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Abstract

This work describes and compares two black-box approaches, using syscall statistics and OS-level perfor-
mance metrics, to automatically diagnose different performance problems in parallel file systems. Both
approaches rely on peer-comparison diagnosis to compare statistical attributes of relevant metrics across
servers in order to indict the culprit node. An observation-based checklist is developed to identify from
the metrics affected the faulty resource, and it is demonstrated that this checklist applies commonly across
stripe-based parallel file systems. These approaches are demonstrated for four realistic problems–disk-hog,
disk-busy, network-hog, and packet-loss–injected into three different file-system benchmarks, dd, postmark,
and IOzone, in PVFS and Lustre clusters.
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Chapter 1

Introduction

Performance problems are inevitable in cluster computing, with root causes varying widely, from hardware
failures to software bugs. For instance, Google reported the variety of performance problems that occurred
in the first year of a cluster’s operation [15]: 40-80 machines saw 50% packet-loss, thousands of hard-drives
failed, connectivity was randomly lost for 30 minutes, 1000 individual machines failed, etc. Often, the most
interesting and trickiest problems to trace are not necessarily the outright crash (fail-stop) failures, but rather
those that result in a “limping-but-alive” system, i.e., the system continues to operate, but with degraded
performance. This work targets problem diagnosis (identifying the culprit node that is the source of the
problem) in parallel file-systems used for high-performance cluster computing (HPC).

Large scientific applications are typically I/O-intensive and require underlying file systems that can sup-
port high-bandwidth concurrent writes. The Parallel Virtual File System (PVFS) [10] and Lustre [35] are
both open-source, parallel file-systems that aim to provide such applications with high-speed data read/write
access to files. PVFS and Lustre are designed as client-server architectures, with many clients communicat-
ing with multiple I/O servers and one or more metadata servers. Both PVFS and Lustre support the UNIX
I/O interface and allows existing UNIX I/O programs to access files without recompilation. To facilitate
parallel access to a file, PVFS and Lustre distributes (or “stripes”) that file across multiple disks located on
physically distinct I/O servers.

File systems can experience performance problems that can be hard to diagnose and isolate. Performance
problems can arise from different system layers, e.g., bugs in the application, resource exhaustion miscon-
figurations of protocols, network congestion, etc. PVFS and Lustre are largely used within the HPC com-
munity, where performance is highly relevant. Thus, while diagnosing performance problems is important
in software systems in general to improve task-completion times, it is even more important in long-running
jobs in HPC environments, where the effects of performance problems can be magnified due to computa-
tions exhibiting long durations and being performed at large scales. Current diagnosis of PVFS problems
involve the manual analysis of client/server debug logs that record PVFS operations through code-level print
statements. Such white-box problem-diagnosis is fairly expensive in terms of runtime overheads, and also
requires code-level instrumentation and expert knowledge.

This work focuses on automatically diagnosing different performance problems in parallel file systems
by identifying, gathering and analyzing black-box performance metrics on every node in the system. It
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describes and compares two implementations of this black-box diagnosis strategy, one that distills statistics
from syscall event streams, and another that samples operating system performance metrics. Central to the
problem-diagnosis strategy is the hypothesis (borne out later by observations of PVFS’s and Lustre’s behav-
ior) that innocent (i.e., fault-free) I/O servers follow similar trends in their disk and network performance
metrics, and that a culprit I/O server appears markedly different in comparison. A similar hypothesis fol-
lows for the metadata servers. Based on these hypotheses, statistical peer-comparison approach is developed
that automatically singles out the culprit I/O (or metadata) server through the temporal correlation of the his-
tograms and other statistical attributes of gathered performance data across the I/O (or metadata) servers in
a parallel file system cluster.

This diagnosis approach is demonstrated for four realistic problems injected into three different file-
system benchmarks in PVFS and Lustre clusters. Interestingly, but unsurprisingly enough, the
peer-comparison diagnostic strategy indicts the culprit node correctly even in the face of workload changes,
which usually present a source of false positives for most statistical problem-diagnosis techniques. Experi-
ence in diagnosing PVFS and Lustre is also discussed, particularly in terms of the value of metrics such as
disk throughput and disk latency for diagnosis.

