
Correctness of the
Read/Conditional-Write and

Query/Update protocols

Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, Jay J. Wylie

CMU-PDL-05-107

September, 2005

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: This work is supported in part by Army Research Office grant number DAAD19-02-1-0389
and by Air Force Research Laboratory grant number FA8750-04-01-0238. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either express or implied, of Carnegie Mellon University or the U.S. Government or any of its agencies. We thank
the members and companies of the PDL Consortium (including EMC, Engenio, Equallogic, Hewlett-Packard, HGST,
Hitachi, IBM, Intel, Microsoft, Network Appliance, Oracle, Panasas, Seagate, and Sun) for their interest, insights,
feedback, and support.

Keywords: Byzantine fault tolerance, asynchronous, read/conditional-write, query/update.

i

Abstract

The Read/Conditional-Write (R/CW) protocol provides linearizable reads and conditional-writes of
individual objects. A client’s conditional-write of an object succeeds only if the object has not been
conditionally-written since it was last read by the client. In this sense, R/CW semantics are similar
to those of a compare-and-swap register. If a conditional-write does not succeed, it aborts. The
R/CW protocol supports multi-object reads and conditional-writes; such operations are strictly
serializable. A variant of the R/CW protocol, the Query/Update (Q/U) protocol, provides an
operations-based interface to clients: clients invoke query and update methods on objects rather
than reading and writing objects in their entirety. The R/CW and Q/U protocols are correct in
the asynchronous timing model and tolerate Byzantine failures of clients and servers.

ii

1 Introduction

The Read/Conditional-Write (R/CW) protocol provides linearizable reads and conditional-writes
of individual objects. A client’s conditional-write of an object succeeds only if the object has not
been conditionally-written since it was last read by the client. In this sense, R/CW semantics are
similar to those of a compare-and-swap register. The R/CW protocol supports multi-object reads
and conditional-writes; such operations are strictly serializable. A variant of the R/CW protocol,
the Query/Update (Q/U) protocol, provides an operations-based interface to clients: clients invoke
query and update methods on objects rather than reading and writing objects in their entirety. The
R/CW and Q/U protocols are correct in the asynchronous timing model and tolerate Byzantine
faults of clients and servers.

This technical report is a companion for the paper “Fault-scalable Byzantine fault-tolerant
services” [1] and is made available to ensure timely dissemination of details elided from the paper.
Motivation for these protocols, the intuition that underlies their structure, their relation to related
work, and empirical results are found in the main paper. In this technical report, we present a
proof of correctness and detailed pseudo-code for the R/CW protocol for individual objects (§2 and
§3 respectively). We also discuss how to extend the R/CW protocol to accommodate multi-object
conditional-writes (§4). Finally, we present extended pseudo-code for the Q/U protocol, a variant
of the R/CW protocol, and an extended example execution of the Q/U protocol (§5).

2 Safety of the Read/Conditional-Write (R/CW) protocol

Using terminology developed throughout the proof, the outline of the proof of safety for the R/CW
protocol for individual objects is as follows. First, we provide terminology and system definitions.
Second, we define classification rules for candidates. Third, we define the types of conditional-
writes, the pre-conditions for each type of conditional-write, and the post-conditions for each type
of conditional-write. Fourth, we focus on the properties of a write that establishes a value candidate
and a copy that establishes a value candidate; these two types of conditional-writes define segments.
Such segments have start and end logical times that are shown to never overlap and that, in fact, the
start of each segment corresponds to the end of another segment (except for the segment that starts
at the well-defined initial value). As such, there is a single chain of values, called the conditioned-
on chain, from the latest established value candidate back to the initial value candidate. The
conditioned-on chain is defined by the conditioned-on timestamp of its members.

Given this view of segments we demonstrate that conditional-writes that complete can be totally
ordered by logical timestamp and that this ordering is linearizable [5]. Moreover, given the segments
and the linearized order of conditional-writes, we demonstrate that reads that return a value can
be partially ordered by the logical timestamp of the value they return. This partial order of reads
can be arbitrarily extended to a total order. This total order is shown to be linearizable, thus
demonstrating that the set of all read and conditional-writes that return values is linearizable.

The R/CW protocol uses five types of conditional-writes. A write writes a new value candidate
conditioned-on an established value candidate that is the latest candidate in the object history
set. An inline write writes a value candidate to additional servers—this is done if the latest
timestamp in the object history set corresponds to a repairable value candidate. A barrier writes
a barrier candidate—this is done if the latest timestamp in the object history set corresponds
to an incomplete candidate (value or barrier). An inline barrier writes a barrier candidate to
additional servers—this is done if the latest timestamp in the object history set corresponds to a
repairable barrier candidate. A copy copies a potential or established value candidate forward to

1

a new timestamp—this is done if the latest timestamp in the object history set corresponds to a
complete barrier candidate; the candidate written has the same data value as the latest potential
or established candidate value that precedes the established barrier candidate.

2.1 Terminology

In this section terminology to describe the R/CW protocol is introduced. Some symbols and
structures used in the pseudo-code are also used in the proof. Figure 1 on page 15 and Table 1 on
page 15 may be helpful to the reader.

Definition 2.1 (client, server, channels, shared keys, operation, request). The R/CW protocol
operates in a system comprised of clients and servers. Point-to-point authenticated channels exist
among all servers and between all clients and servers. Channels are assumed to be unreliable, with
the same properties as those used by Aguilera et al. in the crash-recovery model (i.e., channels do
not create messages, channels may duplicate messages a finite number of times, and channels may
drop messages a finite number of times) [2]. Such channels can be made reliable by repeated resends
of requests. An infrastructure for deploying shared keys among pairs of servers is assumed to exist.
Clients issue reads and conditional-writes to sets of servers. These are comprised of requests that
a client sends directly to each server.

Definition 2.2 (asynchronous timing model). The R/CW protocol operates safely in an asyn-
chronous system. No assumptions are made about the duration of message transmission delays or
the execution rates of clients and servers except that they are non-zero.

Definition 2.3 (hybrid failure model, Byzantine failures, crash-recovery failures, benign, malev-
olent, good, faulty). Byzantine faulty components may exhibit arbitrary, potentially malicious,
behavior [6]. Clients may be Byzantine faulty. The server model is a hybrid failure model [9, 10]
of Byzantine and crash-recovery failures. We use the crash-recovery failure model of Aguilera et
al. [2]. Servers have persistent storage that is durable through a crash and subsequent recovery. In
the hybrid crash-recovery–Byzantine fault model, every server is either always-up, eventually-up,
eventually-down, unstable, or malevolent. Since the Byzantine failure model is a strict generaliza-
tion of the crash-recovery failure model, another term — malevolent — is used to categorize those
servers that in fact exhibit out-of-specification, non-crash behavior. A server is good if it is either
always-up or eventually-up (i.e., it may crash, but there is a time after which it is always-up). A
server is faulty if it is unstable, eventually-down, or malevolent. As such, every server is either
good or faulty. A server is benign if it obeys its specification except for crashes and recoveries. As
such, every server is either benign or malevolent.

Definition 2.4 (Computationally bounded adversary). Clients and servers are assumed to be com-
putationally bounded so that cryptographic primitives are effective.

Definition 2.5 (universe, U , n, quorum, Q, quorum system, Q). The quorum system definition
is based on that of Malkhi and Reiter [7]. We assume a universe U of servers such that |U | = n.
A quorum system Q ⊆ 2U is a non-empty set of subsets of U , every pair of which intersect. Each
Q ∈ Q is called a quorum. The notation 2set denotes the power set of set .

Definition 2.6 (failure prone system, fault set, T , T , malevolent fault set, B, B). We extend the
definition of a failure prone system of Malkhi and Reiter [7] to accommodate the hybrid server
failure model. We assume that in any execution, for T ⊆ 2U any T ∈ T contains all faulty servers.
We assume that in any execution, for B ⊆ 2U any B ∈ B contains all malevolent servers. It follows
from the definitions of faulty and malevolent that ∀B ∈ B, ∃T ∈ T : B ⊆ T .

2

Definition 2.7 (candidate, accept, Data). A client conditional-write request generates an candi-
date at the server. Servers accept candidates if validation passes. The structure for a candidate,
Candidate is given in Figure 1. Every candidate contains data denoted Data.

Definition 2.8 (logical timestamp (timestamp), LT, LTCO). Logical timestamps are used ex-
tensively in the R/CW protocol. Each candidate contains two logical timestamps: the logical
timestamp of the candidate (LT) and the logical timestamp of the candidate it is conditioned-on
(LTCO). In the remainder of this paper, we refer just to timestamps, rather than logical timestamps.

Definition 2.9 (comparing timestamps, =, <). Timestamps can be compared with the = and <

operators. Equality (=) is defined naturally (all elements of the timestamp must be identical). Less
than (<) is defined with the elements of the timestamp being compared in their order of definition
(i.e., Time, then BarrierFlag , then ClientID , then DataVerifier , and finally OHSVerifier). To
compare the BarrierFlag element, false < true. To compare the ClientID , DataVerifier , and
OHSVerifier , lexicographic comparisons are performed (e.g., memcmp could be performed).

Observation 2.10. We observe that although LT .DataVerifier is a cryptographic hash of the
Data in a candidate, it is not guaranteed to be unique—many candidates in a replica history
may have the same Data. We also observe that LT .OHSVerifier is unique for all candidates in
a replica history—as will be seen, the object history set (and data) sent to a server by a client
uniquely determine the candidate it accepts. A server can only accept a candidate once, since it is
impossible for an object history set to be current (cf. Definition 2.34) at server s if s has already
accepted the candidate corresponding to ObjectHistorySet . Finally, the ClientID is included in the
timestamp to distinguish similar conditional-writes from different clients.

Definition 2.11 (replica history, s.ReplicaHistory). If a server s accepts a candidate, it places the
candidate in its replica history s.ReplicaHistory .

