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Abstract. It is not easy to achieve secure key establishment in wire-
less sensor networks without public key cryptography. Many key man-
agement protocols have been proposed for the purpose. Among them,
LEAP is a simple and elegant protocol that establishes multi-level keys
in an efficient way, but its security mainly relies on that of a single ini-
tialization key. Though it is assumed that the initial deployment phase
is secure and the key is erased from sensor nodes after the initialization
in LEAP, the assumption could not be viable for two reasons. First, the
same key should be used again for node addition after the initialization
phase whereas the new node can be captured before removing the key.
Second, the initial deployment of dense networks may not take short as
LEAP expected in many cases. This paper rethinks the security of LEAP
and proposes a more secure scheme with a new notion of probabilistic
time intervals. Rather we localize the impact of key compromise within
the time intervals.
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1 Introduction

Wireless sensor networks (WSNs) are dense wireless networks of sensor nodes
which are constrained in their computation, communication, and storage capa-
bilities. They are expected to play an important role in many applications such
as environment monitoring, building management, health care, and military op-
eration. Since they are deployed in unattended or even hostile environments,
security mechanisms are required for various mission critical applications [1,2].
However, it is widely recognized that securing WSNs is quite challenging due to
the limited features of sensor nodes.

Many key management schemes have been proposed to make secure links in
WSNs. A probabilistic key pre-distribution scheme is proposed in [1]. In this
scheme, a randomly chosen set of keys from a large key pool is assigned to each
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sensor node before node deployment. And then, two sensor nodes can share at
least a common key with a certain probability. This scheme is improved in [3].
Two sensor nodes are required to share at least q secret keys to establish a pair-
wise key. A random pair-wise key scheme is also introduced in [3] to provide
perfect security against node capture. [4,5] use a threshold-based technique: If
the number of compromised nodes does not exceed a threshold value, the rest
of network is not affected by compromised ones. Recently researchers have sug-
gested to utilize the expected location of sensor nodes after node deployment to
improve the security and scalability of key establishment schemes [6,7,8]. How-
ever, it is limited to take advantage of the knowledge of locations since it is very
difficult to guarantee the exact positions of sensor nodes.

Lately an efficient key management protocol called LEAP (Localized Encryp-
tion and Authentication Protocol) [9] has been proposed by Zhu, Setia, and Ja-
jodia in order for supporting secure key establishment and in-network processing
for large-scale WSNs by establishing four types of keys such as individual key,
group key, cluster key, and pairwise shared key.

Most of the key management protocols including LEAP assume that an ad-
versary may attack sensor networks after the initial key establishment phase,
but the assumption could be incorrect while considering node addition phases in
a hostile environment. Security of LEAP mainly depends upon that of the ini-
tialization key which is erased from sensor nodes after the initialization phase.
However, the same key should be used again for node addition after that phase
while the new node can be captured before removing the initialization key. In this
paper, we rethink the security of LEAP and introduce a time-based key manage-
ment protocol which improves security with a new notion of probabilistic time
intervals.

This paper is structured as follows: We describe existing key management
protocols in Section 2, and then rethink the LEAP protocol in terms of security
in Section 3. We propose a time-based key management protocol in Section 4,
and then analyze its performance and security in Section 5. We conclude this
paper in Section 6.

2 Related Works

2.1 Key Management Protocols in WSNs

To provide secure communications in WSNs, sensor nodes first need to set up
pair-wise keys with each other. There are generally three types of key agreement
schemes: the trusted-server scheme, the self-enforcing scheme, and the key pre-
distribution scheme [6]. The trusted-server scheme assumes that there is a trusted
server for key establishment between nodes. However, this is not suitable for
distributed sensor networks since it is usually hard to construct a trusted server.
The self-enforcing scheme uses asymmetric cryptography, such as a public key
certificate. However, a public key algorithm is not suitable for sensor networks
because of limited power and computation resources of tiny sensor nodes. In key
pre-distribution schemes, keying materials are pre-loaded into sensor nodes prior
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Fig. 1. 3 phases of key pre-distribution scheme

to the deployment. If we can utilize the location information of sensor nodes, we
could make the scheme more efficient.

