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Abstraci: 

The  load  flow  study  has been at  the  center of  studies made for 
designing and operating power systems  for many years. I t  i s  well 
known  that  forecasted  data  used in  load  flow  studies  contain  errors 
that  affect  the  solution,  as can be evidenced by running many cases 
perturbing  the  input data. 

This paper presents  a method for  calculating  the  effect  of  the 
propagation  of  data  inaccuracies through the  load  flow  calculations, 
thus  obtaining  a  range  of  values  for each output  quantity  that, to a 
high degree of probability,  encloses  the  operating  conditions  of  the 
system. 

The method is  ef f ic ient  and can be added to any existing  load 
flow program. Results  of  cases run on the AEP system are included. 

Introduction 

The  load  flow  study  has been at  the  center  of  analysis made to 
design power systems and delineate  operating  practices. From the 
studies performed in  network  analyzer days to the  sophisticated 
digital computer programs of today, conceptually  speaking,  not 
much alteration  has taken place to the  definition  of the  load  flow 
problem, The  fast methods availablenow,  with  their  efficient  uti- 
lization of computer core and their  capability  of  access to large 
data fi les, have made possible  for  the engineer to run a  largenumber 
of  cases,  starting from some base  system  condition, to study his 
design or his proposed  plan  of  operation under many alternatives. 
Important  decisions  evolve from these  studies. 

For each load  flow  case  that i s  solved, it i s  necessary  for  the 
engineer to provide  the  required  data  that  define  the  conditions  for 
the case, This data  usually  include  real and reactive  loadings  at 
so-called  load  busses and real  power  generation and voltage mag  
nitude  at generator busses, as well  as  the  electrical  characteristics 
of the system model. 

The  formulation  of  the  load  flow  problem assumes that  the  data 
providedisabsolutelypreciseand providesresults  totally  compatible 
with  the  given  data  apart from round-off errors. However, in  practice, 
it can be  readily  appreciated  that  load  flow  data can only be known 
within some finite  precision,  this  being more the case as the  study 
represents  conditions  that are more distant  into the future. As a 
normal screening  process,  the  engineerlooks  at  the  range of possible 
values  for  a  particular  piece  of  data and setects an average value 
as the number to be used in the  load  flow study. 

Given the importance  of  the  decisions  that  evolve from load 
flow  studies, i t  appears that it i s  important to know the possible 

ranges of  result  quantities  corresponding to the  known range of  data 
quantities.  In  other words, it i s  of  interest to determine  the effect 
on load  flow  results  of our ignorance  of  input  data  values. 

This paper w i l l  address i tsel f  to the  problem  of  processing  the 
expected  errors in the  data  of  the  load  flow problem, assuming  that 
the electrical  characteristics  of  the model are known sufficiently 
well  that  the  effect  of  their  inaccuracies i s  negligible. 

Essentially, the method converts  the  load  flow  problem formu- 
lation from a  deterministic  one to a  stochastic one. The  results 
obtained can be considered to define  the range of  variation  of  result 
quantities,  thus  determining  the  worst  conditions for each. Similar 
results to those  obtained  with  the  stochastic  load  flow can be arrived 
at by repeating  a  large number of  conventional  deterministic  load 
flow cases in  which  for each case  the  data i s  perturbed,  such  that 
thevarious  cases  represent  possible  sets  of  data  within  the  precision 
that the data i s  known. Once a l l  these  studies  have been carried out, 
the range of  values  for  a  specified  result  quantity can be identified. 
What the  stochastic  load  flow does i s  to obtain  these ranges in one 
direct  calculation. An important  practical  characteristic  of  the 
method i s  that it can be added to any existing  load  flow program 
since  the  process  requires f i rst  the  solution  of  a  conventional  load 
flow,  followed then by a  series  of  steps  that  determines the prop- 
agation ofthe errors  of  input data. The method i s  not  only  applicable 
to the  load  flow problem but to any problem where the model i s  a 
system of  a  sufficient number of  equations. 

MATHEMATICAL BACKGROUND 

The method i s  based on the  principles  of  statistical  least 
squares estimation  for  linear systems. Some of the in i t ia l  ideas  of 
the  stochastic  load  flow came about from the  experience  obtained 
with  simulation  of and testing on the AEP monitoring  project [ 1-61. 
The  derivation  of some of the equations to be presented can be 
found in these  references or in advanced statistical texts. 

Given a  non-linear  set  of  equations, 

y '  = f ( x ' )  + E 

a  Taylor's  series  expansion can be used to linearize (l), 

y = J x  + E 

where 
y = y '  - f ( x ) I o  
x = x '  - x b  
J = Jacobian o f f  ( x f )  
E = vector of error random variables 

Equation (1) i s  interpreted in  thefollowing way. 
There are data  quantities  y  which  represent the average value o f  
the range of possible  values  the  piece  of  data may have  according to 
some statistical  distribution  defined from our  physical  knowledge 
of  the  problem and the methods that were used to forecast the data. 
There are problem  variables x '  from which all  quantities can be 

Paper  T 74 308-3, reco-nded  and  approved  by the  IEEE  Power System computed. These  variables  have  a true, although unknown, value 
at the Summer Resources Conf,, Anaheim, which  represent  conditions as they wi l l   exist  at some future date. 
JUIY 14-19, 1974. Manuscript submitted  n gust 29, 1973; made  available for The Vector E represents the error between y '  and f  As 
Engineering Committee of the BEE Power  Engineering Society for presentation 

printing April 3,1974. wil l   not be known until the future  conditions  are encountered, E can 
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only be described  statistically  as  a random variable  that  has some deviation  of G from Xt. Equation (13) presents  the  variance  of $3) 
mean and variance  that  represent  our  expectations  of the way E and Equation (14) says  that  this  variance i s  zero ifJhere are as 
could vary. The meanings of  y and X are similar to those  of y '  and many equations as unknows. Th is  simply means that  y i s  equal to 

The  following  will assume the  linearization  presented  in Equa- y, or  that  the  actual  solution  of  Equation (2) has tieen obtained, a 
tion 2. fact  also  reflected  in  that F(3 = 0. 

The  statistics  of  the  vector E can  thus be specified  as Another statistical  property i s  that 

E (€ )  = O  
E ( E E ~ )  = V 

F(x) = (y-Jx)tV-l (y-Jx) (4) 
Assuming  that  there  are  other  quantities z '  related to x '  as 

and the  value  of x that  minimizes F(x) is  cal led 4 and i s  given  by  follows, 
[61 

Z '  = g ( x ' )  ( 17) 
4 = ( J k l J ) - l   J N - l Y  

(5) a  Taylor's  series  expansion  of g linearizes (17) into 
which  reduces to 

z = K x  (18) 
2 = J - l y  (6) from which  ?can  be  obtained from 2, 

for  the  case  that  J i s  a square matrix,  implying the same number of A 

equations as unknowns. F(Q) i s  equal to zero for th is case. z = K  2 (19) 

As  the  original  Equation (1) was  nonlinear, 12 should be inter- 
preted as the converged value  after some iterations  in  which  J i s  
recomputed in each  iteration. Z t = K  x t  

and z-tfrom X t  

Corresponding to $there i s  a 3 computed directly from Equation  The  statistical  properties  of  z can be  summirized  as  follows: 

E(?) = Z t  (21) 9 = J ;  (7) 

and corresponding to the true, but unknown value  of X, called X t  

there i s  a true, and also unknown, value  of  y,  called yt, Equation (22) presents the variance  of 2 
Yt = J X t  (*) Statistical Properties: Confidence Limits 

(a, 

E ( ( k t )  (z*-zt)b = K ( J ~ v - ~ J )  - 1 ~ t  (22) 

Statistical Properties: Expected Values nd Variances It i s  now necessary to mention  the  probability  distribution 
characteristics  of  the  various  quantities.  The  input  quantity  y can 

The  quantities 2, X , Y, F and Yt have  known  Statistical Prop have m y  probability  distribution  function,  which is known from the 
erties  that are of  interesf,  knowledge  of  the  physical  problem  at hand. Its statistical  properties 

given in  Equation (3) can then be computed. The output quantities 
E($) = x t  (9) x or z are linear  combinations  of y and by  the  Central L imi t  Theorem 

can be  taken as norm2lly  distributed random variables. It can then 
E {(x^-xt) (c-t)t } = (J tV-1J) -1 (10) be said  that and z are N(q, ~ ~ 2 )  and N(zt, oZq respectively. 