Definition 2.12 (object history set, ObjectHistorySet). Clients read replica histories from
servers. Clients store replica histories from servers in an array called the object history set
(ObjectHistorySet). The object history set is indexed by server, e.g., ObjectHistorySet [s] is equal
to the last replica history returned from server s (i.e., s.ReplicaHistory).

Definition 2.13 (initial candidate). There is a well known initial candidate: 〈0, 0, ⊥〉. All servers
initialize their replica history to the initial value.

2.2 Candidates, constraints, and classification

In this section we present the constraints placed on quorum systems by the R/CW protocol. We
define established and potential candidates. Based on the definitions of established and potential
candidates, we develop Definition 2.21 and Definition 2.22 which define the quorum intersection
properties necessary to provide read/conditional-write semantics.

Definition 2.14 (established candidate). An established candidate is accepted at all of the benign
servers in some quorum. Note a subset of servers in a quorum may be malevolent and we cannot
specify what “accept” means at such servers.

Definition 2.15 (repairable sets). We extend the quorum system definition to include repairable
sets. Each quorum Q ∈ Q defines a set of repairable sets R(Q) ⊆ 2Q.

3

Definition 2.16 (classifying a candidate complete). A candidate is classified complete if, given a
set of server responses S, a quorum of servers share a common candidate:

∃Q ∈ Q : Q ⊆ S ⇒ complete.

Definition 2.17 (classifying a candidate repairable). A candidate is classified repairable if, given
a set of server responses S, a repairable set share a common candidate and that candidate is not
classifiable as complete:

(∀Q ∈ Q : Q 6⊆ S) ∧ (∃Q ∈ Q, ∃R ∈ R(Q) : R ⊆ S) ⇒ repairable.

Definition 2.18 (classifying a candidate incomplete). A candidate is classified incomplete if it is
not classifiable as complete or repairable.

Definition 2.19 (potential candidate). A potential candidate is accepted at all of the benign servers
in some repairable set.

Definition 2.20 (quorum size and asynchrony). To ensure that conditional-writes may complete
in an asynchronous system,

∀Q ∈ Q, ∀T ∈ T : Q ∪ T ⊆ U.

Definition 2.21 (Established candidate intersect potential candidate). We restrict the system such
that an established candidate must intersect a potential candidate at at least one benign server:

∀Qi, Qj ∈ Q, ∀B ∈ B, ∀R ∈ R(Qj) : Qi ∩ R 6⊆ B.

Definition 2.22 (established candidates classified as repairable). We restrict the system such that
some repairable set of an established candidate fully intersects every other quorum; this ensures
that an established candidate is classified as repairable or complete:

∀Qi, Qj ∈ Q, ∀B ∈ B, ∃R ∈ R(Qi) : R ⊆ Qi ∩ Qj \ B.

Definition 2.23 (candidate, value candidate, barrier candidate). To clarify terminology used in the
remainder of the proof, we may discuss established/potential candidates (which may be values or
barriers), established/potential value candidates (which are not barriers), and established/potential
barrier candidates (which are not values).

Observation 2.24. An established candidate may be classified as complete or repairable, but
never incomplete. A potential candidate (that is not established) may be classified as repairable
or incomplete, but never complete. A candidate that is classified as complete is established. A
candidate that is classified as repairable may or may not be established. A candidate that is
classified as incomplete is not established.

2.3 Classification tuple

In this section we define the classification tuple which is based on an object history set. The
classification tuple is a summary of the object history set that indicates the latest value candidate,
latest barrier candidate, and type of conditional-write that must be performed.

4

Definition 2.25 (classification tuple, rcw classify). The function rcw classify identifies the
classification tuple of a given ObjectHistorySet (see Figure 3):

〈CWType,LatestCandidate,LatestBarrier〉 := rcw classify(ObjectHistorySet)

Classification is performed by identifying the candidate with the latest timestamp, the value can-
didate with the latest timestamp that is classified either repairable or complete, and the barrier
candidate with the latest timestamp that is classified either repairable or complete. This informa-
tion determines which type of conditional-write must be performed. The terms in the classification
tuple summarize the results of classification.
CWType is the type of conditional-write to perform.
LatestCandidate is the latest value candidate.
LatestBarrier is the latest barrier candidate.

Lemma 2.26. CWType returned by rcw classify is in the set {write, inline write, barrier,
inline barrier, copy}.

Proof. This lemma is trivially true (see the pseudo-code).

Definition 2.27 (conditioned on). We refer to the object history set for a conditional-write as
the conditioned-on ObjectHistorySet . We also refer to the LatestCandidate of the conditioned-on
ObjectHistorySet (determined from classification) as the conditioned-on value candidate. Note
that a candidate with logical timestamp LT is conditioned on the object history set with
hash(ObjectHistorySet) = LT .OHSVerifier .

2.4 Conditional-write definitions

In this section, specific types of conditional-writes are defined. We develop the safety guarantees in
terms of these types of conditional-writes. Servers can determine which type of conditional-write
must be performed exclusively based on the ObjectHistorySet . The server constructs the candidate
to accept (i.e., the tuple 〈LT ,LTCO,Data〉) based on the classification of the conditioned-on object
history set and the data value passed in (if it is a write).

Definition 2.28 (write). write(Data,ObjectHistorySet) conditionally-writes the value Data.

Definition 2.29 (inline write). inline write(⊥,ObjectHistorySet) repairs LatestCandidate.

Definition 2.30 (barrier). barrier(⊥,ObjectHistorySet) conditionally-writes a barrier.

Definition 2.31 (inline barrier). inline barrier(⊥,ObjectHistorySet) repairs LatestBarrier .

Definition 2.32 (copy). copy(⊥,ObjectHistorySet) copies forward LatestCandidate.

2.5 Conditional-write pre-conditions

In this section, we define the server validation that is performed before accepting a conditional-
write candidate. For each type of conditional-write, the necessary pre-conditions are identified. Let
CT = rcw classify(ObjectHistorySet).

rcw latest time(ObjectHistorySet)

100: return (max(ObjectHistorySet [U].ReplicaHistory .LT))

5

Definition 2.33 (current time, LT current). The current time LT current for a ObjectHistorySet is
defined as:

LT current =























CT .LatestCandidate.LT if CT .CWType = write,

rcw latest time(ObjectHistorySet) if CT .CWType = barrier,

CT .LatestCandidate.LT if CT .CWType = inline write,

CT .LatestBarrier .LT if CT .CWType = inline barrier,

CT .LatestBarrier .LT if CT .CWType = copy.

The current time identifies the logical timestamp prior to which the server’s replica
history does not affect classification. Note that rcw latest time is defined as
max(ObjectHistorySet [U].ReplicaHistory .LT in the pseudo-code (See Figure 1100 on page 18).

Definition 2.34 (current). For benign server s, if max(s.ReplicaHistory .LT) ≤ LT current then
current(ObjectHistorySet) := true.
Otherwise, current(ObjectHistorySet) := false.

Observation 2.35. Validating authenticators is one aspect of server validation. If an HMAC in an
authenticator does not validate for ObjectHistorySet [s] then the server ignores ObjectHistorySet [s]
(i.e., the server sets ObjectHistorySet [s] := {〈0, 0, ⊥〉}). As such, authenticator validation can only
impact whether or not an ObjectHistorySet is current or not.

Lemma 2.36. Benign server s accepts write(Data,ObjectHistorySet) only if CT .CWType =
write and current(ObjectHistorySet) = true.

Proof. See pseudo-code for pre-condition.

Lemma 2.37. Benign server s accepts inline write(⊥,ObjectHistorySet) only if CT .CWType =
inline write and current(ObjectHistorySet) = true.

Proof. See pseudo-code for pre-condition.

Lemma 2.38. Benign server s accepts barrier(⊥,ObjectHistorySet) only if CT .CWType =
barrier and current(ObjectHistorySet) = true.

Proof. See pseudo-code for pre-condition.

Lemma 2.39. Benign server s accepts inline barrier(⊥,ObjectHistorySet) only if
CT .CWType = inline barrier and current(ObjectHistorySet) = true.

Proof. See pseudo-code for pre-condition.

Lemma 2.40. Benign server s accepts copy(⊥,ObjectHistorySet) only if CT .CWType = copy

and current(ObjectHistorySet) = true.

Proof. See pseudo-code for pre-condition.

6

2.6 Conditional-write post-conditions

In this section, we list the post-conditions for conditional-writes that establish candidates. The
post-conditions are given in terms of an object history set comprised of the replica histories of the
benign servers that accepted the conditional-write candidate. The post-condition takes effect as
soon as the candidate is established (cf. Definition 2.14).

Definition 2.41 (post-conditions, ObjectHistorySet ′). We define ObjectHistorySet ′ to be the ob-
ject history set comprised of the replica histories returned from sufficient benign servers that
accept conditional-write candidates to establish the candidate being conditionally-written. In
the case of inline write and inline barrier conditional-writes, ObjectHistorySet ′ includes the
replica histories of the benign servers that accepted write candidates and barrier candidates
respectively. Also within this section, we define CT = rcw classify(ObjectHistorySet) and
CT ′ = rcw classify(ObjectHistorySet ′).

Lemma 2.42. If write(Data,ObjectHistorySet) is established yielding ObjectHistorySet ′, then let-
ting X = CT ′.LatestCandidate, we have that:
X.Data = Data;
X.LT .Time = rcw latest time(ObjectHistorySet).Time + 1;
X.LT .BarrierFlag = false;
X.LT .ClientID = ClientID;
X.LT .DataVerifier = hash(Data);
X.LT .OHSVerifier = hash(ObjectHistorySet);
X.LTCO = CT .LatestCandidate.LT.

Proof. Look at the pseudo-code. Note that, because of the pre-conditions on a write, X.LT .Time =
CT .LatestCandidate.Time + 1 is also true.

Lemma 2.43. If inline write(⊥,ObjectHistorySet) is established yielding ObjectHistorySet ′, then
CT ′.LatestCandidate = CT .LatestCandidate.

Proof. Look at the pseudo-code.

