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ABSTRACT

We derive a recursive general-radix pruned Cooley-Tukey fast
Fourier transform (FFT) algorithm in Kronecker product notation.
The algorithm is compatible with vectorization and parallelization
required on state-of-the-art multicore CPUs. We include the pruned
FFT algorithm into the program generation system Spiral, and auto-
matically generate optimized implementations of the pruned FFT for
the Intel Core2Duo multicore processor. Experimental results show
that using the pruned FFT can indeed speed up the fastest available
FFT implementations by up to 30% when the problem size and the
pattern of unused inputs and outputs are known in advance.

Index Terms— Discrete Fourier transforms, Vector processing,
Multiprocessing, Software performance

1. INTRODUCTION

The discrete Fourier transform (DFT) and it’s fast algorithms (fast
Fourier transforms, FFTs) is an ubiquitous tool in signal processing
and the computational sciences. Thus, optimization of its implemen-
tation is crucial. In many applications it is either known in advance
that a part of the input data of the DFT is zero or some outputs will
be discarded. In this situation, applying the pruned FFT allows for
a reduction in the operation count by discarding superfluous opera-
tions like adding values known to be zero.

Current commercial off-the-shelf (COTS) computer systems are
very powerful but increasingly hard to program. Systems based on
the latest Intel or AMD microprocessors have a theoretical peak
performance that a decade ago was the domain of supercomput-
ers. Microprocessors like the Intel Core2Duo or AMD’s Opteron de-
rive their computational power from architectural features like deep
memory hierarchies (up to three levels of cache), vector instruction
set extensions (e. g., SSE, AltiVec), and multiple processor cores
(dualcore or quadcore CPUs).

While these latest architectures are incredible powerful, the de-
velopment of high performance software has become a nightmare as
programs with the same operations count may run at vastly different
speeds. Not fully taking advantage of all architectural enhancements
often means to slow down one’s program by 10 to 100 times. In par-
ticular, saving operations at the expense of program complexity may
not translate into speed-up but produce a slow down. This poses an
enormous challenge when one tries to realize a speed-up from the
lower operation count of pruned FFTs.

Contribution. In this paper we derive a general radix pruned
FFT algorithm expressed in the Kronecker product formalism, ap-
plicable for block-zero patterns known in advance. We show that
the pruned FFT can indeed speed up the fastest available FFT imple-
mentation, taking full advantage of multiple processor cores, vector
instructions, and the memory hierarchy. For instance, when 7/8 of
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the inputs are known to be zero (as in 8-fold upsampling for interpo-
lation purposes) we gain a 30% speed-up over the fastest un-pruned
FFT implementation.

Related work. FFT pruning is well-studied [1, 2, 3], but tradi-
tionally pruned FFT algorithms are not expressed in the Kronecker
product formalism. The goal in previous work usually was to min-
imize the operations count to the extent possible, albeit at the cost
of increasing the implementation complexity of the algorithm. Re-
cently, [4] investigates the fast implementation of partial FFTs on
processors that support software pipelining.

For this reason, no modern high-performance FFT library like
Intel’s IPP and MKL, AMD’s ACML, or FFTW [5] offers support
for pruned FFT computation. To highlight the challenge, consider
a remark by the authors of FFTW who state in the FFTW manual1

that pruning only becomes beneficial if 99% of the inputs are known
to be zero. We show in this paper that pruning has the potential to
speed up high performance FFT implementations when many more
inputs are non-zeros.

Organization. The paper is organized as follows. Section 2 in-
troduces the Kronecker product formalism and the fast Fourier trans-
form. In Section 3 we introduce the pruned FFT and derive the gen-
eral radix Cooley-Tukey FFT algorithm for pruned FFT using the
Kronecker product formalism. Our derived pruned FFT algorithm
is experimentally evaluated in Section 4 and we offer conclusions in
Section 5.

2. BACKGROUND

Discrete Fourier transform. Computing the discrete Fourier trans-
form (DFT) of an input signal x of length N is equivalent to the
matrix-vector multiplication y = DFTN x, where

DFTN = [ωk`
N ]0≤k,`<N , ωN = e−2πj/N .