A key pre-distribution scheme consists of three phases in general: a key setup
phase prior to deployment, an initial key establishment phase, and a node ad-
dition phase. We refer readers to Figure 1. During a key setup phase, a center
generates keying materials which will be used to make a secure link, and then
pre-loads some keying materials into sensor nodes prior to node deployment.
After each sensor node discovers neighbor nodes sharing a common keying ma-
terial, sensor nodes are able to establish pair-wise keys with each other during an
initial key establishment phase. Sensor nodes which do not share any common
keying materials, but are within the wireless communication range, can establish
a path-key via a proxy node that already has pair-wise keys with both nodes.
During the node addition phase, some additional nodes are deployed in sensor
networks for several reasons, such as maintenance, replacement, routing, and so
on. Now, we summarize two basic key pre-distribution schemes.

There are a lot of key pre-distribution schemes. At first, we can easily think
about two naive solutions. One solution is to use a single master key in a whole
network. Any pair of nodes can establish pair-wise keys using this master key.
However, if one node is compromised, the whole network can be threatened by
an attacker. The other solution is to assign a unique pair-wise key to every pair
of nodes. Each sensor is required to store N − 1 pair-wise keys so that whole
sensor nodes are required to store N(N − 1)/2 secret keys. Since compromising
one node does not affect the rest of network, this scheme is perfectly resilient to
node compromise. However, this scheme is not suitable for a large sensor network
because of a limited memory constraint of sensor nodes.

2.2 EG Scheme

Overview. Eschenauer and Gligor proposed a probabilistic key pre-distribution
scheme in [1]. This scheme relies on probabilistic key sharing between sensor
nodes. At first, a center generates a large key pool P , and then randomly se-
lect k keys from pool P for each sensor node without replacement. k keys form
a key ring of a sensor node, and the key ring is pre-loaded into a node prior
to node deployment. As a result, two nodes share at least one key with a cer-
tain probability. After node deployment, each sensor node discovers its neigh-
bors which share a common key in wireless communication range to establish a
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pair-wise key. Such shared-key discovery phase establishes the topology of sen-
sor network and path-key establishment phase reinforces a key connectivity of
sensor network.

2.3 LEAP

Overview. LEAP is a cryptographic protocol allowing secure key establish-
ment for WSNs [9]. In LEAP, it is assumed that sensor nodes are not mobile
and every node has enough space to store hundreds of bytes of keying materials.
It is also assumed that an adversary can eavesdrop on all traffic and extract
all the information from the compromised node. LEAP provides confidential-
ity and authentication for secure communications in WSNs. LEAP is designed
to support in-network processing such as data aggregation and passive partic-
ipation. In-network processing can remove transfer of redundant messages so
that energy consumption can be reduced. LEAP offers multiple keying mecha-
nisms resulting from that different types of messages having different security
requirements. LEAP also provides one-way key chain based authentication for
inter-node traffic.

Establishment of Four Types of Keys. LEAP offers four types of keys to
each sensor node - an individual key shared with the center, a pairwise key shared
with another sensor node, a cluster key shared with multiple neighboring nodes,
and a group key shared by all the nodes in the network - and we summarize how
to establish those keys below.

– Individual Key: Each node has a unique key shared with the center. This
key is used for secure communication between a sensor node and the center.
The individual key is generated as Km

u = fKm(IDu) where f is a pseudo-
random function and Km is a master key known only to the center and IDu

is the id of a node u. This generated key is pre-loaded into a sensor node
prior to node deployment.