1.1 Problem Statement

This research is motivated by the following questions: (i) can one diagnose the culprit server in the face of a
performance problem in a parallel file system, (ii) if so, can one determine which server is affected and what
problem is causing the effect?, and (iii) what instrumentation sources are available that enables one to do
so? The following goals (and non-goals) are sought (or not sought) in addressing these research questions.

1.1.1 Goals

The following goals are sought to be satisfied in answering the research questions:

• Application-transparency. Applications using PVFS/Lustre should not require any modification. The
approach should be independent of PVFS/Lustre’s operation.

• Minimize false-positive rate. The approach should be able to differentiate between anomalous behavior
and legitimate changes in behavior (e.g., workload changes due to increased request rate).

• Minimize instrumentation overhead. Overheads for instrumentation and analysis should not adversely
impact PVFS/Lustre’s operation.

• Problem coverage. Problem coverage is motivated by the anecdotal experience [9] of problems that have
occurred in a production parallel file system deployment (see § 2.2).

1.1.2 Non-Goals

In answering the research questions, it is currently not sought to satisfy the following goals:
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• Code-level debugging. The approach aims for coarse-grained problem diagnosis by identifying the culprit
server. Where possible, it is sought to identify which resource is under contention. However, it is not
currently aimed for finegrained problem diagnosis that would identify the underlying bug or offending
lines of PVFS/Lustre code.

• Pessimistic workloads. The peer-comparison diagnosis strategy relies on I/O servers exhibiting similar
request patterns. In non-replicated parallel file systems, the request pattern for most workloads is similar
across all servers—client requests are either large enough to be striped across all servers, or random
enough to result in random distribution of access requests. However, some workloads (e.g., overwriting
the same portion of a file, or only writing stripe-unit-sized records to every stripe-count record offset)
make requests distributed to only a subset, possibly one, of the servers. This work does not aim to support
these workloads, which indeed may generate false positives.

• Diagnose non-peers. The diagnosis strategy is fundamentally incapable of diagnosing performance prob-
lems on non-peer nodes. Thus it is not aimed to diagnose problems on such non-peered nodes (such as
Lustre’s single metadata server).

1.2 Thesis Statement

This thesis focuses on problem diagnosis in distributed systems. Specifically, the thesis statement is:

Through the collection of black-box data such as syscall statistics and OS-level perfor-
mance metrics, it is possible to automatically and transparently indict the culprit node
and diagnose the root cause of a performance problem in parallel file system clusters.

1.2.1 Hypotheses

It is hypothesized that, under a performance fault in a PVFS or Lustre cluster, performance metrics should
exhibit observable anomalous behavior on the culprit servers. Additionally, with the knowledge of
PVFS/Lustre’s overall operation, it is hypothesized that the statistical trends of these performance data
(i) should be similar (albeit with inevitable minor differences) across fault-free I/O servers, even under
workload changes, and (ii) will differ on the culprit I/O server, as compared to the fault-free I/O servers.

1.2.2 Validation

These hypotheses are validated through the design and implementation of two agents to collect syscall statis-
tics and OS-level performance metrics as well as two analysis strategies to diagnose performance problems
using the collected data. These analysis strategies are evaluated by injecting the four performance problems
motivated by anecdotal evidence—disk-hog, disk-busy, network-hog, and packet-loss—into three different
file-system benchmarks, dd, postmark, and IOzone. This method of evaluation is performed, for OS-level
performance metrics, on both PVFS and Lustre clusters. Since the Lustre client and server are both im-
plemented purely in kernel space, it is not possible to apply the syscall approach to it. Thus, the syscall
statistics approach is evaluated against PVFS only.
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1.2.3 Assumptions

It is assumed that a majority of the I/O servers exhibit fault-free behavior. It is also assumed that all peer
server nodes are similar, with identical software configuration including data striping parameters, with an
equal number of storage targets (of same size) per server,1 the same amount of memory,2 and the same
class and speed-rating of network interfaces. Nodes do not need to be strictly homogeneous, but significant
deviations in performance characteristic of storage and network devices may mask performance faults of
lower severity. It is assumed that the physical clocks on the various nodes are synchronized (e.g., via NTP)
so that one can extract time-stamped performance metrics that can be temporally correlated across these
nodes.