Fast Fourier transforms. Various fast Fourier transform algo-
rithms (FFTs) are available that enable the computation of the DFT
with O(N log N) operations for all sizes N . The most important
one is the Cooley-Tukey FFT. It can be expressed as a factorization
of the DFTN into a product of structured sparse matrices provided
that N = mn factorizes. Using the Kronecker, or tensor product
notation [6] this FFT is given by

DFTmn = (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (1)

In (1), the stride permutation matrix Lmn
m permutes the input vector

as
in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

If x is viewed as an n ×m matrix, stored in row-major order, then
Lmn

m performs a transposition of this matrix. Further, In is the n×n
identity matrix, and the tensor product is defined as

A⊗B = [ak,`B], for A = [ak,`].

1http://www.fftw.org/pruned.html



Dm,n is a diagonal matrix containing the so-called twiddle factors.
Another important construct is the canonical basis vector ofCN with
“1” at the ith location and “0” at all positions, denoted by eN

i .
Block sequences. To describe zero-patterns we introdiuce the

concept of block sequences. Let σ be an ordered sequence of inte-
gers σi with 0 ≤ σi < N . We denote the number of elements σi

in σ by |σ|. We use the following short-hand notation for sequences
with block structure: Let σ = 〈σi〉0≤i<|σ| ⊂ {0, . . . , N − 1} be
an ordered sequence and k a positive integer. Then we define the
ordered sequence

σ ⊗ k = 〈kσi, kσi + 1, . . . , kσi + k − 1〉0≤i<|σ|.

For instance, let σ = 〈0, 1, 3〉 ⊂ {0, 1, 2, 3} and k = 2. Then,

σ ⊗ k = 〈0, 1, 2, 3, 6, 7〉 ⊂ {0, . . . , 7}.

Zero-padding a vector. Starting from a vector x ∈ C|σ| we
obtain a zero-padded vector y ∈ CN , with the non-zero entries of
y being the entries of x scattered to the positions σi, and all other
entries of y being zero. Formally, we multiply x with a scatter matrix
Sσ ∈ CN×|σ|,

y = Sσ x with Sσ =
[
eN

σ0 |eN
σ1 | . . . |eN

σ|σ|−1

]
. (2)

Dropping vector elements. Conversely, we obtain the vector
y ∈ C|σ| being the subset of vector elements of x ∈ CN at the posi-
tions σi by dropping all elements not at positions σi. This operation
is formally described by multiplying the vector x by a gather matrix,

y = Gσ x with Gσ = S>σ . (3)

The operator (.)> denotes matrix transposition.
Formula manipulation. To derive new variants of algorithms,

we apply formula identities [6] like

(Am ⊗ In)Lmn
m = Lmn

m (In ⊗Am), (4)

where Am is an arbitrary m×m matrix. For instance, applying (4)
to (1) leads to the so-called four-step variant of the Cooley-Tukey
FFT algorithm,

DFTmn = (DFTm⊗In)Dm,nLmn
m (DFTn⊗Im). (5)

We will also apply the distributive law for the tensor product,

(AB)⊗ C = (A⊗ C)(B ⊗ C). (6)

The following identity shows the connection between block se-
quences and matrix tensor products,

Sσ⊗k = Sσ ⊗Ik, (7)

which can be easily proved by inspection.

3. GENERAL RADIX PRUNED FFT ALGORITHM

In this section we derive the Kronecker product formulation of a gen-
eral radix Cooley-Tukey pruned FFT algorithm for input or output
pruning, as well as for combined input-and-output pruning.