– Pairwise Key: Every node has a pairwise shared key with its immediate
neighbors respectively. Pairwise shared keys are used for secure distribution
of cluster keys to its direct neighbor nodes and secure transmission of data.
The center generates an initial key KI and a node u computes a master
key Ku = fKI (IDu). During neighbor discovery stage, node u broadcasts a
HELLO message within its id and waits for response from neighbor v. The
response message from node v contains id of v and message authentication
code (MAC) for verifying node v’s identity. And then, node u is able to
authenticate node v since it can compute MAC value with the master key
Kv which is derived as Kv = fKI (IDv).

u → ∗ : IDu, Nonceu

v → u : IDv, MACKv(Nonceu|IDv)

After authentication, node u computes a pairwise key with v as Kuv =
fKv(IDu). Node v can also derive Kuv in the same way.
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– Cluster Key: Each node has a common shared key with all its neighbors
for supporting in-network processing. This key is used for encrypting or
authenticating local broadcast messages. Node u first generates a random
cluster key Kc

u and then encrypts the key with the pairwise shared key with
each neighbor respectively and sends the encrypted key to each neighbor vi.
Each neighbor node decrypts the received message to get the cluster key Kc

u.

u generates cluster key Kc
u

u → vi : (Kc
u)Kuvi

When one of the neighbor nodes is compromised, node u needs to generate
a new cluster key and transmits it to the remaining neighbor nodes.

– Group Key: Every node has a globally shared key in the whole network.
Group key is used for encrypting broadcast messages by the center. We can
simply pre-load a group key into each node. We need to update the key pe-
riodically or when a compromised node is detected, that is, group rekeying
problem must be considered.

– Multi-hop Pairwise Shared Key: A node has a pairwise shared key be-
tween a node and the aggregation node. This key is used by a node for
transmitting data to an aggregation node which is multiple hops away. A
node u first broadcasts a message with its id IDu and id of the cluster head
IDc. The nodes which already have a pairwise shared key with both the node
u and the cluster head c send reply messages to the node u. Now the inter-
mediate nodes become the proxies. To establish a pairwise key S with cluster
head c, node u splits S into m shares, such that S = sk1

⊕
sk2

⊕
...

⊕
skm,

and then transmits each ski to the cluster head c via proxy vi.

u → vi : (ski)Kuvi
, fski(0)

vi → c : (ski)Kvic , fski(0)

where fski(0) is the verification key of key ski since the cluster head c can
verify the validation of ski. After the cluster head c receives all shares, it
restores a pairwise shared key S.

LEAP assumes that Tmin, the time interval for an attacker to compromise a
node, is larger than Test, the time for a newly deployed node to complete neigh-
bor discovery stage, as depicted in Figure 1. In LEAP, all nodes erase an initial
key KI and all the neighbors’ master keys after time Tmin. Therefore, an attacker
compromising a node after Tmin can obtain only the keying materials of the com-
promised node, not those of other nodes. Therefore, the affected fraction of the
network due to node compromise can be localized. When a node compromise is de-
tected, its neighbor nodes just erase the keys shared with the compromised node.

Local Broadcast Authentication. LEAP supports one-way key chain based
authentication for local broadcast messages. Each node generates a one-way key
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chain composed of keys called AUTHkey, and sends the commitment (the first key)
of key chain to its neighbors encrypting with each pairwise key. When a node trans-
mits a message, it attaches the next AUTH key in the key chain to the message.
The AUTH keys are disclosed in a reverse order. The commitment and received
AUTH key allow a receiving node to verify the received message. Unlike μTESLA
[11] which uses delayed key disclosure and requires time synchronization between
neighboring nodes, this mechanism can provide immediate authentication.

3 Rethinking LEAP and Its Security

Most of the key agreement schemes assume that sensor networks are relatively
secure against attacks during the initial key establishment phase and an adver-
sary may capture sensor nodes to compromise the network after the phase. The
LEAP protocol also has a similar assumption like that Test is smaller than Tmin.
However, this assumption is often not true. For example, packet losses due to
reasons such as narrow bandwidth or bad channel condition of sensor networks
may happen while sensor nodes transmit data to each other during initial key
establishment phase. This can cause several retransmissions of packets so that
the time for sensor nodes to establish pair-wise keys each other, Test, may take
longer than expected, even Tmin. Also Test may be on the order of tens of minutes
in certain deployment schemes.