(11) A  normally  distributed random variable can always  be  trans- 
formed into a unit normal, thus 

which  reduces to the  following  if J i s  a square matrix, 
A 
z - Z t  (24) - = N(0, 1) 

EUEY) (?-v)t> = 0 (14) 

Equations (9) and (11) imply  that  if E h 3  the statistical prop- 
erties  given in  Equation (31, then, i f  3 and y had been detymined  ox2 = diag {(JW-lJ)- l }  (25) 
many times from different  values  of y, the average of :and y  tends 
to the  true  values of x and  y. In  statistical terms this  is  called an uz2 = diag  {K(JtV-lJ)-lKt) (26) 
unbiased process. 

Although Xt and z tare  not known, a  statement  can be made as 
Equation (10) presents  the  variance of :which represents,  the to a range which  encloses them with some probability  of  being 

U Z  

where 
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correct.  Within  a range of. f 3  times  the  unit  standard  deviation  of 
the random variables  defined by (23) and (24), it can be said  that 
there i s  approximately  a  99%probability  ofenclosing  thetrue  values. 

Thus, it can be stated  that 

X t  = x ^  * 3 ux (27) 

Z t  = z  f 3 U Z  (28) 
A 

with  a 99% probability  of  being correct. 

THE  LOAD FLOW PROBLEM 

The  previous  section  presented  the general theory  required  for 
the  stochastic  load  flow.  This  section  will  relate  that theory to the 
load  flow problem. The  various  quantities  referred to in  the  previous 
section w i l l  now be defined in  terms  of  the  variables  familiar to the 
load flow. 

refers to load  flow data, that  is,  load  bus  P and Q and generator 
bus P and E. 

refers to bus state  variables  E and s 

refers to me variances  of  the  errors assumed on  the  y  input 
data. 

refers to the Jacobian  of  the  load  flow  equation,  that i s  the 
partials  of P, Q and E  input  quantities  y  with  respect to E and 
s load  flow  variables X. 

refers to output quantities  of  the  load  flow computed from X ,  

such as, line  flow P and Q and generator bus Q. 

refers to the Jacobian  of output quantities z with  respect to 
load  flow  variables X. 

torization  techniques  can then be used to triangularize  this  matrix 
and repeated  back  substitutions wi l l   y ie ld the  elements  of  the 
covariance matrix. It i s  only  necessary to save  those terms that 
structurally are in the same positions as the  original  JtV-lJ and 
then  only  a  symmetrical  part. Th is   is  an important  characteristic 
since,  in  general, the Cov (x) is a fu l l  matrix. 

Step 3 - Computation  of Covariance Matrix of 2 
The  covariance  matrix  of ;was given in  Equation (22) as 

COY($ = K ( J ~ v - ~ J ) - ~ K ~  (22) 

To  calculate  the Cov(?) the  Jacobian  of  output  quantities z 
must be  calculated.  The  structure  of  this  matrix i s  also dependent 
on that  of  the  admittance  matrix and is  thus  related to that  of J. 
Matrix K i s  thus  a sparse matrix and should be calculated as such. 
Because of   i ts  structural  relationship to J, in the triple  product^ 
indica ed in  Equation (22) only  JtV-lJ  structured  elements of 
( J V -  t J ) - l  are needed. This  is the reason for  saving  only  those 
elements in Step 2. In the case of Equation (22), only  diagonal 
elements need be computed and saved. 
Step 4 - Computation  of Confidence Limits 

and (28) as 
Confidence Limits  for 2 and ? were given  in  Equations (27) 

X t  =;" + 3 u x  

z t  = z  * 3UZ A 

The u z  vector are the diagonals of the Cov(9  while the C$ 
vector are l h e  diagonals of the Cov(?). Those  elements of these 
two matrices have been already  calculated and saved in  Steps 2 
and 3. 

AREA  CONSTRAINTS 
Having  related  the  variables  used  in  the  Previous  Section to 

those of the  load  flow  problem,  they  shall be used  interchangeably The  stochastic  load  flow, as presented in  the  previous  section, 
in what  follows.  The  various steps of the process wi l l  now be amounts to summarizing the results of many load  flows, as far as 
presented. the quantities  obtained  in the confidence l imi ts are concerned. 

These  load  flows  could  have  beenrun  perturbing all  input  quantities 
according to the  statistics  of the  uncertainty  of  these  values  as 
derived from the  knowledge of the  physical problem. The  results 

The first step i s  to compute as 'Iwwn in generation decreased, forcing  the  slack generator to have  wide 
would  reflect  cases in  which  total  load was increased  with maybe 

(6) with an iterative  process to take  into account  the  non-linear limits. This situation  might be imp,.,.,ved if there is additional nature  of  the  load  flow  equations,  Equation (1). Equation (6) shows information available. In addition to the forecast made on individual that for the Of  number Of  equations as unknowns' the loads and generators, i t   i s  often  the  case  that  total  load and gener- 
statistical  properties of the  errors  of Y drop out of  the  equations.  ation  of  given areas of  the system are known to a  greater  precision. 
This converts Equation 6) to imply the solution Of a load flow I f  conventional  load  flows were run perturbing the data, area load 
data quantities y. Any existing  load  flow program can be used in 
problem with average IWnerical  values ass i f led  to the load  flow and generation  constraints  would be used to restrict the data. 

this  f irst step, thus  making  this  step  equivalent to the solution  of Area load and generation  constraints can be included  in the 
the  problem as i s  done in  Practice, with average values  for the stochastic load flow. An area constraint  acts as an additional 
forecasted  input data. equation in  Equations (1) and (2). The  additional  equation i s  ob 

Step 2 - Computation  of Covariance Matrix of 2 tained by adding some of the other equations  already  included in 
(1) and (2). 

The  covariance  matrix  of x" was  presented in  Equation (10) as For example, i f  the  loads  of nodes 3, 5 and 7 are to be con- 
strained to a  finer degree, new equations are formed, 

St@ 1 - A Load  Flow 

C O V ( ~  = ( J ~ v - ~ J )  -1 (10) 
P n t l   = P 3 + P 5 + 4   + c p , n t l  (29) 

To  calculate  the Cov(;), the Jacobian  of  the  load  flow  equation 
must be f i rst  formed and evaluated  at  the  solution  point  of  the  Qn+ 1 = Q3 + Q 5  + Q 7  +Eq,n  t 1  
load  flow  of Step 1. Sparsity  techniques  should be used as both 
J and JtV- lJ a  e s arse  matrices. An ordering scheme should be This new equation appears asthe equation of a new imaginary node, 
used to order J \ !  V -  J. In the same  way that  the  structure  of  the connected to 3,5 and 7 and to al l  nodes to which  these are connect- 
admittance  matrix Y can be  used to order J in  a  ewton's  load  flow, ed to. However, the new node does not  contribute any new variable 
the structure  of YtY can be  used to order JtV- Y J. Triangular  fac- x to the problem, thus  making  J  a non-square matrix. It i s  important 
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to realize  that  even i f  J i s  non-square i n  Steps 2, 3 and 4, this does 1. Area constraints  deteriorate  the  sparsity of the  state  in- 
not  alter the fact  that  a  conventional  load  flow Program can  be verse  covariance  matrix as their  effect is  similarto the  introduction 
used in Step 1. This comes from the  condition  that the solution Of of a node connected to a l l  other nodes in the area. In the limit, 
the  original  n  equations i n  (2) auhmatically  solve  the  additional considering  the  entire  system  as one single area, this  matrix be- 
equations  introduced by the area constraints. comes full. 