Lemma 2.44. If barrier(⊥,ObjectHistorySet) is established yielding ObjectHistorySet ′, then,
CT ′.LatestCandidate = CT .LatestCandidate. Letting X = CT ′.LatestBarrier, we have that:
X.Data = ⊥;
X.LT .Time = rcw latest time(ObjectHistorySet).Time + 1;
X.LT .BarrierFlag = true;
X.LT .ClientID = ClientID;
X.LT .DataVerifier = ⊥;
X.LT .OHSVerifier = hash(ObjectHistorySet);
X.LTCO = CT .LatestCandidate.LT.

Proof. Look at the pseudo-code.

Lemma 2.45. If inline barrier(⊥,ObjectHistorySet) is established yielding ObjectHistorySet ′,
then CT ′.LatestBarrier = CT .LatestBarrier and CT ′.LatestCandidate = CT .LatestCandidate.

Proof. Look at the pseudo-code.

7

Lemma 2.46. If copy(⊥,ObjectHistorySet) establishes a candidate yielding ObjectHistorySet ′,
then, letting X := CT ′.LatestCandidate, we have that:
X.Data = CT .LatestCandidate.Data;
X.LT .Time = rcw latest time(ObjectHistorySet).Time + 1;
X.LT .BarrierFlag = false;
X.LT .ClientID = ClientID;
X.LT .DataVerifier = hash(X.Data);
X.LT .OHSVerifier = hash(ObjectHistorySet);
X.LTCO = CT .LatestCandidate.LT.

Proof. Look at the pseudo-code. Note that, because of the pre-conditions on copy, X.LT .Time =
CT .LatestBarrier .Time + 1 is also true.

2.7 Repair conditional-writes

In this section, we consider inline write and inline barrier. We show that for an execution
that includes inline write and inline barrier conditional-writes, there exists an execution that
does not include such operations that has identical server-side state transitions. Server-side state
transitions refers to the state maintained by the server (i.e., its replica history and corresponding
authenticator). As such, the remainder of the safety proof focuses on write, barrier, and copy
conditional-writes.

In an obvious variation of the protocol, inline write and inline barrier conditional-writes
are not employed: they are both replaced with a barrier followed by a copy. The inline write
and inline barrier conditional-writes are included in the proof because they are included in our
implementation of the R/CW protocol. In practice, such repairs reduce read/conditional-write
contention, since a read initiating such repair does not contend with the conditional-write it repairs.

Lemma 2.47. For every inline write performed, there exists an execution in which the server-side
state transition is identical, but in which the inline write was not performed.

Proof. Lemmas 2.42 and 2.43 show that the post-conditions (i.e., the server-side state transitions)
for a write and inline write are identical. From lemmas 2.36 and 2.37 we note that the pre-
condition for an inline write differs from that of a write only in the existence of the value
candidate being repaired. As such, there exists another execution in which any server-side transition
resulting from the acceptance of an inline write is due to the acceptance of a write.

Lemma 2.48. For every inline barrier performed, there exists an execution in which the server-
side state transition is identical, but in which the inline barrier was not performed.

Proof. Lemmas 2.44 and 2.44 show that the post-conditions (i.e., the server-side state transitions)
for a barrier and inline barrier are identical. From lemmas 2.38 and 2.39 we note that the
pre-condition for an inline barrier differs from that of a barrier only in the existence of the value
candidate being repaired. As such, there exists another execution in which any server-side transition
resulting from the acceptance of an inline barrier is due to the acceptance of a barrier.

2.8 Write-CW segments

In this section, we define a write-cw segment. In the subsequent, we define a copy-CW segment.
Then, we define a copy-CW segment-chain. From the properties of write-CW segments and copy-
CW segment-chains, we demonstrate that all established value candidates are in the condition-on
chain.

8

Definition 2.49 (segment, LT begin, LT end). A segment is a logical timestamp interval. The logical
timestamp that begins a segment is denoted LT begin. The logical timestamp that ends a segment
is denoted LT end.

Definition 2.50 (write-CW segment). Every write that establishes a candidate defines a write-
CW segment. Consider established value candidate Candidate written by a write. The write-CW
segment defined by Candidate has LT end = Candidate.LT LT begin = Candidate.LTCO.

Lemma 2.51. For every write-CW segment in an execution, there are no potential barrier candi-
dates with a timestamp in the range [LT begin,LT end].

Proof. Consider the pre-conditions for a write (cf. Lemma 2.36). Because of the pre-conditions,
when a benign server accepts a write-CW candidate Candidate, the server has no history candidates
between Candidate.LTCO (LT begin) and Candidate.LT (LT end). Moreover, because benign servers
only accept candidates conditioned-on a current object history set, such servers never accept a
candidate in the range [LT begin,LT end] at a later point in the execution. Because of the intersection
property between established candidates and potential candidates (cf. Definition 2.21), there cannot
exist a potential barrier with a timestamp in the range [LT begin,LT end].

Lemma 2.52. For each write-CW segment in in an execution there are no potential value candi-
dates with a timestamp in the range (LT begin,LT end).

Proof. This proof is similar to the proof for Lemma 2.51. However, there is a distinction between
the range in which there are no potential barrier candidates and in which there are no potential
values. By definition, there is an established (and therefore potential) value candidate at LT begin

and LT end.

2.9 Copy-CW segments

The write is expected to be the “common case” in the R/CW protocol. The copy covers the
“corner case” in which there is contention. Note that not all copy-CW segments are of interest;
only those that are part of a copy-CW segment-chain are of interest. We define the copy-CW
segment-chain in the subsequent.

Definition 2.53 (copy-CW segment). Every copy that establishes a candidate defines a copy-
CW segment. Consider established value candidate Candidate written by a copy. The copy-CW
segment defined by Candidate has LT end = Candidate.LT LT begin = Candidate.LTCO.

Lemma 2.54. For every copy-CW segment in an execution, there exists at least one established
barrier candidate with timestamp in the range (LT begin,LT end).

Proof. Consider the pre-conditions for a copy (cf. Lemma 2.40). The pre-conditions require there
to be an established barrier candidate before a benign server will accept a copy candidate. Since
the potential value candidate that defines the copy-CW segment is accepted at at least one benign
server, the pre-conditions are true, and there exists an established barrier candidate with timestamp
in the range (LT begin,LT end).

Lemma 2.55. For each copy-CW segment in an execution, there are no established value candidates
with a timestamp in the range (LT begin,LT end).

9

Proof. We show that the potential value candidate that defines the copy-CW segment precludes
an established value candidate in the range (LT begin,LT end). Consider the pre-conditions for
a copy (cf. Lemma 2.40) and the intersection property between established and potential can-
didates (cf. Definition 2.21). If an established value candidate exists with a timestamp in the
range (LT begin,LT end), classification would identify it as the conditioned-on value candidate since
Lemma 2.22 ensures that an established value candidate is always classified as repairable. Since the
conditioned-on value candidate has timestamp LT begin, there does not exist an established value
candidate with timestamp in the range (LT begin,LT end). The value candidate that is conditioned-
on and the value candidate that ends the copy segment may both be established, which is why the
range is (LT begin,LT end) and not [LT begin,LT end].

2.10 Copy-CW segment-chains

In this section we define a copy-CW segment-chain. Such a chain consists of one or more copy-
CW segments: the first segment in the chain begins with an established value candidate and the
final segment in the chain ends with an established value candidate. All segments in between the
established value candidates begin and end with a potential, but not established, value candidate.
Not all copy-CW segments that exist in the timestamp interval between the two established value
candidates that define the copy-CW segment-chain need be in the copy-CW segment-chain.

Definition 2.56 (opening copy-CW segment). A copy-CW segment that begins with an established
value candidate is called an opening copy-CW segment.

Definition 2.57 (terminating copy-CW segment). A copy-CW segment that ends with an estab-
lished value candidate is called a terminating copy-CW segment.

Definition 2.58 (copy-CW segment-chain). A copy-CW segment-chain consists of an opening
copy-CW segment, a terminating copy-CW segment, and a finite number (possibly zero) of copy-
CW segments.

Observation 2.59. A copy-CW segment may be both an opening and terminating copy-CW
segment and so a copy-CW segment-chain may consist of a single copy-CW segment.

Lemma 2.60. For every non-opening copy-CW segment X in a copy-CW segment chain, there
exists exactly one other copy-CW segment Y in the copy-CW segment chain, such that X.LT begin =
Y.LT end.

Proof. The pre-condition for a copy (see Lemma 2.40) and the post-conditions for a copy (see
Lemma 2.46) ensure this.

Lemma 2.61. For every non-terminating copy-CW segment X in a copy-CW segment-chain, there
exists exactly one other copy-CW segment Y in the copy-CW segment-chain, such that X.LT end =
Y.LT begin.

Proof. The pre-condition for a copy (see Lemma 2.40) and the post-conditions for a copy (see
Lemma 2.46) ensure this.

Definition 2.62 (copy-CW segment-chain begin and end). A copy-CW segment chain begins at
LT begin of its opening copy-CW segment and ends at LT end of its terminating copy-CW segment;
as such, the copy-CW segment-chain has a LT begin and LT end as well.

Lemma 2.63. For each copy-CW segment-chain in an execution, there are no established value
candidates with a timestamp in the range (LT begin,LT end).

10

Proof. Lemma 2.55 ensures that there are no established value candidates within the timestamp
interval of each copy-CW segment in a copy-CW segment-chain. Lemmas 2.60 and 2.61 ensure that
there are only copy-CW segments in the timestamp interval of the copy-CW segment-chain. There-
fore, there are no established value candidates with a timestamp in the range (LT begin,LT end).

Observation 2.64. Once a barrier candidate is established, the only way a value candidate with
a higher timestamp can be established is due to a copy. Until there is a terminating segment, the
set of segments in the segment-chain may be unknown. Multiple potential value candidates can
condition on the established value candidate with timestamp LT begin. Therefore, there can exist
multiple “cycles” of established barriers followed by multiple potential value candidates. In each of
these “cycles” the set of potential value candidates, that result from copy conditional-writes, is a
subset of the potential value candidates that precede the established barrier candidate and succeed
LT begin. Once there is a terminating segment, membership in the segment-chain is determined.