If sensor nodes are scattered from airplanes or helicopters, then the nodes may
settle sparsely and need enough time to set up the network and establish pairwise
keys. During this time, an adversary can capture a sensor node and get an initial
key KI . Moreover some researches [12] show that it takes less than 1 minute to
dump all of the EEPROM, program Flash, and a chip’s SRAM. An initial key
KI can be disclosed if it only takes on the order of seconds to compromise a
node. LEAP also assumes that the node moves KI from non-volatile memory
into volatile memory to make the scheme more secure. However, this assumption
is not true since both RAM and flash are accessible to an adversary [12]. In above
cases, an adversary is able to get an initial key KI , and then inject erroneous
information or add new nodes at her pleasure.

Moreover, in case of LEAP, a newly deployed node which is added to the net-
work after the initial key establishment phase will carry the initial key KI and
may be captured in an hostile environment. Thus, as for node addition in LEAP,
an initial key KI should never be used after the initial time Tmin without permis-
sion even for the legitimate new nodes since an adversary is able to capture a node
in the initial Tmin and find out an initial key KI within Tmin afterward.

4 A Time-Based Key Management Protocol

4.1 A Time-Based Deployment Model

As we have already mentioned in the previous section, the time for sensor nodes
to establish pair-wise keys each other, Test, may take longer than the time
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interval for an adversary to compromise a node, Tmin. If an initial key KI is
disclosed within Tmin time, then the whole sensor network is threatened by an
attacker. Even though an initial key KI is disclosed by an attacker, the portion
of network compromised must be minimized. For that reason we split the time
domain to disperse the damage resulting from the disclosure of an initial key
KI . Now we introduce more secure key pre-distribution protocol with time-based
multiple KI . Selection of KI with probabilistic time intervals is as follows:

Key Setup Phase

– First a center generates a pool of P initial keys and divides whole lifetime
of sensor network into P time slots.

– A center assigns an initial key to each time slot.
– The initial key of the deployment time slot and m master keys of randomly-

chosen time slots are pre-loaded into sensor nodes prior to deployment.
When the deployment time slot is Ti, sensor nodes stores an initial key KIi

and m randomly-chosen master keys.

Initial Key Establishment Phase

– According to the original LEAP protocol, an initial key establishment phase
means the first time slot T1.

– Since all sensor nodes deployed at an initial key establishment phase contains
the initial key KI1, they can establish pair-wise keys using KI1.

– After a node u computes a master key Ku1 = fKI1(IDu), node u broadcasts
a HELLO message within its ID and then waits for a response from neighbor
node v. Node v sends node u a response message including its ID and MAC.

u → ∗ : IDu, Nonceu

v → u : IDv, MACKv1(Nonceu|IDv)

– Now both u and v can compute a pair-wise key Kuv = fKv1(IDu).

Node Addition Phase

– During a node addition phase, newly deployed nodes first discover neighbor
nodes which share common keying materials.

– Sensor nodes are able to generate pair-wise keys with other nodes which are
deployed at the same time slot using the same initial key.

– And then, sensor nodes can establish pair-wise keys with other nodes which
are deployed at different time slots, but have the master key derived from
the current initial key.

Let u and v be a newly deployed node at time slot Tk and a pre-deployed
node respectively. If a node v has the master key Kvk derived from the
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Fig. 2. Example of selecting KI with probabilistic time intervals

current initial key KIk, both node u and v can compute a pair-wise key
Kuv = fKvk

(IDu) because node u is also able to generate a master key of v,
Kvk, using the current initial key KIk and ID of v.

– After all, during the deployment time slot, sensor nodes can establish pair-
wise keys with each other by using the initial key. For the other m time slots,
sensor nodes are able to establish a secure link with other nodes by using an
appropriate one of the m master keys.