1.3 Related Work

Past work on failure diagnosis in distributed systems has focused mainly on Internet services [2, 12, 13, 11,
6, 23, 29, 1], with some work examining debugging performance problems in high-performance computing
environments [26]. This work is different in targeting HPC file-systems instead of the deployed workload
application.

The relevant aspects of past work on fault diagnosis in distributed systems are in their approaches to
diagnosing faults. These can be largely classified into two categories: path-based approaches [2, 29, 6], and
component-based approaches [13, 11, 12, 23].

Aguilera et al.’s work [2] treats components in a distributed system as black-boxes, inferring paths by
tracing RPC messages, and detecting faults by identifying request flow paths with abnormally long latencies.
Pip [29] traces causal request flows with tagged messages, which are checked against programmer-specified
expectations. Pip identifies requests and specific lines of code as faulty when they violate these expectations.
Magpie [6] uses expert knowledge of event orderings to trace causal request flows in a distributed system.
Magpie then attributes system resource utilizations (e.g. memory, CPU) to individual requests and clusters
them by their resource usage profiles. Magpie then detects faulty requests which identifying those whose
resource usage profiles fell outside of all clusters.

Pinpoint [12, 23] tags request flows through J2EE web-service systems, and once a request is known
to have failed, it identifies the responsible request processing components. This differs from the work by
Aguilera, Magpie, and Pip, in that the fault localization is at the component level and not path-based. Cohen
et al. [13] addressed the issue of metric selection for fault diagnosis in large systems with many available
metrics by identifying metrics with a high efficacy at identifying failed requests. This is achieved by a
summary and index of system history as expressed by available metrics and by marking signatures of past
histories as being indicative of a particular fault, which enables them to diagnose future occurrences. Agar-
wal et al.’s work focuses on detecting changepoints in the specific metrics that reflect patterns of behavior
as indicators of faults based on a series of rules [1].

1Ensures that Lustre objects are selected round-robin and that request load on servers is approximately equal
2Relevant only to the extent to which it alters caching behavior.

7



1.3.1 Performance Modeling and Prediction

Closely related to failure diagnosis is the problem of performance modeling and prediction—information
that can be used as input to failure diagnosis algorithms. Minerva [3] automatically makes design choices
for storage systems with accurate performance predictions. Mesnier et al. [24] model the performance of
storage devices using by comparing performance across pairs of devices to predict their throughput and
bandwidth.

1.3.2 Instrumentation and Trace Systems

Tracing and instrumentation generate system views that are useful for diagnosis. File system-specific trac-
ing mechanisms include Stardust [37], which traces causal request flows through a distributed storage sys-
tem, and TraceFS [4], which uses a thin file-system interpositioned between the Linux VFS layer and the
underlying file-system to provide operation traces at multiple granularities. PVFS is positioned at the High-
Performance Computing (HPC) community, and is commonly used on large-scale clusters for scientific
applications, such as those using the Message Passing Interface (MPI). Performance tools for HPC environ-
ments include TAU [31] and Paradyn Parallel Performance Tools [25]. For low-level OS instrumentation,
Chopstix [7] uses sketches to approximately track a large number of OS events with very low overhead.
These events may then be reconstructed offline for analysis.

1.3.3 Syscall-based Approaches

Shen [30] and OSprof [20] both use syscall statistics to detect performance problems. Shen uses change pro-
files to incrementally build predictive models of system performance, which are used to detect performance
anomalies against reference workloads. OSprof captures and analyzes distributions of syscall latencies un-
der different system conditions to identify code paths that exhibit latency peaks. The statistical analysis
presented here is similar to—but less general than—both in that it leverages peer comparison of syscall
latencies across a set of nodes to establish, on the fly, a reference against which individual nodes may be
compared to diagnose performance anomalies.