2.11 The condition-on chain

In this section we show that from the latest established value candidate in an execution back to
logical time 0, there exists a continuous chain of write-CW segments and copy-CW segment-chains.
We refer to this chain as the condition-on chain. In this section we use the term segment to refer
to either a write-CW segment or a copy-CW segment-chain.

Definition 2.65 (condition-on chain). The condition-on chain for an execution is comprised of the
latest established value candidate in the execution as well as each candidate found by repeatedly
traversing condition on timestamps.

Lemma 2.66. Every established value candidate is in the condition-on chain.

Proof. Consider an execution in which there is a single established value candidate. By definition,
this single established value candidate is 〈0, 0, ⊥〉. Now, consider an execution in which there are
two established value candidates. Clearly, one is 〈0, 0, ⊥〉 and the other is the latest established
value candidate. Following the condition on timestamp of the latest established value candidate
leads to 〈0, 0, ⊥〉. Lemma 2.52 proves that there are no potential or established value candidates
within the timestamp interval of a write-CW segment, but that there is an established value can-
didate at the beginning and at the end. Lemma 2.63 proves that there are no established value
candidates within the timestamp interval of a copy-CW segment-chain, but that there is an estab-
lished value candidate at the beginning and at the end. Since the latest established value candidate
is either part of a write-CW segment chain or a copy-CW segment-chain, and since there are only
two established value candidates, then both established value candidates are in the condition-on
chain. Now, consider an execution in which there are x established value candidates. The latest
established value candidate (i.e., the xth established value candidate) is part of either a write-CW
segment or a copy-CW segment-chain that begins with the next latest established value candidate
(i.e., the (x − 1)st). By induction then, all established value candidates are in the condition-on
chain (and the condition-on chain ends at 〈0, 0, ⊥〉).

2.12 Linearizable reads and conditional-writes

Intuitively, linearizability [5] requires that each read return a value consistent with some execution
in which each read and write is performed at a distinct point in time between when the client
invokes the operation and when the operation returns. For the purposes of the R/CW protocol, we
consider the linearizability of reads and conditional-writes (rather than reads and writes).

11

The condition-on chain that results from write-CW segments and copy-CW segment-chains
induces a total order on all established value candidates. This total order is sufficient to demonstrate
the linearizability of all conditional-writes that establish a candidate. Reads are shown to be
partially ordered by the established value candidate they return and to obey their real-time ordering
relation. Since multiple distinct reads may return the same established value candidate, the total
order on established value candidates provides only a partial ordering. Copy-CW segment-chains
that literally copy an established value candidate may induce ordering on a subset of reads that
return the same “data” (albeit different established value candidates). The partial ordering on
reads can be arbitrarily extended to a total ordering, and thus the set of all reads that return a
candidate and conditional-writes that established is linearizable.

Lemma 2.67. All established value candidates are totally ordered by their timestamps.

Proof. Lemma 2.66 proves that all established value candidates are in the condition-on chain and
that the condition-on chain totally orders all established value candidates by timestamp.

Definition 2.68 (conditional-write begins). A conditional-write begins once a benign server accepts
a conditional-write candidate that corresponds to the conditional-write.

Definition 2.69 (conditional-write ends). A conditional-write ends once the candidate correspond-
ing to it is an established value candidate. As such, we just refer to a conditional-write that is
established.

Definition 2.70 (read begins). A read begins once a read response from a benign server is received.

Definition 2.71 (read ends). A read ends once it returns a candidate.

Lemma 2.72. A read that returns a candidate, returns an established value candidate.

Proof. Look at the pseudo-code; repair is attempted until the pre-conditions for a write are met
(i.e., until an established value candidate is latest).

Lemma 2.73. The set of reads by benign clients in an execution are partially ordered by the
timestamp of the established value candidate returned.

Proof. As Lemma 2.67 proves, all established value candidates in the execution are totally ordered.
The total order on established value candidates induces a partial order on all reads (which return
only established value candidates, due to Lemma 2.72). For a read to return a candidate, the
candidate must be established before the read ends (due to the classification rules Definition 2.17
and Definition 2.16). It does not matter if the candidate returned by the read was established
prior to the read beginning, or if it is established at some point during the read. In either case the
candidate returned by the read is consistent with the a partial order.

Observation 2.74. Lemma 2.73 excludes reads by malevolent clients because malevolent clients
can return arbitrary values from reads. Indeed, such clients need not even issue a read request
before returning a, potentially forged, candidate.

Lemma 2.75. In an execution, conditional-writes that establish value candidates and the values
returned by reads are linearizable.

12

Proof. Lemma 2.67 proves that all established value candidates are totally ordered by timestamp.
This ordering is consistent with the real-time ordering of the conditional-write operations that
yielded the established value candidates. Lemma 2.73 proves that reads are partially ordered by
the timestamp of the candidate returned. The partial ordering can be totally ordered so as to
be consistent with the real-time ordering of the read operations. As such, conditional-writes that
establish value candidates and the values returned by reads are linearizable.

2.13 Liveness

The R/CW protocol as described provides a very weak liveness guarantee, namely that it is possible
to make progress.

Lemma 2.76. It is possible to complete a conditional-write.

Proof. Given any object history set, there is a sequence of client operations, that if each com-
pletes, allows a client to complete a conditional-write. Notice that it is possible that a client
performs the following chain of operations: barrier, inline barrier, copy, inline write, and,
finally, write. All possible operations are in this chain and it ends with a conditional-write. Since
every ObjectHistorySet requires one of barrier, inline barrier, copy, inline write, or write
(see Lemma 2.26), then it is possible from any system state to perform a conditional-write.

Unfortunately, Lemma 2.76 does not guarantee that eventually a new value is conditionally-
written to the system. Malevolent components can prevent correct clients from making progress.

Corollary 2.77. In a benign execution, the R/CW protocol is obstruction-free [4].

Proof. In the absence of contention from other clients and of malevolent components, Lemma 2.76
ensures that a client will complete a conditional-write in a finite number of steps.

3 Read/conditional-write pseudo-code

In this section pseudo-code for the read/conditional-write (R/CW) protocol is given. The pseudo-
code is tailored for a threshold quorum system construction described in the following section.

3.1 Threshold quorum constraints

In this section we develop constraints on threshold quorum systems that meet the definitions from
Section 2.2. This construction of threshold quorum system can directly be applied to the RT-system
quorum construction in [8].

Consider a threshold quorum system in which all Q ∈ Q are of size q, all R(Q) are of size r, all
T ∈ T are of size t, all B ∈ B are of size b, and the universe is of size n.

From Definition 2.20:

q + t ≤ n. (1)

From Definition 2.21:

n < q + r − b. (2)

13

From Definition 2.22

n + r + b ≤ 2q. (3)

Combining (1) and (2):

q + t ≤ n < q + r − b,

t + b < r. (4)

Combining (1) and (3):

q + t ≤ n ≤ 2q − r − b,

r + t + b ≤ q. (5)

Combining (2) and (3):

n − q + b < r ≤ 2q − n − b,

2n < 3q − 2b,

n <
3q − 2b

2
. (6)

These constraints can be summarized as:

t + b < r;

r + t + b ≤ q;

q + t ≤ n;

n < min

[

q + r − b,
3q − 2b

2

]

.

To construct a threshold quorum parameterized by ∆ ≥ 0:

r = t + b + 2∆ + 1;

q = 2t + 2b + 2∆ + 1 (= r + t + b);

n = 3t + 2b + 3∆ + 1 (= q + t + ∆).

With this construction, the upper bound on n is obeyed. First, q +r− b = 3t+2b+4∆+2 > n.
Second, 3q−2b

2
= 6t+4b+6∆+3

2
= 3t + 2b + 3∆ + 1.5 > n. Since n is bound from above by 3q

2
, the

greatest throughput-scalability that can be achieved via threshold quorums is 1.5×.

3.2 Symbols and data structures

Symbols used in the pseudo-code are listed in Table 1. Enumerations, structures, and types used
in the pseudo-code are given in Figure 1.

14

Symbol Description

s A specific server.
U The universe of all servers.

ObjectHistorySet An object history set.
ReplicaHistory A replica history.

s.ReplicaHistory The replica history of server s.
α An authenticator (array of HMACs).

LT Logical timestamp.
LTCO Conditioned-on logical timestamp.

0 Well known initial logical timestamp.
⊥ A null value; sometimes used to indicate an unused argument/answer.
Q A quorum.
Q The quorum system.
n The size of the universe of servers
q The size of each quorum in a threshold quorum system; threshold for classi-

fying a candidate complete.
r The size of each repairable set for a quorum; threshold for classifying a can-

didate repairable.
t The threshold number of faulty servers.
b The threshold number of Byzantine faulty servers.

Table 1. Symbols used in the pseudo-code.

200: /∗ Enumerations. ∗/
201: /∗ Types of operations. ∗/
202: CWType ∈ {write, inline write,barrier, inline barrier,copy}

203: /∗ Structures. ∗/
204: /∗ Logical timestamps. ∗/
205: LT ≡ {
206: Time /∗ Major component of logical time. ∗/
207: BarrierFlag /∗ Boolean flag indicating barrier or value. ∗/
208: ClientID /∗ Client ID. ∗/
209: DataVerifier /∗ Hash of data value. ∗/
210: OHSVerifier /∗ Hash of conditioned-on ObjectHistorySet . ∗/
211: }
212: /∗ Candidate (initialized to 〈0, 0, ⊥〉). ∗/
213: Candidate ≡ {
214: LT /∗ Logical timestamp of candidate. ∗/
215: LTCO /∗ Timestamp of conditioned-on candidate. ∗/
216: Data /∗ Candidate’s data. ∗/
217: }

218: /∗ Types. ∗/
219: /∗ Replica history is an ordered set of candidates. ∗/
220: ReplicaHistory ≡ {Candidate}
221: /∗ Authenticator is an array of HMACs indexed by server (U is the universe of servers). ∗/
222: α ≡ HMAC[U]
223: /∗ Object history set is an array of replica histories indexed by server. ∗/
224: ObjectHistorySet ≡ 〈ReplicaHistory , α〉[U]

Figure 1. Enumerations, structures, and types for the R/CW pseudo-code.