The inclusion of area constraints as presented in Eq. (29) con- 
siders  the  input  covariance  matrix to be diagonal  making  the  addi- 
tional  equations independent from the  original set. Considering an 
area of k nodes, Eqs. (1) become 

Yi = 4 i  Iy) + Ei, i = I, ... k (30) 

which Eq.  (29) has  the form 

The  relation between Eqs. (30) and (31) i s  the following, 
k k 

f n  t I (X) = 5 +i (x)  = f (Y’i - c i )  
I 

(32) 
Substituting  in Eq.  (31), 

(33) 

2.  Confidence limit results would, in general, be somewhat 
sensitive to slack bus location. 

The above limitations  can be easily overcome by modelling 
the  load  flow  slack  bus as any other generator bus, with P and E 
equations  but  allowing  only  E to be a  state  variable,  keeping 6 
fixed.  The  forecasted error in  total system  load plus  losses  can be 
distributed among generator Pequations, thus making a l l  generators 
CDmpensate for  forecasting  errors. It is  not  necessary to divide 
the  total  expected error evenly among generators. No area 
constraints are used, 

The  changing  of  position  for  the  angle  reference  bus  has no 
effect on confidence limits other than those  of  voltage  angles them- 
selves. As angles are really angle  differences between busses and 
the reference bus, these  values and their  confidence  limits  are 
dependent on the  reference  bus  location. However, the  confidence 
limits  of angular  differences  between any two  busses are inde- 
pendent of reference  bus  location. 

(34’1 

It is  of interest to compare Eqs. (31)  and  (34). The area constraint 
formulation  considers 

However, had y’n t 1  been defined as in Eq.  (34), the statistics  of 
E’n t 1  would have been the following,  assuming independence, 

E ( € ’ ,  t I E ’ n t l !  Vi t V n t I  (38) 

Eqs. (37)  and (38) show that  there i s  a distinct  difference between 
modelling the area constraint  as  afunctionofastationary true  value 

k 

I 

and  as the sum of random variables. 

CONSTRAINT ON TOTAL SYSTEM LOAD 

The  previous  sections have shown that  the  stochastic  load  flow 
represents the combined results of many deterministic  load  flows. 
Two  types of load  flow  runs  have been modelled: 

1. Asetof  load f lows  in which each piece  of  data i s  randomly 
varied. It was discussed  that  this  should produce large  confidence 
limits for the slack generation and for  lines near that bus due to 
some  cases representing changes in  total load and in generator outputs. 

As  in the  case  of area constraints,  the  reference bus equation 
is  considered to be an independent  equation.  The  modelling of 
the reference  bus  equation is  made  as a  function of the system 
state  variables and not by adding a l l  other inputs. This model 
also  reflects  the  nature of the distribution  of  uncertainties through- 
out the system to be one of non-simultaneity of occurrence of indi- 
vidual  uncertainties and not one of  correlation. 

Of negligible  effect  is the condition of having one extra equa- 
tion,  producing an overdetermined  set of input  equations and a 
filtering  effect. 

SOLUTION OF PRACTICAL CASES 

Several test  cases are presented and summarized in  Table 1. 
The AEP system data, as described  in Reference 7, was  used in  a l l  
the cases. Reference 7 presented  results  of 50 runs  of  a  convention- 
al load  flow  in which  the  load flow data  was randomly perturbed 
assuming it behavedin  a  rectangular  distributed manner within some 
error bounds that, in  general, were in the order of 10 to 20 percent 
of  the mean data. That same reference  presented  the maximum error 
of each result  quantity.  The maximum error of one quantity  does  not 
occur in  the same load  flow run as the maximum error  of another 
quantity, so i n  that  sense  they are not simultaneous. However, as 
it i s  not known what are the true  inputs  in  a  given run, any of  the 
maximums could occur. Table I summarizes the average values 
(results  of  the base case  load flow or Step 1 of  the  stochastic  load 
flow) together with  the maximum errors as determined from Reference 
7. 

The  variances of the input data reflect the  rectangular  distri- 
buted error assumed in  the relatively few cases of Reference  7 by 
computing  V from, 

2. A  set  of load flows  in  which each piece of data is ran- V = (Reference  7 error bound/2.5)2 
domly varied  but  construing  the  variations  such  that the load and 

amounts. from the  Central Limit Theorem. Thus,  Reference 7 results are considered to be approximately  three sigma values and are compared 

The area constraints would reduce slack bus flow, It i s  to be considered  that while the 50 cases  run in Reference 
in  Table I with  the  corresponding  results  of the stochastic  load 

confidence limits but has two  basic  limitations:  7  are  statistically  significant  they are less so than the results  of 

generation of areas within the  system are allowed to vary by small  The oubut Wantities Can be considered to be normally  distributed 
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say 100 or 500 cases. In essence, the  stochastic  load  flow sum 
marizes  the  results  of  a  greater number of  cases than the 50 of 
Reference 7. 

Table I presents  results  of some typical  output  quantities. 
In particular, i t  i s  of  interest to look  at  the  flows  in  lines  near  the 
slack bus, bus number 1. These are presented in  the f i rst  8 rows in 
Table I. The  next  two groups of 3 rows each refer to l ines  in two 
different  sections  of  the  system,  both removed from the slack bus. 
The following group of 3 rows  refer to generation results  at the 
slack bus and two other generators. Since  the  real  powers of the 
last two generators are data quantities  they are not  included  in 
Table I. The  last group of 3 rows  presents  the  wltage magnitude 
and angle  at three different  busses, bus 21  being  a generator bus. 

The  six  cases  presented  in  Table I are now discussed: 

Case 1 

Case 1 i s  referred to as the Fixed  Voltages  case  in  Table I. 
In  this case generator bus voltage  magnitudes were considered to 
be  fixed, al l  other  quantities  having  the bounds given in  Reference 
7. A comparison with  the  results  of  Reference 7 shows  that  the  real 
line  flow Confidence Limits are  of  the same order of magnitude, 
actually  slightly larger. Reactive  flow for l ines near the slack bus 
are smaller  in Case 1, the same being  tnre  for  the  results  of r e  
active generation. 

Case 2 

Case 2 i s  referred  to as the Variable  Voltages  case in  Table I. 
For  this  case generator voltage  magnitudes were considered  both  as 

TABLE 1 - STOCHASTIC  LOAD FLOW TEST CASES 

input  quantities and as variables Of the stochastic  load  flow, A 
comparison with Case 1 shows  that  results are very  similar  except 
for  reactive  generation and reactive  flow of llnes near the slack bus. 
An error bound of 1.2 percent  was assumed at a l l  generator  busses, 
this  being the  only error bound data not  being  identical to that of 
Reference 7, although it i s  of the same order of magnitude. 

Cases 1 and 2 appear to draw the following  two  conclusions: 

1. The  linearization  implied  in  going from Equation (I) to Equa- 
tion (2) is  val id for the level of error bounds considered. 