– After that, a pair of sensor nodes that do not share a keying material but are
in wireless communication range can establish path-keys via proxy nodes.

4.2 Example of Time-Based Deployment Model

Readers are referred to Figure 2. Tn and Nn represent each time slot and group
of nodes deployed at Tn time slot, respectively. As shown in Figure 2, nodes
of group N1 store the initial key KI1 of time slot T1 and m master keys of
randomly-chosen time slots including Ku2, Ku5 and Ku7. Since, according to
original LEAP protocol, master key is derived from an initial key and node ID,
Ku2 = fKI2(NodeID). All nodes of group N1 are able to establish pair-wise keys
each other using the initial key KI1 during time slot T1. Then, they are able to es-
tablish a secure communication with nodes of group N2 using the master key Ku2
during time slot T2. Note that all nodes of group N2 can also derive the master
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key Ku2 from the initial key KI2. Similarly, they can also generate pair-wise keys
with nodes of group N5 and N7 using master keys Ku5 and Ku7, respectively.

4.3 Practical Application of Time-Based Deployment Model

Location-based key management protocols are very efficient methods in terms of
key connectivity and storage overhead. However, location information of sensor
nodes is crucial since these schemes utilize the locations of sensor nodes. Even
though the exact deployment locations of sensor nodes are not necessarily in
these schemes, we must know the dense spots of sensor nodes prior to node
deployment. Moreover, in case that we divide the whole region into many small
areas, these schemes can provide higher resilience, but have a great difficulty in
deploying sensor nodes. On the other hand, in case that we have the large size of
areas, these schemes would be more vulnerable to attacks, but have no difficulty
in deploying sensor nodes. That is, these schemes have the tradeoff between the
security and the easy deployment.

On the contrary, location information of sensor nodes does not required to
employ a time-based deployment model so that additional sensor nodes are easily
added on WSN without the restriction of deployment points in our scheme.
Therefore, our scheme is more beneficial to node deployment. Furthermore, as
we described above, a time-based deployment model divides time into many small
parts; thus, the effect of node capture attack can be localized into a small part.
That is, we are able to have both high resilience and no difficulty in deploying
sensor nodes by taking advantage of a time-based deployment model.

A time-based deployment model can be employed in a more practical way. In
this model, every time slot appears continually, which means node addition must
occur periodically. In fact, however, after initial deployment phase, additional
nodes will be added to WSN irregularly. Therefore, we suggest the practical
application of time-based deployment model as depicted in Figure 3. During a
normal operation phase, WSN performs a normal operation such as sensing and
transferring data without node additions. To deploy additional nodes, a center
broadcasts an authenticated packet which notices pre-deployed sensor nodes to
prepare node additions. The packet will contain information such as when the
following time slot starts and for how many time slots node addition lasts. We
assume that the length of a time slot is very short, in that sensor nodes just
need to time to exchange keying materials and generate pair-wise keys during a
time slot.

In a practical application of time-based deployment model, the beginning of
new time slots means the occurrence of node additions so that the number of
time slots is approximately equal to the number of occurrences of node addition.
The number of time slots also means the size of key pool. Therefore, the size
of key pool is influenced by the frequency of node additions. If the additional
sensor nodes are deployed for the purpose of complementing sensor networks,
the frequency of node additions is not necessarily high; thus, the size of key pool
could be small.
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Fig. 3. Practical application of time-based deployment model

5 Performance and Security Analysis

5.1 Performance Analysis

Key Connectivity. When sensor nodes are deployed at a specific time slot, pre-
deployed sensor nodes must have the master key, which is derived from the initial
key of that time slot, to establish pair-wise keys each other. For example, N7
group of sensor nodes are deployed at time slot T7. To make secure links, N1-N6
group of sensor nodes must have the master keys which is derived from the initial
key KI7. At first, consider N1’s probability of sharing a keying material with N7.
The probability is [the number of cases where m−1 master keys are chosen from
key pool except for KI1 and KI7]/[the number of cases where m master keys are
chosen from key pool except for KI1]. That is,