15

3.3 Client-side

Client-side functions are listed in Figure 2. To perform a read a null object history set (i.e., ⊥),
is sent in the conditional-write request (cf. line400). In the pseudo-code shown, reads retry repair
until a candidate is classified complete; they could abort instead. Conditional-writes are shown to
abort if they do not establish a candidate; they could retry repair instead. The quorum probing
policy shown in c rcw quorum rpc is inefficient. A more efficient approach to probing for a
quorum of responses is implemented in the prototype. Functions for determining the classification
tuple of an object history set are listed in Figure 3.

16

c rcw initialize() :

300: /∗ The version history returned from each server in the read operation is kept in ObjectHistorySet . ∗/
301: for each (s ∈ U) do

302: ObjectHistorySet [s].ReplicaHistory := {〈0, 0, ⊥〉}
303: ObjectHistorySet [s].α := ⊥
304: end for

c rcw read() :

400: 〈⊥,ObjectHistorySet〉 := c rcw quorum rpc(⊥,⊥) /∗ Passing in (⊥,⊥) indicates a read request. ∗/
401: 〈CWType,Candidate,⊥〉 := rcw classify(ObjectHistorySet)
402: if (CWType 6= write) then

403: /∗ Perform repair. ∗/
404: ObjectHistorySet := c rcw repair(ObjectHistorySet)
405: 〈CWType,Candidate,⊥〉 := rcw classify(ObjectHistorySet)
406: /∗ Since repair returned, CWType = write. ∗/
407: end if

408: return (〈success,Candidate.Data〉)

c rcw write(Data,ObjectHistorySet): /∗ write. ∗/

500: 〈Order ,ObjectHistorySet〉 := c rcw quorum rpc(Data,ObjectHistorySet)
501: if (Order ≥ q) then

502: return (〈success,⊥〉)
503: end if

504: /∗ Otherwise, perform repair and then retry. ∗/
505: ObjectHistorySet := c rcw repair(ObjectHistorySet)
506: return (c rcw write(Data,ObjectHistorySet))

c rcw repair(ObjectHistorySet): /∗ inline write, barrier, inline barrier, and copy. ∗/

600: repeat

601: backoff() /∗ Backoff to avoid livelock. ∗/
602: /∗ Perform a barrier or copy (depends on ObjectHistorySet). ∗/
603: 〈⊥,ObjectHistorySet〉 := c rcw quorum rpc(⊥,ObjectHistorySet)
604: 〈CWType,Candidate,⊥〉 := rcw classify(ObjectHistorySet)
605: until (CWType = write)
606: return (ObjectHistorySet)

c rcw quorum rpc(Data,ObjectHistorySet) :

700: ResponseSet := ∅
701: Count := 0
702: repeat

703: /∗ Eliding probing policy. For simplicity broadcast to all servers. ∗/
704: for each (s ∈ U \ ResponseSet .s) do

705: send(s,Data,ObjectHistorySet)
706: end for

707: if (poll() = true) then

708: 〈s,Status, 〈ReplicaHistory , α〉〉 := receive()
709: if (s /∈ ResponseSet .s) then

710: ObjectHistorySet [s] := 〈ReplicaHistory , α〉
711: ResponseSet := ResponseSet ∪ 〈s〉
712: end if

713: if (Status = success) then

714: Count := Count + 1
715: end if

716: end if

717: until (∃Q ⊆ ResponseSet : Q ∈ Q)
718: return (〈Count ,ObjectHistorySet〉)

Figure 2. Client-side R/CW pseudo-code.

17

rcw classify(ObjectHistorySet):

800: /∗ Get latest object version, barrier version, and timestamp. ∗/
801: LatestCandidate := rcw latest candidate(ObjectHistorySet , false)
802: LatestBarrier := rcw latest candidate(ObjectHistorySet ,true)
803: LT latest := rcw latest time(ObjectHistorySet)
804: /∗ Determine which type of operation to perform. ∗/
805: if (LT latest = LatestCandidate.LT) ∧ (rcw order(LatestCandidate,ObjectHistorySet) ≥ q) then

806: CWType := write

807: else if (LT latest = LatestCandidate.LT) ∧ (rcw order(LatestCandidate,ObjectHistorySet) ≥ r) then

808: CWType := inline write

809: else if (LT latest = LatestBarrier .LT) ∧ (rcw order(LatestBarrier ,ObjectHistorySet) ≥ q) then

810: CWType := copy

811: else if (LT latest = LatestBarrier .LT) ∧ (rcw order(LatestBarrier ,ObjectHistorySet) ≥ r) then

812: CWType := inline barrier

813: else

814: CWType := barrier

815: end if

816: return (〈CWType,LatestCandidate,LatestBarrier〉)

rcw latest candidate(ObjectHistorySet ,BarrierFlag)

900: CandidateSet := {Candidate : (rcw order(Candidate,ObjectHistorySet) ≥ r)∧
901: (Candidate.LT .BarrierFlag = BarrierFlag)}
902: Candidate := (Candidate : (Candidate ∈ CandidateSet) ∧ (Candidate.LT = max(CandidateSet .LT)))
903: return (Candidate)

rcw order(Candidate,ObjectHistorySet) :

1000: return (|{s ∈ U : Candidate ∈ ObjectHistorySet [s].ReplicaHistory}|)

rcw latest time(ObjectHistorySet)

1100: return (max(ObjectHistorySet [U].ReplicaHistory .LT))

Figure 3. R/CW classification of an object history set.

18

3.4 R/CW server pseudo-code

Server-side functions are listed in Figure 4. As presented, replica histories include data for every
candidate: this is inefficient. In practice, the data in a candidate is treated specially. Only the
data for the latest value candidate is included in the replica history returned to clients. Even then,
it is not included in responses to a write or inline write since the client knows the data value it
sent the server. If the client needs a previous candidate’s data, it can request it via its timestamp.

To be safe in the crash recovery failure model, servers must update their state in an atomic
step after accepting a candidate. Also due to the crash-recovery failure model, clients re-send
requests until they receive a response. Thus, a server may receive repeated requests. To handle
repeated requests, a server checks its replica history to determine if it has already accepted the
requested candidate (line 1315). To reclaim storage space, servers can prune their replica histories
(lines 1324–1328). Unfortunately, if storage space is reclaimed, it is not always possible for servers
to determine if they have accepted a candidate. As such, there is (in theory) a tension between
bounded storage capacity and client’s being able to determine if they established a candidate or
not.

Pseudo-code for the server-side function s rcw setup is listed in Figure 5. This function sets
up the candidate for a server to accept based on the conditioned-on object history set and data
sent by the client.

19

s rcw initialize() :

1200: s.ReplicaHistory := {〈0, 0, ⊥〉}
1201: ∀s ′ ∈ U, s.α[s ′] := hmac(s, s ′, s.ReplicaHistory)

s rcw request(Data,ObjectHistorySet) :

1300: /∗ Reply to read requests. ∗/
1301: if (ObjectHistorySet = ⊥) then

1302: reply(s, success, s.〈ReplicaHistory , α〉)
1303: end if

1304: /∗ Validate authenticators. ∗/
1305: for each (s ′ ∈ U) do

1306: if (hmac(s, s ′,ObjectHistorySet [s ′].ReplicaHistory) 6= ObjectHistorySet [s ′].α[s]) then

1307: ObjectHistorySet [s].ReplicaHistory := {〈0, 0, ⊥〉}
1308: end if

1309: end for

1310: /∗ Setup candidate and determine operation type. ∗/
1311: 〈CWType,Candidate,LT current〉 := s rcw setup(Data,ObjectHistorySet)
1312: /∗ Determine if this is a repeated request. ∗/
1313: if (Candidate ∈ s.ReplicaHistory) then

1314: /∗ Reply with success, but send current history. ∗/
1315: reply(s, success, s.〈ReplicaHistory , α〉)
1316: end if

1317: /∗ Validate that conditioned-on object history set is current. ∗/
1318: if (max(s.ReplicaHistory .LT) > LT current) then

1319: reply(s, fail, s.〈ReplicaHistory , α〉)
1320: end if

1321: atomic

1322: s.ReplicaHistory := s.ReplicaHistory ∪ Candidate

1323: ∀s ′ ∈ U, s.α[s ′] := hmac(s, s ′, s.ReplicaHistory)
1324: if (CWType ∈ {write, inline write}) then

1325: /∗ By definition, the conditioned-on candidate is established. ∗/
1326: PrunedHistory := {Candidate ′ : (Candidate ′ ∈ s.ReplicaHistory) ∧ (Candidate ′.LT < Candidate.LTCO)}
1327: s.ReplicaHistory := s.ReplicaHistory \ PrunedHistory

1328: end if

1329: end atomic

1330: reply(s, success, s.〈ReplicaHistory , α〉)

Figure 4. Server side R/CW pseudo-code for server s.