2. The  decoupling of P-s and Q-E quantities  in the  load  flow is  
visible  in the  comparison of the  two  cases.  The  addition of 
voltage  magnitude  variations had a  considerable  effect on re- 
active  flow and generation, and a  negligible one  on real power 
flow and angles. 

Case 3 

Case 3 includes  additional  constraints, in  both  load and gen- 
eration areas, sllch  that  the  total  load or generation of each area 
has an error bound of 5% of  the average total  load or generation  for 
the area. A l l  other  input  quantities have individual bounds as in  
Case 2. 

The  results of Case 3 show a  general  attenuating  effect on the 
Confidence Limits of all  quantities,  especially those near the slack 
bus. This  is as expected. In reference 7, and in  the  equivalent 
results of Cases 1 and 2, the  data used for  the  load flows  implied 
situations where the  total  load was increased or decreased from the 
average value,  the slack bus  having to adjust  the  differences.  As  a 

C O N F I D E N C E   L I M I T S  

FLOW BETWEEN 
BUS TO BUS 
1 38 
1 2 
1 3 

38 39 
38  40 
40  43 

3 7 
7 12 

16 20 
15 

15  9 

33  32 
32 37 
37  36 
GENERATION 

AT BUS 

1 
21 
40 

VOLTAGE 
AT BUS 

10 
21 
39 

AVERAGE 
VALUES 

-118-J 68 
515tJ  51 
237-J 0 
680  -J695 

1 -J380 
733  -J130 

-1Ol tJ  39 
-158tJ 8 

- 96-J 63 
-102-J150 
-184tJ  51 

-260-J 34 
-222-J 15 
229-J 28 

634-J 17 
- 3 5 t J  59 
800 -J200 

9 m  
1 . o u  

9 u  

REFERENCE 
7 

411 tJ245 
7 8 t J   9 1  

162tJ  63 
163tJ  51 
272 +J 174 
208 tJ163 
175tJ  99 
152 tJ163 

8 1 t J  35 
50 tJ   31  
39  +J 33 

42 t J  23 
47tJ 19 
53tJ 28 

609 t J334 
J377 
J 540 

0.8514.91 

CASE 1 
FIXED 

VOLTAGES 

130tJ  19 
191tJ  4 
218tJ  48 
321tJ  14 
250 tJ102 
205tJ  25 
219tJ  51 

7 6 t J  50 
5 5 t J  44 
5 3 t J  42 

6 2 t J  24 
6OtJ 13 
6 1 t J  22 

505tJ 5 

773 t J  21 
J117 
J105 

3 . 6 0 u  

0.3016.36 
L m  

CASE 2 
VARIAELE 

VOLTAGES 

?!I! 
191 t J  48 
218 t J  56 
32 1 t J  166 
249 tJ201 
206 +J 102 
219 tJ138 

76 tJ   51  
56 +J 44 
53 +J 43 

62 +J 28 
60 +J 19 
61 +J 26 

173  tJ200 
J347 
J5D6 

3.8015.35 
1 . 4 0 w  
. 9 O W  

CASE a 
5% AREA 

CO"lNTS(1) 
180 tJ148 
6 2 t J  63 
72 t J  40 
97.tJ 32 

131 t J  139 
109 tJ148 
94 t J  83 

110 tJ113 

40 t J  29 
40  +J  36 
34 +J 32 

50+J 21 
48  +J 14 
49  +J 19 

264 tJ166 
J272 
J413 

1 . 7 0 u  
1 . 2 o w  
0.7012.48 

CASE 4 CASE 5 
2XAREA 

CASE 6 
5% AREA 3% TOTAL LOAD 

CollsmlwTs COWSTRAINTS(2) c&srrWwT 
9ftJ148  214tJ148 54 tJ206 
5 t J  63 4 9 t J  62  55 t J  88 
4 3 t J  40 
7 6 t J  29 
99tJ138 
94 +J 147 
7 9 t J  83 
98tJ113 

3 4 t J  28 
3 9 t J  36 
3 2 t J  32 

50+J 21 
4 7 t J  14 
4 9 t J  19 

117 t J  166 
J272 
J413 

L 6 0 w  
1 . 2 o u  
0 . l O j ~  

iootJ 41 
178tJ 46 
222 t J  139 
198tJ147 
186tJ  85 
225tJ112 

8 1 t J  32 
6 1 t J  45 
5 9 t J  28 

8 7 t J  18 
8 6 t J  14 
8 9 t J  19 

290 t J  166 
J272 
J413 

1 . 8 U  
1.201J& 
0 . 7 0 m  

23 t J  56 
76 t J  30 
76 tJ138 
68 tJ167 
64 t J  83 
77 tJ114 

53 t J  41 
40 t J  36 
36 t J  36 

17 t J  22 
9 t J  15 
9 t J  20 

15 tJ295 
J289 
J420 

0.70 LL61 
1.20 
0.70 

(1) Individual  data  errors are as in Reference 7. 
(2) Individual  data  errors are 40% of Average Values. 
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consequence, not  only the slack generator but  also  the  lines near 
the  slack  bus were found to have large  Confidence Limits.  By con- 
straining  the  load and generation  of areas of  the  system to smaller 
variations  than the individual  loads and generations,  the total  load 
variation  implied is  reduced,  producing  the  attenuating  effect. 

Case 4 

Case 4 is  similar to Case 3, the area constraints  reduced from 
5% to 2%. Some further  attenuation  occurs,  especially to the slack 
bus  generation However, most output  quantities  did  not  exhibit 
significant  Confidence Limit variations,  indicating  that  they were 
more due tq the  individual  data error bounds than to the area error 
effect. 

Case 5 

This .case presents  the  effect  of  increasing  the  error bounds 
of the  individual  data  Quantities beyond those  of  Reference 7. A 
normally  distributed  error bound of 40% of the  average  data  value 
was assumed for  each  quantity,  eonstraining  at  the same time  the 
areas to within 5% of  total average values. 

A  comparison  of  Cases  3 and 5, both  with 5% area constraints, 
shows  that  while  the  Confidence Limits of  real power flows and 
voltage  angles  increase,  those of reactive  flow and voltage  magni- 
tudes are negligibly  affected.  The  implication  of  these  results 
appear to be that  real power is a much  more sensitive  quantity to 
variations  in load and generation  data error bounds than  reactive 
power. Reactive power produced by  transmission  lines appears to 
be the cause.  The same voltage magnitude error bounds were used 
in Cases  3 and 5. However,  Cases 1 and 2 showed that  reactive 
power was  very  sensitive to voltage magnitude errors.  Thus,  larger 
voltage magnitude errors  in Case 5 would have increased  the Con- 
fidence  Limits  of  reactive  power. 

Case 6 

This case  uses  the final  formulation of the  stochastic  load 
flow  modelling  the  slack  bus  equation as any other generator and 
converting its  role  only to that  of  voltage  angle reference. A  total 
system  load  plus  losses  inaccuracy of about 3% resulted  in  a 210 
MW error bound which was distributed  evenly among the 14 gen- 
erators. Thus, the difference between Reference  7 and Case 6 
data are only  in generator real power error bounds. Apart from the 
confidence limits of voltage  angles, a l l  other confidence  limits 
were invariant as the reference bus position  was  altered. 

It is  interesting to note  that  the  research program used through- 
out this  investigation  calculated the  confidence limit of the refer- 
ence bus  real power as an output quantity. I n  Case 6, however, 
the error bound of P, was given  a  value of 15 MW as an input quan- 
tity.  This same numerical  value was produced by the program as a 
calculated  quantity,  confirming  that  there was  no filtering  effect 
caused by the redundancy of the  slack  real power equation. 