(
P−2
m−1

)
/
(
P−1

m

)
= m

P−1 . Since the
master keys of every time slot would be chosen with the same probability, N1’s
probability of sharing keying materials with other prospective sensor nodes(N2-
NP ) is m

P−1 . Now, Ni’s probability of sharing keying materials with prospective
sensor nodes, ppros(i), can be calculated as:

ppros(i) =

(
P−i−1
m−1

)

(
P−i
m

) =
m

P − i
(1)

as long as (P − i) is greater than m; otherwise, ppros(i) = 1. Figure 4 describes
Eq. 1 for various values of m where the size of key pool P is 500. Although
the size of 500 seems small for the key pool, it will be enough to operate the
sensor network. (Refer to section 4.3.) After (P − i) becomes smaller than m,
the master keys of all remaining time slots will be chosen so that the probability
ppros(i) is 1. As shown in the figure, the probability ppros becomes higher as the
index of time slot i increases, in that the size of key pool from which master
keys are chosen becomes smaller. Also, the more master keys sensor nodes have,
the higher the probability becomes.

Now we are able to compute ptime(t), which means the probability that Nt

group of sensor nodes share keying materials with pre-deployed sensor nodes and
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Fig. 4. [ppros] The probability that Ni shares keying materials with prospective sensor
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Nt themselves at time slot Tt, using ppros. If we assume that sensor nodes are
uniformly distributed at every time slot, ptime is:

ptime(t) = (
t−1∑

i=1

ppros(i) + 1)/t (2)

which means the average value of the probabilities of sharing keying materials
with each pre-deployed group of sensor nodes. In Eq. 2, 1 means that all sensor
nodes deployed at the same time slot can make secure links. Figure 5 draws Eq.
2 for various values of m where the size of key pool P is 500. At time slot T1,
all sensor nodes have the same initial key so that the probability is 1. As time
passes, sensor nodes would be added to the sensor network and the probability
ptime drops, in that ppros is much smaller than 1. After the probability ptime

nearly decreases to the minimum value of ppros, ptime becomes higher since
ppros increases.

The direct key connectivity C that a sensor node is able to generate pair-wise
keys with at least one of the immediate neighbor nodes (i.e., 1-hop connectivity)
is derived as follows:

C = 1 − (1 − ptime)d (3)

where d means the average number of neighbor nodes. To calculate the key
connectivity and show the effect of neighbor nodes on the key connectivity, we
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choose the lowest value of ptime from Figure 5. Figure 6 describes Eq. 3 for
various values of m where the size of key pool P is 500 and ptime has the
minimum value. As shown in Figure 6, while the number of keys stored in a
sensor node remains the same, the key connectivity goes high as the number of
neighbor nodes increases.

Storage Overhead. As for the storage requirement, we can evaluate that our
scheme needs a reasonable cost in modern sensor nodes such as MICA-Z and
Telos. Sensor nodes choosing about 100 keys from key pool of size 500 are able
to share a keying material with at least one of the 10 neighbor nodes with more
than 0.9 probability (refer to Figure 6). Note that this requirement only corre-
sponds to the node addition phase, while the connection probability is 1, saying,
deterministic at the initial deployment. Also note that we only consider the di-
rect key connectivity (1-hop connectivity) as for the probability in Figure 6. The
remaining unconnectivity can be resolved by the help of other (proxy) neighbor
nodes easily. When the size of a key is 64 bits, a center and a sensor node need
approximately 4KB and 0.8KB memory space, respectively. The number of keys
saved in memory will decrease as old keys can be discarded. For strengthening
the security of WSNs with regard to node capture, we believe the initial require-
ments of 0.8KB are reasonable for the modern sensor nodes such as MICA-Z
having 128KB program memory, 4KB runtime memory, and 512KB external
memory [13].
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5.2 Security Analysis

When node compromise is detected, the keying materials which are associated
with the compromised node must be revoked to prevent an adversary from at-
tacking the rest of network using information extracted from compromised node.
Since detection of node compromise is not easy, the additional portion of network
that an adversary can compromise using the keying materials obtained from x
captured nodes represents the resilience of schemes. In other words, the resilience
of schemes means the survivability of network against node compromise.