20

s rcw setup(Data,ObjectHistorySet) :

1400: 〈CWType,LatestCandidate,LatestBarrier〉 := rcw classify(ObjectHistorySet)
1401: LTCO := LatestCandidate.LT

1402: if (CWType = write) then

1403: LT .Time := rcw latest time(ObjectHistorySet).Time + 1 (= LatestCandidate.LT .Time + 1)
1404: LT .BarrierFlag := false

1405: LT .ClientID := ClientID /∗ Client ID is known from authenticated channel. ∗/
1406: LT .DataVerifier := hash(Data)
1407: LT .OHSVerifier := hash(ObjectHistorySet)
1408: LT current := LatestCandidate.LT (= LTCO)
1409: else if (CWType = barrier) then

1410: Data := ⊥
1411: LT .Time := rcw latest time(ObjectHistorySet).Time + 1
1412: LT .BarrierFlag := true

1413: LT .ClientID := ClientID

1414: LT .DataVerifier := ⊥
1415: LT .OHSVerifier := hash(ObjectHistorySet)
1416: LT current := LT

1417: else if (CWType = copy) then

1418: Data := LatestCandidate.Data

1419: LT .Time := rcw latest time(ObjectHistorySet).Time + 1 (= LatestBarrier .LT .Time + 1)
1420: LT .BarrierFlag := false

1421: LT .ClientID := ClientID

1422: LT .DataVerifier := hash(Data)
1423: LT .OHSVerifier := hash(ObjectHistorySet)
1424: LT current := LatestBarrier .LT

1425: else if (CWType = inline write) then

1426: 〈LT ,LTCO,Data〉 := LatestCandidate

1427: LT current := LT

1428: else

1429: /∗ CWType = inline barrier ∗/
1430: 〈LT ,LTCO,Data〉 := LatestBarrier

1431: LT current := LT

1432: end if

1433: return (〈CWType, 〈LT ,LTCO,Data〉,LT current〉)

Figure 5. Server-side R/CW logic for setting up the candidate to accept.

21

4 Multi-object operations

In this section we discuss how to extend the R/CW protocol so that conditional-write operations
may condition on multiple objects. Multi-object writes provide a different safety guarantee than
single-object writes: strict serializability [3] instead of linearizability [5]. Linearizability only applies
to protocols that operate on individual objects, whereas strict serializability guarantees that all
writes across all objects, even multi-object writes, are partially ordered in a reasonable manner.

A multi-object conditional-write atomically writes a set of objects. To perform such a conditional-
write, a client includes a conditioned-on OHS for each object being written. The set of objects
and each object’s corresponding conditioned-on OHS, are referred to as the multi-object history set
(multi-OHS). Each server locks its local version of each object in the multi-OHS and validates that
each conditioned-on OHS is current. The local locks are acquired in object ID order to avoid the
possibility of local deadlocks. Assuming validation passes for all of the objects in the multi-OHS,
the server accepts the conditional-write for all the objects in the multi-OHS simultaneously.

So long as a candidate is classified as complete or incomplete, no additional logic is required.
However, to repair multi-object conditional-writes, clients must determine which objects are in the
multi-OHS. As such, the multi-OHS is included in the timestamp. Note that all objects written by
a multi-object conditional-write have the same multi-OHS in their timestamp.

To illustrate multi-object repair, consider a multi-object conditional-write that writes two ob-
jects, oa and ob. The multi-object conditional-write results in a candidate for each object, ca and
cb respectively. Now, consider a client that queries oa and classifies ca as repairable. To repair ca,
the client must fetch a current object history for ob because ob is in the multi-OHS of ca. If ca is
in fact established, then there could exist a subsequent established candidate at ob that conditions
on cb. If ca is not established, then subsequent operations at ob may preclude cb from ever being
established (e.g., a barrier and a copy that establishes another candidate at ob with a higher time-
stamp than cb). The former requires that ca be reclassified as complete. The latter requires that
ca be reclassified as incomplete.

Such reclassification of a repairable candidate, based on the objects in its multi-OHS, is called
classification by deduction. If the repairable candidate lists other objects in its multi-OHS, then
classification by deduction must be performed. If classification by deduction does not result in
reclassification, then repair is performed. Repair, like in the case of individual objects, consists of
barrier and copy operations. The multi-OHS for multi-object barriers and multi-object copies have
the same set of objects in them as the multi-OHS of the repairable candidate. Because multi-object
operations are atomic, classification by deduction cannot yield conflicting reclassifications: either all
of the objects in the multi-OHS are classified as repairable, some are classified complete (implying
that all are complete), or some are classified incomplete (implying that all are incomplete).

5 Query/Update (Q/U) protocol

The Query/Update (Q/U) protocol is a variant of the R/CW protocol; it is described, in detail, in
the main paper [1]. The correctness of the Q/U protocol is based on the correctness of the R/CW
protocol.

This section presents extended pseudo-code for the query/update (Q/U) protocol. Given the
Q/U protocol pseudo-code and the R/CW protocol pseudo-code, it is clear the the one is a variant of
the other. The Q/U protocol pseudo-code is somewhat longer and more detailed than the R/CW
protocol pseudo-code because of the operations-based interface it provides, the need for object
syncing, and the inclusion of some performance optimizations in the pseudo-code.

22

structures, types, & enumerations:

1500: /∗ Enumerations. ∗/
1501: Class ∈ {query,update}
1502: Type ∈ {method, inline method,copy,barrier, inline barrier}

1503: /∗ Structures. ∗/
1504: Operation ≡ {
1505: Method /∗ Method to invoke on the object. ∗/
1506: Class /∗ Class of operation. ∗/
1507: Argument /∗ Argument(s) passed into method. ∗/
1508: }
1509: LT ≡ { /∗ Logical timestamp. ∗/
1510: Time /∗ Major component of logical time. ∗/
1511: BarrierFlag /∗ true for barriers. ∗/
1512: ClientID /∗ Client ID. ∗/
1513: Operation /∗ Operation to be performed on conditioned-on object version. ∗/
1514: ObjectHistorySet /∗ Conditioned-on ObjectHistorySet . ∗/
1515: } /∗ Operation and ObjectHistorySet replaced with single hash in the implementation. ∗/
1516: Candidate ≡ { /∗ Candidates are initialized to 〈0, 0〉. ∗/
1517: LT /∗ Timestamp of corresponding object version. ∗/
1518: LTCO /∗ Timestamp of conditioned-on object version. ∗/
1519: }

1520: /∗ Types. ∗/
1521: ReplicaHistory ≡ {Candidate} /∗ An ordered set of candidates. ∗/
1522: α ≡ HMAC[U] /∗ An authenticator is an array of HMACs indexed by server (U is the universe of servers). ∗/
1523: ObjectHistorySet ≡ 〈ReplicaHistory , α〉[U] /∗ An array of replica histories indexed by server. ∗/

Figure 6. Enumerations, structures, and data types used in pseudo-code.

In this section we also present a longer example execution than in the main paper. Moreover, the
example execution is for a queue object that requires the semantics provided by the Q/U protocol.

5.1 Data structures

Symbols used in the pseudo-code are listed in Table 1 in §3. Enumerations, structures, and types
used in the pseudo-code are given in Figure 6.

23

5.2 Client-side

Pseudo-code for client-side functions is give in Figure 7. The pseudo-code for the query c qu fetch
includes the optimization to handle servers executing queries optimistically if the clients object
history set is not current. It also includes the optimization (although not complete pseudo-code)
for returning answers from the latest complete object version, even if there is a later incomplete
candidate. This optimization avoids queries contending with a single client performing updates.

Pseudo-code for the function c qu quorum rpc is given in Figure 8. Like in the R/CW
pseudo-code, a rudimentary quorum probing policy is shown. Note c qu quorum rpc differs from
c rcw quorum rpc in some substantive ways. The voting and synthesis of responses performed
on lines 2017 to 2020 is to ensure that the answer returned matches that of a benign server. (A
Byzantine faulty server could respond with success but supply the incorrect answer.)

Figure 9 lists pseudo-code for the function qu classify. The construction of candidates for
inline repair of value candidates and barrier candidates is included in this extended pseudo-code.

24

c qu initialize(): /∗ Client initialization. ∗/

1600: for each (s ∈ U) do

1601: ObjectHistorySet [s].ReplicaHistory := {〈0, 0〉}
1602: ObjectHistorySet [s].α := ⊥
1603: end for

c qu increment(Argument): /∗ Example update operation. ∗/

1700: Operation := 〈inc,update,Argument〉
1701: 〈Answer ,Order ,ObjectHistorySet〉 := c qu quorum rpc(Operation,ObjectHistorySet)
1702: while (Order < q) do

1703: ObjectHistorySet := c qu repair(ObjectHistorySet)
1704: 〈Answer ,Order ,ObjectHistorySet〉 := c qu quorum rpc(Operation,ObjectHistorySet)
1705: end while

1706: return (〈Answer〉)

c qu fetch(): /∗ Example query operation. ∗/

1800: Operation := 〈fetch,query,⊥〉
1801: 〈Answer ,Order ,ObjectHistorySet〉 := c qu quorum rpc(Operation,ObjectHistorySet)
1802: while (Order < q) do

1803: /∗ See if query was executed optimistically. ∗/
1804: 〈Type,⊥,⊥〉 := qu classify(ObjectHistorySet)
1805: if (Type = method) then

1806: return (〈Answer〉)
1807: end if

1808: /∗ Try and avoid update-query contention ∗/
1809: if (Order < r) then

1810: /∗ Eliding details of (i) Determining if the latest two entries in ObjectHistorySet are the incomplete ∗/
1811: /∗ candidate and the established candidate it is conditioned on, and (ii) determing the answer ∗/
1812: /∗ Answer ′ returned by the conditioned-on candidate. ∗/
1813: return (〈Answer ′〉)
1814: end if

1815: ObjectHistorySet := c qu repair(ObjectHistorySet)
1816: 〈Answer ,Order ,ObjectHistorySet〉 := c qu quorum rpc(Operation,ObjectHistorySet)
1817: end while

1818: return (〈Answer〉)

c qu repair(ObjectHistorySet): /∗ Deal with failures and contention. ∗/

1900: 〈Type,⊥,⊥〉 := qu classify(ObjectHistorySet)
1901: while (Type 6= method) do

1902: backoff() /∗ Backoff to avoid livelock. ∗/
1903: /∗ Perform a barrier or copy (depends on ObjectHistorySet). ∗/
1904: 〈⊥,⊥,ObjectHistorySet〉 := c qu quorum rpc(⊥,ObjectHistorySet)
1905: 〈Type,⊥,⊥〉 := qu classify(ObjectHistorySet)
1906: end while

1907: return (ObjectHistorySet)

Figure 7. Client side pseudo-code.