CONCLUSIONS 

This paper has  discussed  the  extension of the  conventional 
load flow problem to include  the  calculation of the  effects  of  in- 
accuracies  in  input data on a l l  output  quantities.  The  bdhors 
have recently become aware of a paper [81  addressing  the same 
problem but  with  a  different  solution approach. 

1. 
2. 

3. 

Three models were presented in  the paper: 
A model in  which a l l  input data was assigned error bounds. 
A second model including  constraints on load and generation 
of areas within a system. 
A final model in  which  a  constraint on total  system  load  plus 
losses  was  placed b y  including  a  real power equation  for the 
slack bus. 

As  a  conclusion  of the theoretical  discussions and numerical 
solutions  using  the  three models, the  third model i s  recommended 
for  implementation  for  being  conservative  in  case  requirements, for 
being independent of  voltage  angle  reference  bus  location and for 
handling  the  important  practical  constraint on total  system  load 
plus  losses. An attractive  characteristic of the method i s  that it 
involves  a  series  of  non-iterative  calculations to be carried out 
after the solution of a  conventional  load  flow by any method. 
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Discussion 

A. Semlyen (University of Toronto,  Toronto,  Ontario, Canada): This is 
a very timely  paper.  Probabilistic methods are of increasing significance 
in many  power system  studies due  to  the prohibitively large computer 
requirements for handling  a huge number of individual deterministic 
problems  resulting  from  many  different combinations  and magnitudes 
of the  input variables. Fortunately, linear functions of  independent 
mndom variables, with Gaussian distribution, are also Gaussian and 
their statistical  characteristics are easy to correlate  with  those  of the in- 
put variables. The merit  of the paper  consists in applying this fact to the 
load flow problem where the forecasted data are only  estimated. 

I would appreciate  clarifications on the following details. 
1) The load flow problem is basically non-linear and  its lineariza- 

tion  produces some inaccuracy in the simple relationship  between 
statistical  characteristics. This may be insignificant in many cases but 
may have importance in long range planning. Some variables may be 
more affected than others. Would the  authors  comment on the effect of 
linearizing the load flow solution? 

2) Some input variables, like , P  and Q at  the same bus, are 

and would it significantly alter the  results based on the approach 
apparently not uncorrelated. How would this  affect the general theory 

adopted  in  the paper? I feel that even if the  matrix V is not strictly 
diagonal (say, blockdiagonal)  and  the  inputs close to Gaussian (which, 
probably, is in general a reasonable assumption) the Central Limit 
Theorem will still apply  for  practical evaluations. 

My belief is  that  the application of stochastic methods to this 
important power system problem will prove to be stimulating to 
engineers engaged in research in some other areas of power systems 
where direct  statistical  results are more meaningful and practical than 
very large numbers of  deterministic calculations. 

Manuscript  received  August 5,1974. 

H. Duran (University of  the Andes, Bogota): The authors should be 
commended on their  effort to formulate and solve a  problem whose 
importance  has  not  yet been fully recognized. 

As described in the  introduction,  the stochastic load flow problem 
is concerned  with  finding the probability distribution, and in particular 
the expected value and  the variance of the solution  of  a load flow 
problem. As such,  it is a  problem  of  probability calculus and not  one of 
statistical  estimation. Hence the approach that  the  authors take to solve 
the problem using statistical  principles  appears to be misleading and 
unnecessarily complicated. 

A more direct  approach would be as follows. Let 7 and V be the 
expected value and  the covariance matrix, respectively, of the  input 
data.  Let i be  the solution  of the load flow problem using 7 as data, 
that is 

y = f ( x ,  
A 

Using a Taylor’s series expansion around 2, and neglecting second and 
above order  terms gives: 

Finally, 

paper  relates to  the accuracy of the formulas. It should be borne in 
One important question that the authors  do not consider in their 

mind that  due to the  linearization  introduced in the Taylor’s expansion 
j ,  is not the actual  expected value of x, and equation (1  0) does  not give 
the exact value of cov (x). To see this,  consider the following two- 
node  example. A generator  supplies  a load of P MW at  unity power 
factor  and  unit voltage magnitude through a transmission line of 
resistance R and negligible capacitance. The Generation G is then given 
by 3 

Let us assume that P has  a  normal  distribution  with mean P and variance 
u 2. What is the  distribution, mean and variance of G? It can easiiy be 
J o w n  that: 

and 

while, the  formulas in the paper give instead, - 8 = H ?. RF2 
and 

Hence the errors in the expected value and the variance of G, are Rop2 
and 2 R2up2 respectively. Are these errors significant? and, if they are, 
how can they be calculated or estimated in the general case? If the error 
introduced in calculating the  expected value of a variable is of the same 
order  of  magnitude of its standard  deviation,  what degree of confidence 
could we have in the Confidence Limits? Regarding the  probability dis- 
tribution of G, one thing that can be said is that  it does not have a 
normal  distribution since the P2 term gives rise to a X2 pattern. I  could 
not follow the  author’s use of the Central Limit Theorem to conclude 
that  the  output  quantities can be taken  as normally distributed. Would 
they like to comment on the assumptions  underlying its use here? 

As a final remark I would like to compliment  the authors again for 
pointing at a very important, interesting  and  difficult  problem. They 
have  given one of the fust bites to a  hard bone. I hope  this discussion 
will encourage  them to continue  their work since the problem has  not 
been solved yet. 

R N. Allan and C. H. Crigg (Univ. of Manchester Inst. of Science and 
Technology,  Manchester,  England): We would fust like to state how 
much we agree with the  authors  for  the need to treat the power flow 
problem probabilistically. We also feel that, because the variables in- 
volved vary statistically  and are forecasted  statistically,  deterministic 
calculations can lead to erroneous  planning and operating conditions 
and are,  at best,  only subjective assessments. 

We would, however, like to  comment  on the  author’s use of the 
Central Limit Theorem to assume that f 30 predicts  satisfactory con- 
fidence limits. We, in a mutual collaborative effort between UMIST in 
England and the  Institute of Power in Warsaw, have been currently 
investigating the same problem. We, however, not only characterise the 
power  flows by expected values, standard  deviations  and  confidence 
limits similar to  that proposed by the authors, but also calculate the 
complete  probability  density curves of  the  power flows of interest. It 
was in order to calculate these  density curves that  the initial formulation, 
as described by Borkowskia,l. was limited to the d.c.  case since these 
calculations are inherently  complex. 

in  Fig. 1. This is clearly not a  normal  distribution  and suggests that the 
One of our typical  calculations  produced the density curve shown 

Central Limit Theorem  does not apply.  The  difficulties arise because 

whch is not necessarily the case when analysing typical power systems. 
the  Theorem is only applicable for a large number of random variables 

One consequence is illustrated in  Fig. 1 where the value of  the  density 
function  at a  power level of E + u is nearly three  times  greater than  at a 
power level of E. 

limits enclose more than 99% of the probabilities of occurrence  as 
We can c o n f m  that all our results to  date indicate that the k 30 

assumed by the authors. We feel, however, that this  could stiU lead to 
erroneous decisions if power flows of the type shown in Fig. 1 occur. In 
this  example, the f 30 confidence  limits enclose power levels between 
100 and 1100 MW. Our results  show, however, that the  probability of 
power flows greater  than 800 MW is neghgible. Therefore,  with  the 
authors’  confidence  limits, the line could be almost 40% overdesigned. 

objections may be raised concerning  their  accuracy. Preliminary work 
We accept our results were obtained using a d.c. representation and 

using an a.c. model, however, indicates that the same trend prevails. 
In ending we would like to add our weight to the  authors’ belief 

that probabilistic assessment of system behaviour is necessary to enable 

Manuscript  received  May 6,1974. Manuscript  received  August 7,1974 
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accurate  security  prediction of a  present system and  a balance between 
cost and security of  a future planned system to be treated objectively 
and not, as at present, subjectively. We consider, however, that  for 
probabilistic methods to supercede  presently used deterministic methods, 
the full potential of probability  assesanent  must be utilised as we are 
currently pursuing. 