1.3.4 Failures in Storage Systems

Other related work includes studies of storage system failures. Jiang et al. [19] conclude from storage logs
of 1,800,000 disks deployed at Network Appliance customer sites that disk failures contributed to 20-55%
of storage subsystem failures, while other causes included physical interconnects and protocol stacks that
led to disk replacement. This finding motivates failure diagnosis at the level of the software stack, as this
can point out causes of failure due to software rather than hardware to avoid costly hardware replacements.
Prabhakaran et al. [27] analyze failures in journaling file-systems by building models of file system behavior.
Work to increase the fault-tolerance of file-systems takes failures into consideration. IRON File Systems [28]
re-examines the approach of traditional file-systems towards error handling, analyzes file-system failure
policies, and boosts the end-to-end robustness of the ext3 file-system.
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Chapter 2

Background

2.1 PVFS & Lustre Architectures

PVFS clusters consist of one or more metadata servers and multiple I/O servers that are accessed by one
or more PVFS clients, as shown in Figure 2.1. The PVFS server consists of a single monolithic user-space
daemon that may act in either or both metadata and I/O server roles. Historically I/O and metadata services
were ran on separate nodes, but recent versions of PVFS encourage running both services on all nodes to
enhance performance.

PVFS clients consist of stand-alone applications that use the PVFS library (libpvfs2) or MPI applications
that use the ROMIO MPI-IO library (that supports PVFS internally) to invoke file operations on one or more
servers. PVFS can also plug in to the Linux Kernel’s VFS interface via a kernel module that forwards the
client’s syscalls (requests) to a user-space PVFS client daemon that then invokes operations on the servers.
This kernel client allows PVFS file-systems to be mounted under Linux in a fashion similar to other remote
file-systems like NFS.

PVFS’s key characteristic is that file-objects are distributed across all I/O servers in a cluster. In par-
ticular, file data is striped across each I/O server with a stripe size of 64 kB. For each file-object, the first
stripe segment is located on the I/O server to which the object handle is assigned. Subsequent segments are
accessed in a round-robin manner on each of the remaining I/O servers. This characteristic has significant
implications on PVFS’s throughput in the event of a performance problem.

Lustre clusters consist of one active metadata server which serves one metadata target (storage space),
one management server which may be colocated with the metadata server, and multiple object storage
servers which serve one or more object storage targets each. The metadata and object storage servers are
analogous to PVFS’s metadata and I/O servers with the main distinction of only allowing for a single active
metadata server per cluster. Unlike PVFS, the Lustre server is implemented entirely in kernel space as a
loadable kernel module. The Lustre client is also implemented as a kernel space file system module, and
like PVFS, provides file system access via the Linux VFS interface. A userspace client library (liblustre) is
also available.

Lustre allows for configurable striping of file data across one or more object storage targets. In the
default configuration, file data is stored on a single target. The stripe_count parameter may be set on a
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Figure 2.1: Architecture of parallel file systems, showing the I/O servers and the metadata servers.

per-file, directory, or file system basis to specify the number of object storage targets that file data is striped
over. The stripe stripe_size parameter specifies the stripe unit size and may be configured to multiples
of 64 kB, with a default of 1 MB (the maximum payload size of a Lustre RPC). The stripe_offset
parameter determines on which object storage target the first stripe segment resides, with −1 indicating that
first segments should be allocated round-robin.

2.2 Anecdotal Motivation

The faults studied in this work are motivated by the PVFS developers’ anecdotal experience [9] of problems
faced/reported in various production PVFS deployments, one of which is Argonne National Laboratory’s
557 TFlop Blue Gene/P (BG/P) PVFS cluster. Accounts of experience with BG/P indicate that disk/network
problems account for approximately 50%/50% of performance issues [9]. A single poorly performing server
has been observed to impact the behavior of the overall system, instead of its behavior being averaged out
by that of non-faulty nodes [9]. This makes it difficult to troubleshoot system-wide performance issues, and
thus, fault localization (i.e., diagnosing the faulty server) is a critical first step in root-cause analysis.

Anomalous disk behavior can result from a number of causes. Aside from failing disks, RAID con-
trollers may scan disks during idle times to proactively search for media defects [18], inadvertently creating
disk contention that degrades the throughput of a disk array [38]. The disk-busy injected problem (§ 4.1)
seeks to emulate this manifestation. Another possible root-cause of a disk-busy problem is disk contention
due to the accidental launch of a rogue processes. For example, if two remote file servers (e.g., PVFS and
GPFS) are collocated, the startup of a second server (GPFS) might negatively impact the performance of the
server already running (PVFS) [9].