25

c qu quorum rpc(Operation,ObjectHistorySet) : /∗ Quorum RPC from client to servers. ∗/

2000: ResponseSet := SuccessSet := ∅
2001: repeat

2002: /∗ Eliding probing policy. For simplicity broadcast to all servers. ∗/
2003: for each (s ∈ U \ ResponseSet .s) do

2004: send(s,Operation,ObjectHistorySet)
2005: end for

2006: if (poll() = true) then

2007: 〈s,Status,Answer , 〈ReplicaHistory , α〉〉 := receive()
2008: if (s /∈ ResponseSet .s) then

2009: ObjectHistorySet [s] := 〈ReplicaHistory , α〉
2010: ResponseSet := ResponseSet ∪ 〈s〉
2011: end if

2012: if (Status = success) then

2013: SuccessSet := SuccessSet ∪ 〈Answer , 〈ReplicaHistory , α〉〉
2014: end if

2015: end if

2016: until (∃Q ⊆ ResponseSet : Q ∈ Q)
2017: /∗ Use voting to identify response from benign server. ∗/
2018: VoteCount := max(∀Response ∈ ResponseSet : qu count(Response,SuccessSet))
2019: Response := (Response : qu count(Response,SuccessSet) = VoteCount)
2020: return (〈Response.Answer ,qu count(Response,SuccessSet),ObjectHistorySet〉)

Figure 8. Quorum RPC pseudo-code.

qu classify(ObjectHistorySet):

2100: /∗ Get latest object version, barrier version, and timestamp. ∗/
2101: LatestObjectVersion := qu latest candidate(ObjectHistorySet , false)
2102: LatestBarrierVersion := qu latest candidate(ObjectHistorySet ,true)
2103: LT latest := qu latest time(ObjectHistorySet)
2104: /∗ Determine which type of operation to perform. ∗/
2105: if (LT latest = LatestObjectVersion.LT) ∧ (qu order(LatestObjectVersion,ObjectHistorySet) ≥ q) then

2106: Type := method

2107: else if (LT latest = LatestObjectVersion.LT) ∧ (qu order(LatestObjectVersion,ObjectHistorySet) ≥ r) then

2108: Type := inline method

2109: else if (LT latest = LatestBarrierVersion.LT)∧(qu order(LatestBarrierVersion,ObjectHistorySet) ≥ q) then

2110: Type := copy

2111: else if (LT latest = LatestBarrierVersion.LT)∧(qu order(LatestBarrierVersion,ObjectHistorySet) ≥ r) then

2112: Type := inline barrier

2113: else

2114: Type := barrier

2115: end if

2116: return (〈Type,LatestObjectVersion,LatestBarrierVersion〉)

qu latest candidate(ObjectHistorySet ,BarrierFlag)

2200: CandidateSet := {Candidate : (qu order(Candidate,ObjectHistorySet) ≥ r)∧
2201: (Candidate.LT .BarrierFlag = BarrierFlag)}
2202: Candidate := (Candidate : (Candidate ∈ CandidateSet) ∧ (Candidate.LT = max(CandidateSet .LT)))
2203: return (Candidate)

qu order(Candidate,ObjectHistorySet) :

2300: return (|{s ∈ U : Candidate ∈ ObjectHistorySet [s].ReplicaHistory}|)

qu latest time(ObjectHistorySet)

2400: return (max(ObjectHistorySet [U].ReplicaHistory .LT))

Figure 9. Classification of an object history set.

26

5.3 Server-side

Figure 10 lists pseudo-code for server-side functions. The logic for inline repair of value candidates
and barrier candidates is included. Optimistic execution of queries is shown. The logic necessary
to handle repeated requests is given (i.e., checking for the candidate in the replica history, and
storing/retrieving answers in addition to object versions). Pruning replica histories (and garbage
collecting object versions and answers) is shown.

Figure 11 lists pseudo-code for the server-side function s qu setup. The logic for constructing
candidates for inline repairs of value candidates and barrier candidates is included.

Figure 12 lists pseudo-code for object sync. Like c qu quorum rpc, s qu object sync broad-
casts its requests which is inefficient. In the implementation, servers are probed based on the
information in the conditioned-on object history set.

27

s qu initialize() : /∗ Initialize server s. ∗/

2500: s.ReplicaHistory := {〈0, 0〉}
2501: ∀s ′ ∈ U, s.α[s ′] := hmac(s, s ′, s.ReplicaHistory)

s qu request(Operation,ObjectHistorySet) : /∗ Handle request at server s. ∗/

2600: Answer := ⊥ /∗ barrier and inline barrier return null answers. ∗/
2601: /∗ Validate authenticators. ∗/
2602: for each (s ′ ∈ U) do

2603: if (hmac(s, s ′,ObjectHistorySet [s ′].ReplicaHistory) 6= ObjectHistorySet [s ′].α[s]) then

2604: ObjectHistorySet [s ′].ReplicaHistory := {〈0, 0〉} /∗ Cull invalid ReplicaHistorys. ∗/
2605: end if

2606: end for

2607: /∗ Setup candidate and determine operation type. ∗/
2608: 〈Type, 〈LT ,LTCO〉,LT current〉 := s qu setup(Operation,ObjectHistorySet)
2609: /∗ Determine if this is a repeated request. ∗/
2610: if (〈LT ,LTCO〉 ∈ s.ReplicaHistory) then

2611: 〈⊥,Answer〉 := retrieve(LT)
2612: reply(s, success,Answer , s.〈ReplicaHistory , α〉) /∗ Reply with success, but send current history. ∗/
2613: end if

2614: /∗ Validate that conditioned-on object history set is current. ∗/
2615: if (qu latest time(s.ReplicaHistory) > LT current) then

2616: /∗ Optimistically execute query operations on latest object version. ∗/
2617: if (Operation.Class = query) then

2618: Object := retrieve(qu latest time(s.ReplicaHistory)) /∗ Retrieve latest local object version. ∗/
2619: 〈⊥,Answer〉 := Operation.Method(Object ,Operation.Argument)
2620: end if

2621: /∗ Answer = ⊥ except in the case of optimistic query execution. ∗/
2622: reply(s, fail,Answer , s.〈ReplicaHistory , α〉)
2623: end if

2624: if (Type ∈ {method, inline method,copy}) then

2625: /∗ Retrieve conditioned-on object so that method can be invoked. ∗/
2626: 〈Object ,Answer〉 := retrieve(LTCO) /∗ Attempt to retrieve it locally. ∗/
2627: if ((Object = ⊥) ∧ (LTCO > 0)) then

2628: 〈Object ,Answer〉 := s qu object sync(LTCO) /∗ Retrieve from other servers via object sync. ∗/
2629: end if

2630: end if

2631: if (Type ∈ {method, inline method}) then

2632: 〈Object ,Answer〉 := Operation.Method(Object ,Operation.Argument)
2633: if (Operation.Class = query) then

2634: reply(s, success,Answer , s.〈ReplicaHistory , α〉)
2635: end if

2636: end if

2637: atomic

2638: s.ReplicaHistory := s.ReplicaHistory ∪ {〈LT ,LT CO〉} /∗ Update replica history. ∗/
2639: ∀s ′ ∈ U, s.α[s ′] := hmac(s, s ′, s.ReplicaHistory) /∗ Update authenticator. ∗/
2640: if (Type ∈ {method, inline method,copy}) then

2641: store(LT , 〈Object ,Answer〉) /∗ Store object version locally indexed by logical timestamp. ∗/
2642: end if

2643: if (Type ∈ {method, inline method}) then

2644: /∗ By definition, the conditioned-on candidate is established. ∗/
2645: PrunedHistory := {Candidate : (Candidate ∈ s.ReplicaHistory) ∧ (Candidate.LT < LT CO)}
2646: s.ReplicaHistory := s.ReplicaHistory \ PrunedHistory

2647: remove garbage(PrunedHistory .LT) /∗ Remove local object versions of pruned candidates. ∗/
2648: end if

2649: end atomic

2650: reply(s, success,Answer , s.〈ReplicaHistory , α〉)

Figure 10. Server side pseudo-code.

28

s qu setup(Operation,ObjectHistorySet) :

2700: 〈Type,LatestObjectVersion,LatestBarrierVersion〉 := qu classify(ObjectHistorySet)
2701: LTCO := LatestObjectVersion.LT

2702: if (Type = method) then

2703: LT .Time := qu latest time(ObjectHistorySet).Time + 1
2704: LT .BarrierFlag := false

2705: LT .ClientID := ClientID /∗ Client ID is known from authenticated channel. ∗/
2706: LT .Operation := Operation

2707: LT .ObjectHistorySet := ObjectHistorySet

2708: LT current := LatestObjectVersion.LT (= LTCO)
2709: else if (Type = barrier) then

2710: LT .Time := qu latest time(ObjectHistorySet).Time + 1
2711: LT .BarrierFlag := true

2712: LT .ClientID := ClientID

2713: LT .Operation := ⊥
2714: LT .ObjectHistorySet := ObjectHistorySet

2715: LT current := LT

2716: else if (Type = copy) then

2717: LT .Time := qu latest time(ObjectHistorySet).Time + 1
2718: LT .BarrierFlag := false

2719: LT .ClientID := ClientID

2720: LT .Operation := LTCO.Operation

2721: LT .ObjectHistorySet := ObjectHistorySet

2722: LT current := LatestBarrierVersion.LT

2723: else if (Type = inline method) then

2724: LT := LatestObjectVersion.LT

2725: LTCO := LatestObjectVersion.LTCO

2726: LT current := LT

2727: else

2728: /∗ Type = inline barrier ∗/
2729: LT := LatestBarrierVersion.LT

2730: LTCO := LatestBarrierVersion.LTCO

2731: LT current := LT

2732: end if

2733: return (〈Type, 〈LT ,LTCO〉,LT current〉)

Figure 11. Server side pseudo-code to set up candidate and identify type of operation.