REFERENCE 

[ 11 Borkowska, B. “Probabilistic Load Flow”,  IEEE  paper  no. 
173 485-0, presented at  Summer Power Meeting, Vancouver, 1973. 

Barbara Borkowska (Instytut Energetyki, Warsaw, Poland):  I regard the 
method presented by J. F. Dopazo, 0. A. Klitin and A. M. Sasson as 
very interesting. The method seems to be useful and  efficient in 
numerical calculations. The  uncertainty of the  input  data can be con- 
sidered from two  points of view: “a posteriori“ [uncertainty of the  past 
or present state of system] and “a priori“[uncertainty of the  future  state 
of system]. The uncertainty a  posteriori has given the impulse to 
elaborating  the various methods  known as “state  estimation”. The 
formulation  of the load flow problem used in a  posteriori study was 
taken by the  authors  as  the starting point  to elaborate  the method of  a 
priori analysis. This is right since the redundancy of data takes place in 
a  priori study  too. The use of global forecast for areas in order to limit 
the variance of  output  quantities is an  interesting idea. However, the 
uncertainty  of  a  posteriori data is at  least in two  points different  from 
this  of  a  priori. 

1. The  correlations  between the measurement errors  often are 
negligible while the  errors  of  the  forecasted input  data may be strong 

random  parameter [temperature,  the configuration  of lower voltage 
correlated because of nodal input powers being the function of the some 

network etc.] . Therefore  the  matrix V def i ed  by the  equation 3 is not 

Manuscript  received  August 13,  1974. 

diagonal. It complicates the  computations  but  not  the mathematical 
model. It should be noted  that taking into  account  the correlation 
diminishes the variance of the  output quantities. 

2. The variance of the  input data a  posteriori is constant while the 
variance a  priori is variable according to  the time  horizon.  The further in 
future  the forecasted moment  [time  horizon]  the greater is the variance 
of input data. It leads to great uncertainty of the results. Taking 
advantage of the additional  information  makes the space of the possible 
system states limited. This result was achieved by the  authors by intro- 
ducing  additional  Equation [29] which is to be combined  with  these 
[35]  to  [37]. Particularly  interesting seems to be the  Equation  [361 
which means that  the errors  of  individual data are not correlated to  the 
error  of global forecast.  I regard such  assumption  as  fully  acceptable 
because the methods  and  the  data used for individual and global fore- 
casting are different. 

As to Central Limit Theorem  some comment seems to be necessary. 
Since Jacobian J is sparse, the variances of the  input data are different, 
and  the density curves of  the errors  of the  input data are not defined, 
then  it is not obvious that  the CLT holds. It is known that, especially 
for  the  further time  horizon, the density curves of the  power  generation 
(of the power stations with few large generating  units)  differs sub- 
stantially  from the Gaussian curve. The some  might  apply to  the 
density curves of the power flows in branches  connected to generation 
nodes. In such a case the Eq. [27],  [28] are not true. However in 
cases in which the density curves of  errors of input  data can be properly 
defined [a.g. as  a  normal] the  equations hold. 

linearisation  applied in going from Equation [ 1 ] to Equation [ 21 is valid. 
It would be interesting to know to what level of error  bounds  the 

operational  problems and  in some  problems of power  system planning. 
Concluding the  method seems to be very useful in power  system 

G. T. Heydt (Purdue University, West LaFayette, Indiana): This paper 
presents  a new formulation  of the power flow problem in stochastic 
terms in which the load/generation  schedule is a  random  vector. The 
solution  vector to the power flow problem is written in a  linear 
approximation to the nonlinear  power flow problem, and  in such a 
formulation,  the solution is a linear transformation  of the  input (where 
the  “input” is interpreted  as  the load/generation schedule). The mathe- 
matical  formulation involves the usual decoupling  process  between bus 
voltage magnitudes  and angles, and  therefore in the Newton-Raphson 
solution,  only real numbers appear. The central  limit theorem pre- 
mibes that  the distribution  of the  solution variables will be Gaussian 
since these variables are linear combinations  of a large number of  ran- 
dom variables. Messrs. Dopazo, Klitin and Sasson have made  a valuable 
contribution in their  observations  of the various intricacies of  the 
stochastic  power flow formulation.  I have worked on this problem from 
a  different point  of view, and I  would like to  briefly present this alter- 
nate  approach in order to elucidate  certain  generalizations of the meth- 

esting questions which I  would like to pose to the authors. 
ods used in this paper. The  alternate approach also raises some  inter- 

An alternate formulation is obtained  by ignoring bus voltages as 
problem variables; instead,  consider line complex  power  flows as “out- 

lation,  the complex factors relating  these variables are known[ 1 ] and 
put” variables and bus  demand/generation  as “inputs.” In linear formu- 

the  output  is simply a linear transformation of the  input. Unlike the 
formulation in this  paper, the variables so formulated are not real but 
complex. Data used for load and generation schedules are random 
complex  vectors  of known  distribution  (or  at least known mean  and 
covariance). The covariance matrix should not be considered diagonal 
since there  is  no reason to believe that  bus demands at  several different 
busses are independent. The covariance matiix is Hermitian, however, 
as may be observed from the definition of element i, j of the covariance 
matrix V, 

where  the p entries  are the means of the random variables, x, and (.)* 
denotes complex  conjugation. In vector notation, 

v - E((X -M)(x -x)H) (2) 

where M is the  mean  vector and (.p denotes  the Hermitian operation 

of  this discussion with  Eq. (3) of the paper shows the generalization 
(complex  conjugation followed by transposition).  Comparison of Eq. (2) 

necessary to approach this problem as I suggest. When the problem is 
formulated with line power  flows rather than bus voltages, not only  does 

Manuscript received  August 13,  1974, 
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the mathematical treatment change, for example, E,q. (5) of the paper 
becomes 

= (JH V-’ J)’l JH V-l Y. 

but also the  information derived changes. Line loading is obtained 
directly, and  many of the power  flow  statistical  inferences  carefully 
described in this paper  are also available. The advantage of  the  method 
of Messrs. Dopazo,  Klitin and Sasson primarily lies in the availability of 
the Jacobian matrix. The advantages of the  alternate  formulation which 

required)  and certain other computational factors. 
I suggest primarily lie in the speed of  computation  (no inversion is 

I would like to raise some questions  of  the  authors in order to 
clarify some points. Why is covariance matrix V, 

t V - E@, E ) 

treated  as diagonal? Presumably, if the statistics of E are available, even 
cases where  independence does  not hold  could be handled.  Secondly, I 
would like to ask a  difficult  question  concerning the accuracy of the 
calculation  of the line flows (labelled z in the paper) by the  method 
given by the authors. When the  method described in the paper is used, 
a  linearization is required to obtain  bus voltage information @. (1)  of 
the  paper)  and a sxond linearization is required in order to obtain  the 
line flows (Eq. (18) of the paper). Would more accurate  statistics  of z be 
obtained by formulating the load flow problem  directly  with z as the 
independent variable rather  than  x? When this is done,  onlyone lineari- 
zation is needed. 