Since an initial key KI is removed from a node after Test in original LEAP
protocol, an attacker can use only pair-wise keys and cluster keys even if she
succeeded in capturing a node. An attacker is not able to use the compromised
node in other areas so that the affected fraction of network due to node capture
is localized. Since the portion of network compromised is localized, wormhole
attack or sinkhole attack [14] can be protected. However, if an adversary succeeds
in capturing a node before Test, she is able to get an initial key KI so that the
whole network can be compromised.

The damage resulting from a disclosure of an initial key KI can be minimized
by using selection of KI with probabilistic time intervals scheme. Even if an
adversary is able to get an initial key KIa at time slot Ta, only the nodes deployed
at time slot Ta, not whole network, are compromised. Even if an attacker knows
an initial key KIa, she cannot retrieve the previous initial keys so that she is never
able to get an information from transmitted data before time slot Ta. Therefore,
the selection of KI with probabilistic time intervals scheme provides backward
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confidentiality. As only master keys, not initial keys, are stored in sensor nodes
for the other m time slots, this scheme also provides forward confidentiality.

5.3 Comparison

Table 1 shows key connectivity, key storage overhead and resilience of EG scheme,
LEAP, and our scheme where N is the size of the sensor network, d is the average
number of neighbor nodes, and t is the index of time slots. In EG scheme, m
keys out of key pool P are chosen for each sensor node.

Table 1. Comparison with EG scheme and original LEAP

EG scheme [1] LEAP [9] our scheme

Key connectivity p1 = 1 − ((P−m)!)2

P !(P−2m)! 1 (
�t−1

i=1
m

P−i
+ 1)/t

Initial key storage overhead m 1 m + 1

Compromised
network due to
node capture

after Test p1 · (N − 1) d d

before Test p1 · (N − 1) whole network one group of Ni

Resilience against wormhole
attack or sinkhole attack

X O O

Forward confidentiality X X O

Backward confidentiality X X O

Because of the high key connectivity between the nodes deployed at the same
time slot, key connectivity of our scheme is higher than that of EG scheme while
the initial key storage overhead remains unchanged. Since we select multiple KI

with probabilistic time intervals, LEAP shows the better performance than ours
in terms of key connectivity and storage overhead. However, our scheme is able
to minimize the impact of node capture attack even though an attacker succeeds
the node capture attack before Test. Note that if an adversary can compromise a
sensor node before Test, KI is disclosed so that the whole network is compromised
in LEAP. Ours as well as LEAP prevent an adversary from launching wormhole
attack or sinkhole attack because a node knows all its neighbors after neighbor
discovery. Since an attacker cannot derive previous initial keys from the current
initial key or next initial keys from master keys, our scheme provides backward
confidentiality and forward confidentiality.

6 Conclusions

The multiple keying mechanism of LEAP satisfies the multiple usages of sensor
networks, but we have found that LEAP actually missed a possible disclosure of
an initial key KI . Its security mainly relies on that of an initialization key while the
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initial deployment phase is assumed secure and the key is erased from sensor nodes
after the initialization phase. However, the same key should be used again for node
addition after that phase while the new node can be captured before removing the
initialization key. And the assumption of security in the initial deployment phase
is not viable in many cases since the initial deployment of dense networks may
not take short as LEAP expected. This paper rethinks the security of LEAP and
proposes a more secure scheme with a new notion of probabilistic time intervals.
Rather we localize the impact of KI disclosure within the time intervals.
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