29

s qu object sync(LT)

2800: /∗ Pseudo-code does not deal with servers pruning replica histories or garbage collecting object versions. ∗/
2801: ResponseSet := ∅
2802: repeat

2803: /∗ Eliding details of probing based on object history set. ∗/
2804: for each (s ∈ U) do

2805: send(s,LT)
2806: end for

2807: if (poll() = true) then

2808: 〈Object ,Answer〉 := receive()
2809: ResponseSet := ResponseSet ∪ {〈Object ,Answer〉}
2810: if (qu count(〈Object ,Answer〉,ResponseSet) > b + 1) then

2811: return (〈Object ,Answer〉)
2812: end if

2813: end if

2814: until (false)

s qu object source(LT)

2900: 〈Object ,Answer〉 := c qu fetch(LT)
2901: if (Object 6= ⊥) then

2902: reply(s, 〈Object ,Answer〉)
2903: end if

qu count(Element ,Set) :

3000: return (|{Element : Element ∈ Set}|)

Figure 12. Pseudo-code for object syncing at server s.

30

5.4 Example Q/U protocol execution

An example execution of the Q/U protocol is given in Table 2 for a queue object. The caption
explains the structure of, and notation used in, the table. The example is for an object that exports
three methods: enq (an update that enqueues a value), deq (an update that dequeues a value),
and front (a query that returns the value at the front of the queue). The server configuration is
based on the smallest quorum system for b = 1. Clients perform optimistic queries for the front
method; the conditioned-on OHS sent with the enq and deq methods is not shown in the table.
The sequence of client operations is divided into six sequences of interest by horizontal double
lines: the initial queue state, four illustrative sequences of operations, and the final queue state.
For illustrative purposes, clients X and Z interact with the object’s preferred quorum (the first five
servers) and Y a non-preferred (the last five servers).

In the first sequence, the queue state is initialized to the well known null value at the well known
logical time zero. The second sequence demonstrates failure- and concurrency-free execution: client
X performs a front and enq that each complete in a single phase. Client Y performs a front in the
second sequence that requires repair. Since there is no contention, Y performs inline repair. Server
s5 performs object syncing to process the inline repair request. It also optimistically performs the
front after object syncing and returns ♣ to the client.

In the fourth sequence, concurrent updates by X and Y both abort because of contention;
however, X establishes a candidate. It is possible for an update to abort, but establish a candidate
because the established threshold is b less than quorum size (4 in this case). At server s4, the
enq from Y arrives before the enq from X. As such, it returns its replica history {〈3, 1〉, 〈1,0〉}
with fail. The candidate 〈3, 1〉 in this replica history dictates that the timestamp of the barrier
be 4b. For illustrative purposes, Y backs off. Client X subsequently completes barrier and copy
operations.

Notice though that the replica histories returned by the servers in response to Y ’s enq requests
are pruned. Servers prune their replica histories whenever they accept an update operation (or
an inline repair), since such operations are conditioned on established candidates. Servers do not
prune their replica histories when they accept copy and barrier operations, since such operations
may condition on potential candidates. For example, server s1 returns {〈2, 1〉, 〈1,0〉}, rather than
{〈2, 1〉, 〈1,0〉, 〈0,0〉}, because the object history set sent by X with enq operation 〈2, 1〉 proved
that 〈1,0〉 was established.

In the fifth sequence, X crashes during an enq operation and yields a potential candidate.
The remaining clients Y and Z perform concurrent front operations at different quorums; this
illustrates how a potential candidate can be classified as either repairable or incomplete. Y and
Z concurrently attempt a barrier and inline repair respectively. In this example, Y establishes a
barrier before Z’s inline repair requests arrive at servers s3 and s4. As such, client Z aborts its
inline repair operation and backs off. Subsequently, Y completes a copy operation and establishes
a candidate 〈8, 5〉 that copies forward the established candidate 〈5, 2〉. Then, Y dequeues a value
from the queue. After backing off, Z attempts a front operation that requires an inline repair to
complete. Notice that queries such as front can be piggy-backed on inline repairs. Finally, in the
sixth sequence, the final server state is listed.

References

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J.
Wylie. Fault-scalable Byzantine fault-tolerant services. Symposium on Operating Systems
Principles, 2005.

31

Operation s0 s1 s2 s3 s4 s5 Result

Initial queue state {0},⊥ {0},⊥ {0},⊥ {0},⊥ {0},⊥ {0},⊥

X completes front() {0},⊥ {0},⊥ {0},⊥ {0},⊥ {0},⊥ 0 complete, return ⊥
X completes enq(♣) 〈1,0〉,⊥, [♣] 〈1,0〉,⊥, [♣] 〈1,0〉,⊥, [♣] 〈1,0〉,⊥, [♣] 〈1,0〉,⊥, [♣] 1 established

Y begins front()... {1,0},♣ {1,0},♣ {1,0},♣ {1,0},♣ {0},⊥ 1 repairable
...Y performs inline() 〈1,0〉,♣, [♣] 1 complete, return ♣

X attempts enq(♦)... 〈2, 1〉,⊥, [♣♦] 〈2, 1〉,⊥, [♣♦] 〈2, 1〉,⊥, [♣♦] 〈2, 1〉,⊥, [♣♦] {3, 1}, fail 2 potential
Y attempts enq(♥) {2, 1}, fail {2, 1}, fail {2, 1}, fail 〈3, 1〉,⊥, [♣♥] 〈3, 1〉,⊥, [♣♥] Y backs off
...X completes barrier() 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 4b established
...X completes copy() 〈5, 2〉,⊥, [♣♦] 〈5, 2〉,⊥, [♣♦] 〈5, 2〉,⊥, [♣♦] 〈5, 2〉,⊥, [♣♦] 〈5, 2〉,⊥, [♣♦] 5 established

X crashes in enq(♠) 〈6, 5〉,⊥, [♣♦♠] 〈6, 5〉,⊥, [♣♦♠] 〈6, 5〉,⊥, [♣♦♠] 6 potential
Y begins front()... {6, 5},♣ {6, 5},♣ {5, 4b, 2, 1},♣ {5, 4b, 2, 1},♣ {3, 1},♣ 6 incom., 5 repair.
Z begins front()... {6, 5},♣ {6, 5},♣ {6, 5},♣ {5, 4b, 2, 1},♣ {5, 4b, 2, 1},♣ 6 repairable
...Y completes barrier() 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 7b established
...Z attempts inline() {7b, ..., 1}, fail {7b, ..., 1}, fail Z backs off
...Y completes copy() 〈8, 5〉,♣, [♣♦] 〈8, 5〉,♣, [♣♦] 〈8, 5〉,♣, [♣♦] 〈8, 5〉,♣, [♣♦] 〈8, 5〉,♣, [♣♦] 8 established, ret. ♣
Y completes deq() 〈9, 8〉,♣, [♦] 〈9, 8〉,♣, [♦] 〈9, 8〉,♣, [♦] 〈9, 8〉,♣, [♦] 〈9, 8〉,♣, [♦] 9 complete, return ♣
Z begins front()... {6, 5},♣ {9, 8},♦ {9, 8},♦ {9, 8},♦ {9, 8},♦ 9 repairable
...Z completes inline() 〈9, 8〉,♦, [♦] 9 complete, return ♦

Final queue state {9, 8}, [♦] {9, 8}, [♦] {9, 8}, [♦] {9, 8}, [♦] {9, 8}, [♦] {9, 8}, [♦]

Table 2. Example Q/U protocol execution for a queue object that supports enq (update), deq (update), and front (query)
operations. Operations performed by three clients (X, Y , and Z) are listed in the left column. The middle columns lists candidates
stored by and replies (replica histories or status codes) returned by six benign servers (s0, ..., s5). For enq, deq, copy, and inline
operations, the triple listed is the timestamp/conditioned-on timestamp pair, answer from the server, and queue state. If an
operation is rejected, because the conditioned-on OHS is not current, then the server reply is listed: the server’s replica history and
fail. Excepting queue state, the listing for barrier operations is the same as the other update operations. For front operations,
a query operation, the replica history and answer returned by the server are listed. The results listed in the right column that
identify candidates as established or potential are based on the servers being benign. Time “flows” from the top row to the bottom
row. Candidates are denoted 〈LT ,LTCO〉. Only LT .Time with “b” appended for barriers is shown for timestamps (i.e., client ID,
operation, and object history set are not shown). Replica historires are denoted {LT 3,LT 2, ...}. Only the candidate’s LT , not the
LTCO, is listed in the replica history. Queue state is listed, in order, delimited by square brackets “[” and “]”.

32

[2] Marcos K. Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus in the crash-
recovery model. Distributed Computing, 13(2):99–125. Springer-Verlag, 2000.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database
systems. Addison-Wesley, Reading, Massachusetts, 1987.

[4] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: double-
ended queues as an example. International Conference on Distributed Computing Systems
(Providence, RI, 19–22 May 2003), pages 522–529. IEEE, 2003.

[5] Maurice P. Herlihy and Jeanette M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492.
ACM, July 1990.

[6] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401. ACM, July 1982.

[7] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213. Springer-Verlag, 1998.

[8] Dahlia Malkhi, Michael Reiter, and Avishai Wool. The load and availability of Byzantine
quorum systems. SIAM Journal of Computing, 29(6):1889–1906. Society for Industrial and
Applied Mathematics, April 2000.

[9] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual failure modes. IEEE Transactions
on Parallel and Distributed Systems, 2(2):214–222. IEEE, April 1991.

[10] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes.
Symposium on Reliable Distributed Systems (10–12 October 1988), pages 93–100. IEEE, 1988.

33

	Introduction
	Safety of the Read/Conditional-Write (R/CW) protocol
	Terminology
	Candidates, constraints, and classification
	Classification tuple
	Conditional-write definitions
	Conditional-write pre-conditions
	Conditional-write post-conditions
	Repair conditional-writes
	Write-CW segments
	Copy-CW segments
	Copy-CW segment-chains
	The condition-on chain
	Linearizable reads and conditional-writes
	Liveness

	Read/conditional-write pseudo-code
	Threshold quorum constraints
	Symbols and data structures
	Client-side
	R/CW server pseudo-code

	Multi-object operations
	Query/Update (Q/U) protocol
	Data structures
	Client-side
	Server-side
	Example Q/U protocol execution