This paper  presents  a well written  account of  stochastic calcula- 
tions in power flow studies. I have no doubt  that  the results and tech- 
niques will be used by others to obtain many other useful statistical in- 
ferences of electric  power system operation. 

REFERENCE 

[ 11 G.  T. Heydt, B. M. Katz, “A Stochastic Model for Simultaneous 
Interchange Capacity Calculations,” to be published,  IEEE Trans. 
on Power Apparatus  and Systems. 

K. F. Schenk and K. Singh (University of Ottawa,  Ottawa, Ontario, 
Canada): This paper is another  one of  a series of  papers which the 
authors have written in their  systematic efforts to develop practical 
applications  of  statistical notions to  the analysis of  power  system 
problems. This is a  natural  development  when one recognizes that 
deterministic  models and solutions do  not  fit well with real-type 
problems. Although  deterministic  results have a  greater  appeal than 

meters, data  and models. T h i s  is, in our view, a step forward in  the right 
stochastic results, the  latter recognizes the impossibility of exact para- 

direction. The  authors are to be congratulated for their timely efforts. 

variables, E, may be considered to be normally distributed as a conse- 
As is pointed out in the paper, the vector of ‘error’ random 

quence of the  Central  Limit  Theorem. This being the case, the  estimators 
for x and  ux2 (and for z and  uZ2) may be obtained by maximizing the 
likelihood function. This is, of course,  a well known  fact,  but  it gives an 

mum likelihood estimators  (m2.e.)  which are unbiased (not all of them 
additional insight into  the formulation of the problem. Moreover, maxi- 

are!) also exhibit some other properties which make  them very desirable 
estimators:  minimum variance, consistent,  efficient,  sufficient,  complete 
and independent.  Furthermore,  under quite general regularity conditions 
on the density function[ 1 1 ,  any  function u ( 2 )  of  a m.!Z.e. 2 of i is the 
m.!2.e. of  u(x). 

meaningful results can be extracted from the  method if it  is properly 
In addition,  it may be worthwhile to point  out that useful  and 

applied.  Only  those cases which are considered  normal  with small data 
variations about an  operating point will give useful results. Extreme 
variations in the  input data (which are allowed by a  normal distribution) 
may give uninterpretable results. 
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S. T. k p o t o v i c  (Research Institute Nikola Tesla, Beograd, Yugoslavia): 
The  authors have presented an interesting, useful and simple method  for 
calculating the effect  of the propagation  of  forecasted data inaccuracies 
through the conventional load flow. The method, using the principles of 
statistical least squares  estimation for linear systems and addressing itself 
to the problem of processing the  expected  errors in the  input  data,  that 
is, load bus P and Q, and generator  bus  P and E, converts the load flow 
problem  formulation from a  deterministic one to a  stochastic one. The 
proposed method, through  the  extension of the conventional load flow 
problem,  has  included the calculation  of the effects of inaccuracies in 
input  data on all output quantities, namely on all bus state variables E 
and S or  on line flow P  and Q and generator  bus Q. The  stochastic load 
flow represents, in this way, the combined  results  of  many  deterministic 
load flows in which for each flow the  data are  perturbed, such that the 
various flows  represent possible sets of data  within  the precision that 
the input  data is known. 

The model of the  load flow in which  a  constraint on total system 
load plus losses has been placed by including  a real power equation  for 
the slack bus can be considered as a realistic one, since the forecasted 
errors are then distributed  among  generator  P equations.  It  is to be 
believed, that  further experience in using the developed method will 
make it simpler and  more attractive. 

The authors should be complimented for  this nice paper. 

Manuscript received August 13,1974. 

A. Petroianu  (National  Center  of  Romanian Power System, Bucharest, 
Romania): The  authors are to be commended  for a thought provoking 
paper  related to  an  interdisciplinary .in character  problem. 

The paper is devoted to the research problem  of  influence  of 
initial data random  errors upon the  results  of load flow calculation. 

Such  an investigation is very timely for  the comparison of different 
mathematical  models  suitable  for “off”  and “on” line load flow calcula- 
tions. 

The authors have a  probabilistic  approach to  the problem of 
estimation of the results  of  calculation. From  the probabilistic point of 
view the initial data should be considered as random variables with 
multidimensional  distribution law. 

We can  underline two distinct  direction of research in the frame  of 
the probabilistic approach: 
1 -Initial data errors are of stochastically definite  nature 

In this case the initial data are given by their mean value (mathe- 
matical expectations)  and by their  extreme limits of deviations  (errors) 
from mean values. The law of distribution  of  initial data  errors is 
supposed to be known. 

It seems to  the discusser that such an  approach was used in[  11. 
2-Initial data  errors are of  stochastically i n d e f ~ t e  nature 

In this case only the extreme values of  initial data errors are known. 
I believe that considering “a model in which all input  data was 

assigned error bounds” the  authors are  approaching  a more practical 
way since the law of distribution  of errors  is  often unknown. 

In the frame of the probabilistic  approach, considering that  the 
deformation of the initial data is small, the knowledge of the expecta- 

distribution law of the calculated values which constitutes  our aim. 
tions  and of the variance-covariance matrix  sufficiently  characterizes the 

I would like to remark that a  geometrical approach could introduce 
some fresh point of view that corresponds to the necessity of reducing 

number of pertinent,  synthetic and  intuitive  information [2 + 51. 
the great output  data streams,  generated by the  computer, to a small 

The  geometrical theory, which can be conceived in parallel to the 
probabilistic approach, permits us to find and to  describe an area of 
possible errors  and the guaranteed region to which the calculated values 
belong. 

where  x, y are column  vectors in m- and n- dimensional Euclidean 
spaces 

y = y + i ; y  (2) 

where Sy- small random  vector with variancecovariance  matrix Ay. 
In accordance  with the principle  of  linearization: 

- 
= ‘t‘ (y) + a x  (3 1 

6~ = J L y  .- 
(4) 
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where J Jacobian matrix  for cp taken at  the pointy. 
accordingly, 

The  variancecovariance matrix Ax for S x  can be calculated 

L 

and  characterizes the  errors in the  solution vector x due to the non- 
exactness in giving initial vector data - y. 

quadratic  form: XT 45 
Formulae (5),corresponds to the general matrix  expression  of  a 

In the realm of an n-dimensional space with which is our present 
concern this quadratic form can be geometrically interpreted as repre- 
senting  the area of  the  error hyperellipsoid. 

Even under  the simplifying assumptions that  the admissible errors 
of  x and y  are  sufficiently small to be related by the linear  transforma- 
tion (4), the small region in which S y is contained is stretched in one 
direction  and compressed in  the  other. 

If the estimate of errors is made b the  ctral vector norm,  then 
the admissible regions for Sy will be an  Kyperzpsoid. 

If in turn we estimate 6x by the spectral  norm we shall be forced 
to  take as admissible the hypersphere  with  radius  equal to  the largest 
half-axis of the hyperellipsoid. This hypersphere will be larger than the 
hyperellipsoid; this replacement of the hyperellipsoid by the hyper- 
sphere involves the loss of  information  due  to  the  uncertainty and errors 
in input data. 

Formulae (5) expresses a hyperellipsoid which is in a skew position 
with  respect to the oblique coordinate axes; by means of a  suitable 
transformation to  the principal axes  of the hyperellipsoid the  equation 
can be reduced to the canonic  form 

where &l . . .An are the eigenvalues. 
That is equivalent to consider  only the variance of components 

(i.e. ignoring the correlation  coefficient); in this case we shall obtain  the 
confidence  hyperellipsoids  with  the  axes being directed along the 
coordinate axes. 

The degree in which  the uncertainty of basic information is 
“conditioning” the  uncertainty of the steady state solution is expressed 
by the square root of the  ratio of the eigenvalue of maximal modulus 
to the eigenvalue of minimal modulus. 

