C library functions tested

23

Windows Robustness Testing
u Several calls cause complete system crashes on

Win 95/98/98 SE and Win CE
• Windows 95: 8 calls
• Windows 98: 7 calls
• Windows 98 SE: 7 calls
• Windows CE: 28 calls
• Windows 98 and Windows CE example:

GetThreadContext (GetCurrentThread (), NULL);

u Windows results compared to Linux
• Test groups of comparable calls by functionality
• No tests caused system crashes on Windows NT/2000 nor on Linux

– They’re not “crashproof” – they’re just not quite so easy to crash

u Linux and Windows NT/2000 both “generally robust”
• Linux has lower Abort rate on system calls; higher on glibc
• Have to dig deeper for the complete story, of course

24

Failure Rates by Function Group

25

Technology Transfer

u
• Sponsored technology transfer projects for:

– Trident Submarine navigation system (U.S. Navy)
– Defense Modeling & Simulation Office HLA system

u

• Cisco – Network switching infrastructure
• ABB – Industrial automation framework
• Emerson – Windows CE testing
• AT&T – CORBA testing
• ADtranz – (defining project)
• Microsoft – Windows 2000 testing

u
• Rockwell, Motorola
• And, potentially, some POSIX OS developers
• HP-UX

26

Public Robustness Testing Service
u Ballista Server

• Selects tests
• Performs pattern Analysis
• Generates “bug reports”
• Never sees user’s code

u Ballista Client
• Links to user’s SW under test
• Can “teach” new data types to

server (definition language)

BALLISTA SERVER

TEST
REPORTING

TEST
SELECTIONRESULT

PATTERN
DISCOVERY

INTERFACE
SPECIFICATION

CAPTURE

TESTING
OBJECT

COMPILER

USER’S COMPUTER

EMBEDDED COMPUTER

SERIAL CABLE

OR

SERVER
INTERFACE

MODULE
UNDER
TESTMODULE

UNDER
TEST

HTTP &
RPC

TEST
HARNESSTEST

HARNESS

27

Specifying A Test (web/demo interface)
u Simple demo interface; real interface has a few more steps...

28

Viewing Results
u Each robustness failure is one test case (one set of parameters)

29

“Bug Report” program creation
u Reproduces failure in isolation (>99% effective in practice)

/* Ballista single test case Sun Jun 13 14:11:06 1999
* fopen(FNAME_NEG, STR_EMPTY) */

...
const char *str_empty = "";

...
param0 = (char *) -1;

str_ptr = (char *) malloc (strlen (str_empty) + 1);
strcpy (str_ptr, str_empty);
param1 = str_ptr;

...
fopen (param0, param1);

30

Application to Non-OS system HLA-RTI
u DOD HLA-RTI - High Level Architecture Run Time

Infrastructure
• DOD simulation framework to support massive distributed simulations of

large scale combat scenarios

u Specifically designed for robust exception handling

u Their goal is that every exception condition should be handled,
with sufficient information returned to the process such that the
exception can be handled in a graceful manner
• No generic exceptions
• No default OS actions (i.e. abnormal process termination via a signal)

31

RTI-HLA Digital Unix 10.2 % Failure Rate
Robustness Failures of RTI 1.3.5 for Digital Unix 4.0

0

10

20

30

40

50

60

70

80

90

100

RTI functions

%
fa

ilu
re

 p
er

 fu
nc

tio
n

Restart
Segmentation Fault
Unknown exception
RTI Internal Error exception

RTI::AttributeHandleValuePairSet->getValueLength

RTI::ParameterHandleValuePairSet->getValueLength

rtiAmb.requestFederationSave

rtiAmb.resgisterObjectInstance

rtiAmb.queryFederateTime

rtiAmbqueryLBTS

rtiAmb.queryLookahead

rtiamb.queryMinNextEventTime

32

RTI-HLA Solaris 10.0 % Failure Rate
Robustness Failures of RTI 1.3.5 for Sun OS 5.6

0

10

20

30

40

50

60

70

80

90

100

RTI functions

%
fa

ilu
re

 p
er

 fu
nc

tio
n

Restart
Segmentation Fault
Unknown exception
RTI Internal Error exception

RTI::AttributeHandleValuePairSet->getValueLength

RTI::ParameterHandleValuePairSet->getValueLength

rtiAmb.requestFederationSave

rtiAmb.resgisterObjectInstance

rtiAmb.queryFederateTime

rtiAmbqueryLBTS

rtiAmb.queryLookahead

rtiamb.queryMinNextEventTime

33

Refinement: Fine-Grain Characterization
u Problem: detailed coverage of rich data types

(e.g., file handle)
• Want tests with high degree of flexibility
• Want useful notion of “adjacency” in test results

u Solution: Logical Structs
• Decompose data type into logical struct of

orthogonal sub-types
• Example for file handle:

1) File exists, does not exist, deleted after creation
2) Open for: read, write, r/w, closed
3) File system permissions for: read, write, r/w, none
4) File positioned at: beginning, middle, end, past end
5) ...

34

Refinement: User Defined “Scaffolding”
u Needed for state-intensive systems

• DMSO HLA simulation backplane
• ABB framework software

u Implemented via prologue/epilogue code
per-function
• 10 “equivalence classes” for 86 functions in HLA
• Needed for most functions in ABB framework

u It works, but building scaffolding is time
consuming
• Ballista only scales well when scaffolding can be

shared among many functions
• Doesn’t look promising for database API testing

35

Refinement: Set State Via “Phantom” Params
u Don’t really need separate scaffolding mechanism…

• Use “phantom” parameters:
func_name(+setup, param0, param1, …)

where “+” means execute constructor/destructor, but don’t pass to function

u Can also be used to accomplish some system-level state setting
• Test random number generator:

random(+random_seed, range)

• Test disk write with full/empty disk:
write(+set_disk_state, filedes, buffer, nbytes)

36

Wrap-Up: What Ballista Does (and Doesn’t Do)
u Quantification of single-threaded exception handling robustness

• Scalable, inexpensive compared to traditional testing approaches
• Really does find novel ways to crash commercial-grade software

(in the future, will include heavy-load testing)

u Evolving toward fine-grained testing
• Permits orthogonal attribute decomposition of data types
• Will form the bases for future “smart” adaptive testing strategies

u It’s easy to test some system state
• Small amounts of system state in parameter-based tests

– Larger system state possible using phantom parameters

• But, large amounts of state are a problem on database-like systems

u Testing turned out to be more successful than we thought
• And hardening is turning out to be very difficult

37

What Comes Next?
u Do-it-yourself POSIX test kit

• Available for use with testing server
this semester

u “Bulletproof Linux”
• Reduce failure rates in glib
• Survey of other issues in

“bulletproofness”

u Software aging/state-intensive
testing
• Concurrency, resource exhaustion

u Smart, pattern-based testing
• How do we cover huge search spaces?

39

Long Term Prospects
u Technology Transfer

• Already taking place

u Commercial product support
• Still trying to figure this one

out

40

Contributors
u What does it take to do this sort of research?

• A legacy of 15 years of previous Carnegie Mellon work to build upon
– But, sometimes it takes that long just to understand the real problems!

• Ballista: 3.5 years and about $1.6 Million spent to date

Students:
u Meredith Beveridge
u John Devale
u Kim Fernsler
u David Guttendorf
u Geoff Hendrey
u Nathan Kropp
u Jiantao Pan
u Charles Shelton
u Ying Shi
u Asad Zaidi

Faculty & Staff:
u Kobey DeVale
u Phil Koopman
u Roy Maxion
u Dan Siewiorek

41