Input pruned DFT. We now define the input pruned DFT as a
transform that is a variant of the DFT. Assume x ∈ CN is a vector
with some entries known to be zero, i.e., x = Sσ x′. (x′ are the non-
zero entries of x.) The pruned DFT is the transform that computes

the DFT of x from its non-zero elements x′. Formally, we write it as
the matrix-vector multiplication

y = PDFTσ
N x′ with PDFTσ

N = DFTN Sσ . (8)

PDFTσ
N is a matrix of N × |σ| complex roots of unity, consisting

of the columns σi of DFTN .
Output pruned DFT. Dropping some of the outputs of the DFT

computation (output pruning) is expressed by formally transposing
the input pruned DFT. Assume y ∈ CN is a vector where some
elements are to be dropped (the elements kept are denoted by y′),
which is expressed by y′ = Gσ y. The output pruned DFT is the
transform that computes the DFT of x ∈ CN and then drops the
superfluous elements to yield y′. It is obtained using the transpose
of the input pruned DFT,

y′ = (PDFTσ
N )>x with (PDFTσ

N )>x = Gσ DFTN .

Input and output pruned DFT. We define the simultaneously
input and output pruned DFT as the combination of the input and the
output pruned DFT. Some elements of the input vector x are known
to be zero (x = Sσ x′) and some of the elements of the output vector
y are to be dropped (y′ = Gτ y). The simultaneously pruned DFT
computes the kept output elements y′ from the non-zero input ele-
ments x′. Formally, we write it as the matrix-vector multiplication

y′ = PPDFTτ,σ
N x′ with PPDFTτ,σ

N = Gτ DFTN Sσ . (9)

Recursive pruned Cooley-Tukey FFT algorithm. Let N =
kmn and σ ⊂ {0, . . . , n − 1}. We now derive a variant of the
general radix Cooley-Tukey FFT recursion (1) for the input or output
pruned DFT,

PDFTσ⊗km
kmn and (PDFTσ⊗km

kmn )>.

Substituting (5) in (8) leads to

PDFTσ⊗km
kmn = (DFTm⊗Ikn)DLkmn

m (DFTkn⊗Im) Sσ⊗km

with D = Dm,kn. Applying identities (7) and (6) pushes the scatter
matrix Sσ⊗km down into the recursion,

PDFTσ⊗km
kmn = (DFTm⊗Ikn)DLkmn

m (DFTkn Sσ⊗k ⊗Im).

Finally, applying (8) in the recursion yields the recursive general
radix Cooley-Tukey FFT algorithm for input pruning,

PDFTσ⊗km
kmn = (DFTm⊗Ikn)DLkmn

m (PDFTσ⊗k
kn ⊗Im). (10)

Formal transposition of (10) yields the recursive general radix
Cooley-Tukey FFT algorithm for output pruning.

Let N = k`mn, σ ⊂ {0, . . . , n − 1}, and τ ⊂ {0, . . . , m −
1}. We now derive a variant of the general radix Cooley-Tukey FFT
recursion (1) for the simultaneously input and output pruned DFT,

PPDFTτ⊗k`n,σ⊗k`m
k`mn .

We substitute (5) in (9) and apply the identities (6)–(8) as above.
This yields the simultaneously input and output pruned general radix
Cooley-Tukey FFT algorithm,

PPDFTτ⊗k`n,σ⊗k`m
k`mn = ((PDFTτ⊗`

`m )> ⊗ Ikn)D`m,kn

·Lk`mn
`m (PDFTσ⊗k

kn ⊗I`m).
(11)

Base cases. (10) and (11) perform recursive pruning of the FFT
algorithm. They require a pattern of non-zero elements described by



block sequences of composite block length. The block length gets
factored by the recursion steps. Once the block length becomes one
the rules are no longer applicable. Under realistic assumptions the
corresponding DFT sizes are small and can be optimized similarly
to the pruning applied by the FFTW codelet generator genfft [7].

For small enough N , PDFTσ
N and PPDFTτ,σ

N can be imple-
mented using a single basic block of straight-line code. Inside the
basic block one can apply constant propagation and dead code elim-
ination (either by hand or using an automatic tool) to obtain an op-
timized pruned FFT implementation that does not perform unneces-
sary operations.