Formulae (7) which gives the elliptic norm (conditionality  number), 

can be geometrically interpreted as the  ratio of  the hyperellipsoid 
semiaxes. 

By virtue  of the above formulae it is evident that  the precision, 
convergence and stability  properties of the load flow solution are 
optimum  for 

H = 1, 

that corresponds to the perfect  symmetry  of  a  hypersphere. 
The discusser’s comments, regarding the geometrical approach, 

were intended  to underline the importance  of the authors’ contribution 
to a new emerging research problem - the probabilistic load flow 

various existent schools of thought. 
problem - and to add some bits of  information in an effort  to relate 
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B. E Wollenberg (Leeds and  Northrup Company, North Wales, Pa.): This 
is a very important paper. The techniques used in calculating the covari- 
ance matrices  of system states  and  quantities  computable from the 
states are  definitely useful in all analytical  studies  requiring  a  load  flow 
solution. I agree that  any time  a load flow is run,  whether  for real time 
studies or planning studies,  a  recognition of the  data inaccuracies is  al- 
ways useful - and necessary. 

The authors have been  careful to develop a  technique  which is used 
in conjunction with  a  conventional load flow solution and  not a least 
squares state  estimator  type solution.  The  primary contribution of the 
paper is in showing how to compute  the covariance matrices when 
adjustments such  as  area load or system total load, known to some 
specified accuracy, are placed on  the solution.  The authors correctly 
point  out  that such adjustments do not imply anything more  than a  con- 
ventional load flow solution. The covariance matrix calculations used to 
model the  effects of the area or system load adjustments are correct  for 
a least squares  solution to the load flow with the  area or system  load 
values acting as  redundant information. When a load flow is solved with 
the  loads  preadjusted to meet area or system conditions, the  number of 
degrees of freedom  remains  the same and  there is no filtering  effect.  A 
least squares  solution  with  area or system load values as  redundant 
information will produce filtering. The statement in the description of 
the authors’ Case 6 that ‘ I .  . . there was no filtering effect caused by the 
redundancy of the  slfck real power equation.” is somewhat misleading. 
It should have read . . . noapparent filtering. . .”, that is, there was no 
filtering which could be measured. In part  thisis  due  to  the  fact  that  the 
error bound  of 210 MW was allocated to the  14 generators by dividing 
2 10 MW by 14 to give a 1 5 MW error  bound. This calculation  should 
have divided 210 MW by the square root  of  14 which would have given 
a 56.1248 MW error bound for  the generators. The 15 MW used by  the 
authors was so much smaller than  the 40% error  band on  the  loads  that 

the  56.1248 MW error bound also and  therefore shows that  the covari- 
any filtering  effect would be minimal. This result is probably true  for 

ance  matrix  calculation used is quite adequate. 

Manuscript received August 2, 1974. 

J. F. Dopazo, 0. A. Klitin, and A. M. Sasson: We are very pleased to the 
response of so many discussers to our paper and acknowledge their 
contributions to the subject. We are encouraged that in all cases the dis- 
cussers emphasize the need for treating the load flow stochastically. 

which they calculate actual density curves with simplified models. We 
Messrs. Allan and Grigg and Ms. Borkowska present  approaches in 

consider that the  distribution  of input quantities, which is needed in 
their method, is generally not known. For instance, consider the 

mentions. Over a  period of a  day the  output of the plant  can vary sub- 
generation  of  a large plant  with several units which Ms. Borkowska 

stantially and a non-normal distribution  could be determined. However, 
the  distribution of plant output  at peak system conditions  at some 
future  year can be considered as a  normal  distribution  with  a small 
variance that depends significantly on what the  distribution  of  the 

upon  the applicability of the  Central Limit Theorem. The reasoning 
system peak is. The same discussors and Dr. Duran,  express  reservations 

given for the  distribution  of input  quantities also apply here. Line flows 
near generating  plants, which is the example  mentioned by Ms. 
Borkowska, can thus be considered  as normal. Dr. Duran  finds  some 

We agree that results are only  approximately  normal in the sense 
chi-squared component in the output when no linearizations are made. 

approaches  a  normal as  the degrees of  freedom increases which justifies 
Dr. Duran points  out. However, the chi-squared distribution  rapidly 

really after  the  bounds of output  quantities  and  not their  distribution. 
our use of the CLT for practical purposes. On the other  hand, we are 

are further justified. 
The unknown  but bounded theory  (9) applies  here  and our procedures 

The  arguments given above apply to a large extent t o  the comments 
made by  Messs.  Heydt  and Semlyen and Ms. Borkowska on  the use of 
a diagonal input convariance matrix. Even in the case of P, Q values at  the 
same bus which Dr. Semlyen  refers to, while the variations  during  a  day 

for system peak conditions are considerably less so. 
are strongly correlated our expectation of P and Q at  some future year 

Messrs. Schenk, Sigh, Semlyen and  Duran  and Ms. Borkowska ask 
on  the accuracy of  results for large input variances, given the lineariza- 
tions involved in our  method. Obviously, one can not  expect to increase 
input variances indefinitely without serious deterioration in the accuracy. 
We would advise that  tests similar to the ones we performed be made to 
answer this  question for a specific system. If Monte Carlo load flows 
results  can be reasonably duplicated by the stochastic load flow, then 
the  latter applies for  that level of input variances. 
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We were  pleased to find  the  comments  made by Ms. Borkowska 
and Dr. Despotovic on our differentiation  between  global  and  individual 
forecasts  and  the  inclusion of total  load  error as variances over all 
generators  thus  eliminating  the need for  defining  a slack  bus. On this 
point, Mr. Wollenberg feels  that our calculation of individual  generator 
variances is  in error.  Considering a  total  load  error  bound of 210  to be 
spread  over 14  generators he considers  that  the sum of the variances of 
generators  should be equal to  that of the  total. Thus, 

What we do is to divide  the 210 evenly  among  the 14  generators. With 
Mr.  Wollenberg’s suggestion we would be considering load flow  situa- 
tions in which  generation  exceeds  the  bounds of total system  load  thus 
being unrealistic. 

Dr. Heydt briefly  presents  a  method  he  has  developed  in  which he 
states  there are some computational advantages. We understand  that he 
will be presenting his method  in  a  paper  that will be  presented  shortly 
and we would  like to reserve our  comments  until we read  his forth- 
coming paper and understand  his  approach  better. We will only  point 

out that  the use of sparsity techniques makes our  method  computation- 
ally  attractive. 

We appreciate Dr. Petroianu’s comments  on  our paper  and his 
geometric  interpretation of the mapping of  input  errors  to  output 
quantities. 

Dr. Duran’s derivation of the paper’s equations  are  the same as 
ours. We “complicated”  matters by trying  to show the  relation  between 
the  theory of state  estimation  and  that of stochastic  load flows to 
emphasize that  historically  the idea of the  latter came from  the  former. 

We fmd Dr. Duran’s error  analysis  quite  enlightning However the 
last  term of the  exact  formula  for  the  variance of G should be 2 RZup4 
and not 2 R2o 2. This makes  the  errors  in  the mean and  variance to be 
Rup2, and 2  R s 4 which  are  second  order  effects in their  respective 
equations. For ins%nce,  consider  as an example  that  per unit  Rand P are 
equal  to 1 and an error  bound  for P  equal  to 0.3. This makes Op2 = 
(0.3/3)2 = 0.0 1. Then,  the  error in the mean and  variance of G are 0.0 1 
and 0.0002 while our computed mean and  variance are 2 and  0.9 
respectively. 
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