Cost analysis. Computing y = DFTN x has a cost of
O(N log N), and the radix-2 FFT has an asymptotic cost of
5N log2 N [6]. For |σ| = k computing y = PDFTσ

N x has a cost of
O(N log k) [3]. The exact operations count depends on the chosen
recursion, which is restricted by the block structure of σ, and is hard
to determine by a closed formula. Nevertheless, pruning reduces
only the log N term to log k and thus reduces the operations count
only modestly. For instance, if 7/8 of the inputs of a signal with
1,024 samples are known to be zero (N = 1, 024 and k = 128),
using the pruned FFT reduces the operations count by 30%.

Automatically generating pruned DFTs. Spiral2 is a pro-
gram generation and optimization system for transforms including
the DFT [8]. For a given a DFT of size N , Spiral expands DFTN re-
cursively using (1) or other FFT algorithms until base cases (N = 2)
are reached. The resulting formula (tensor product expression) is
further optimized as described in [9] and then translated into C code.
Based on the runtime of the obtained code, Spiral changes the recur-
sive expansion (e.g., by choosing different factorizations N = mn)
and repeats the process. This search eventually produces an imple-
mentation tuned to the given computer. Spiral generates highly op-
timized SIMD vectorized FFT implementations based on the short
vector Cooley-Tukey FFT algorithm [10]. On multicore CPUs, Spi-
ral generates multi-threaded implementations that provide speed-up
starting with very small FFT sizes [11].

We added the general radix pruned FFT algorithm we derived
in Section 3 to Spiral’s algorithm database in a way that is com-
patible with vectorization and parallelization. This enables us to let
Spiral automatically generate very fast pruned FFT implementations
and evaluate them for practically relevant parameters. By adding the
pruned FFT algorithm to Spiral, we enable Spiral to automatically
investigate the trade-off between FFT pruning, data locality, multi-
core parallelization, and SIMD vectorization. It automatically finds
the algorithm that matches the architecture and zero-pattern best.

4. EXPERIMENTAL RESULTS

Test setup. We evaluate the performance of our automatically gen-
erated single-precision pruned DFT implementations on a 2.66 GHz
Intel Core2Duo running Windows XP in 32-bit mode. All codes
were compiled with the Intel C++ compiler 10.1 with options “/O3
/QxT,” which enables support for the SSSE3 instruction set. SSSE3
instructions are explicitly inserted using the intrinsic function inter-
face provided by the Intel C++ compiler. We built our multi-threaded
implementations using the threading interface provided by the Vi-
sualStudio C libraries. All implementations are specialized to the
zero-pattern and the problem size.

All graphs in Fig. 1 show performance in pseudo Gflop/s, com-
puted as 5N log2 N/runtime. This states the performance a radix-2
FFT would have to achieve to reach the same runtime as the mea-
sured implementation for the given problem size (and extrapolates

2www.spiral.net

the measure for non-two-powers). The measure is normalized in-
verse runtime and takes into account both the speed and the reduc-
tion of arithmetic operations, allowing to compare vastly different
FFT algorithms, both pruned and unpruned.

Baseline implementation: DFT. As first experiment we estab-
lish that our baseline DFT implementation is as fast as the fastest
available DFT implementations. Fig. 1 (a) shows the performance
of Spiral-generated single-threaded, vectorized (pink line, squares)
and multi-threaded, vectorized (red line, circles) DFT implementa-
tions, compared to the single-threaded, vectorized implementation
of FFTW 3.1.2 (blue line, diamonds), Intel MKL 9.0 (green line, x),
and Numerical Recipes in C [12] (only two-powers, black crosses).

The single-threaded Spiral-generated DFT implementation is
slightly faster than its FFTW equivalent and about equal to single-
threaded MKL for two-powers. For non-two-power sizes MKL
shows a drastic performance drops. Neither MKL nor FFTW are
sped up by the second core for the tested problem sizes. Spiral-
generated multi-threaded code starts taking advantage of the second
core from size 2,048 on and achieves up to 75% speed-up over its
single-threaded counterpart. Numerical Recipes is more than 20
times slower than the fastest code on this machine, even though it
has only about a 20% higher operations count.

Input pruning. Next, we show that a pruned FFT algorithm
indeed can speed up the fastest available DFT implementation, and
that the speed-up behaves as expected. From the cost analysis in
Section 3 we conclude that one can expect 5% to 30% speed-up,
with smaller speed-up values for larger problem sizes or less zeros.
We show the performance behavior of 4 different zero-patterns, with
1/2, 3/4, 7/8, and 15/16 of the inputs known to be zero. The patterns
are derived from practical applications like interpolation or down-
sampling: either the center data is zero or the non-zero data is con-
centrated at the beginning or center of the data vector.

In Fig. 1 (b) we compare single-threaded, vectorized, Spiral-
generated DFT to Spiral-generated pruned DFT implementations,
with varying degree of zeros. (The baseline “Spiral DFT” is the
line “Spiral DFT SSE” from Fig. 1 (a).) Output pruned DFTs with
the same zero-pattern behave equivalently to the input-pruned im-
plementations. FFT pruning gives a pronounced speed-up for sizes
up to 1,024, and then the speed-up drops significantly. This is due
to the fact that up to 1,024 Spiral implements the DFT with 2 stages
(recursion 32 × 32, DFT32 as as base case), while for larger sizes
it requires more than 2 stages. As predicted, the speed-up is high-
est for the patterns with the largest numbers of zeros (15/16), and
the performance approaches the unpruned DFT once only half of the
inputs are known to be zero.

In Fig. 1 (c) we investigate the behavior of pruned DFTs in a
multi-threaded setting. We perform the exact same experiments as
shown in Fig. 1 (b), but ask Spiral to generate vectorized parallel
implementations that take advantage of both processor cores and the
SSSE3 instruction set. (The baseline “Spiral DFT” is the line “Spiral
DFT SSE+SMP” from Fig. 1 (a).) We see that pruning indeed is able
to speed up the fastest DFT implementations, which take advantage
of SIMD vector instructions and multiple cores. As in Fig. 1 (a),
the second processor starts providing speed-up around 2,048. The
speed-up obtained through pruning is similar to what we observed in
the single processor results in Fig. 1 (b).

Input and output pruning. Finally, we investigate the impact
of simultaneously pruning the input and output of a DFT. Fig. 1 (d)
compares the performance of an un-pruned DFT to two scenarios in
which both input and output patterns are known. In both cases only
1/4 of the inputs are non-zero, and 1/8 or 1/16 of the outputs are
non-zero respectively. We only evaluate the performance of SSSE3
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(a) DFT: Spiral vs. FFTW and MKL (2 cores, 4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 10.1, SSSE3, Windows XP 32-bit
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(b) Spiral: Pruned DFT vs. DFT (4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 10.1, SSSE3, Windows XP 32-bit
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(c) Spiral: Pruned DFT vs. DFT (2 cores, 4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 10.1, SSSE3, Windows XP 32-bit
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(d) Spiral: I/O Pruned DFT vs. DFT (4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 10.1, SSSE3, Windows XP 32-bit
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Fig. 1. Performance of DFT and pruned DFT on a 2.66 GHz Intel Core2Duo. Higher is better.

code on a single core. The obtained speed-up is higher than the input
pruned-only speed-up, but has the same general behavior. For small
sizes the performance gain is very pronounced, peaking at almost
80% speed-up.

5. CONCLUSION

In this paper we derive a Kronecker product formulation of the gen-
eral radix pruned Cooley-Tukey FFT algorithms for input or output
pruning and simultaneous input and output pruning. The formula-
tion is compatible with formal parallelization and vectorization and
automatic program generation and optimization. It supports block-
zero patterns that are known in advance. We include the algorithms
into the program generation system Spiral and automatically gen-
erate pruned FFT implementations that provide speed-up over the
fastest un-pruned FFT implementations available. This shows that
FFT pruning not only reduces the operations count but can lead to
considerable speed-up on modern computer systems.
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