Network problems primarily manifest in packet-loss errors, which is reported to be the “most frustrating”
[sic] to diagnose [9]. Packet loss is often the result of faulty switch ports that enter a degraded state when
packets can still be sent but occasionally fail CRC checks. The resulting poor performance spreads through
the rest of the network, making problem-diagnosis difficult [9]. Packet loss might also be the result of an
overloaded switch that “just can’t keep up” [sic]. In this case, network diagnostic tests of individual links
might exhibit no errors, and problems manifest only while PVFS is running [9].
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Errors do not necessarily manifest identically under all workloads. For example, SANs with large write
caches can initially mask performance problems under write-intensive workloads and thus, the problems
might take a while to manifest [9]. In contrast, performance problems in read-intensive workloads tend to
manifest rather quickly.

A consistent, but unfortunate, aspect of performance faults is that they result in a “limping-but-alive”
mode, where system throughput is drastically reduced, but the system continues to run without errors be-
ing reported. Under such conditions, it is likely not possible to identify the faulty node by examining
PVFS/application logs (neither of which will indicate any errors) [9].
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Chapter 3

Instrumentation

3.1 Syscall Instrumentation

System-call instrumentation includes recording the syscall event-stream of a particular process (e.g., appli-
cation, PVFS client, PVFS server) and extracting the metrics relevant for analysis.

3.1.1 Syscap: Black-box Syscall Capture

The syscap tool was developed for the purpose of instrumenting syscalls. Unlike strace, syscap
produces a regular, structured output that is amenable to machine analysis. In contrast, strace’s irregular,
truncated output is intended primarily to facilitate manual debugging.

The syscap tool uses ptrace (a user-space Linux API for syscall interception and modification,
without changes to the monitored process) to trace three kinds of events: syscalls, signals, and ptrace

events. ptrace events are notifications of important process-lifecycle events (fork, clone, exec, exit) that
are delivered to syscap immediately, prior to the kernel executing the associated operation.

Each local process’ traced events are written, in the order of event completion, as a record to a syscall-
event log (sclog). Record fields include a record number (that identifies events in order of completion), a
sequence number (that identifies events in order of start), timestamp (at the start of the event), light-weight
process ID, syscall/signal/event number, syscall register arguments (a total of six in all), syscall result, and
syscall wall-clock service time.

In addition to the sclog, syscap produces a file-descriptor update-log (fdlog) consisting of records
that describe updates to traced processes’ file-descriptor tables. Record fields consist of: a record number (to
link an update to the generating sclog event), the file-descriptor number, and the target file name. Records
are generated when a syscall is encountered that changes the open-file table (e.g., open, close, accept,
connect, etc.). The target file name is determined by reading the target of the /proc/pid/fd/# sym-
link. For regular files, the target is simply the file name referenced by the symlink. For anonymous “files”
(unnamed pipes, network sockets, etc.), a special identifier is maintained that possibly includes other dis-
criminating characteristics of that entity. For example, TCP-socket “files” include the end-point IP address
and port number, enabling the mapping of a socket to a specific client-server link.

To complement syscap, a set of metric-extraction utilities were developed to parse the sclog and
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fdlog files. These utilities invoke experiment-specific callback functions when processing specific syscalls,
signals, and file-descriptor updates, and extract the metrics relevant for that experiment’s analysis. To ex-
tract syscall statistics for diagnosing performance problems, these utilities look for file-descriptors associ-
ated with files (server file-objects) stored in the PVFS storage-space as well as TCP sockets between I/O
servers and clients. On observing the creation of such a file-descriptor, these utilities track all syscalls that
subsequently use the file-descriptor, and extract the service times of all associated read and write syscalls.

3.1.2 Metrics of Interest

In diagnosing performance problems the metrics of interest are: (i) disk-read service time (dread), (ii)
disk-write service time (dwrite), (iii) server’s network-read time (nsread), and (iv) client’s network-
read time (ncread). dread and dwrite are the values of the wall-clock service times for read and write
syscalls, respectively, on I/O server file-objects. nsread and ncread represent the amount of time that it
takes for the server (client) to read a single PVFS request (response) over the network.

Since PVFS uses non-blocking reads, the amount of time needed to transfer an entire request/response
over the network is estimated by the time (timestamp) elapsed between the read of the first received packet
of a request, and the time (timestamp + service time) of the read of the last received packet of that request.
Requests are demarcated by observing the number of bytes intended to be read as well as the number of
bytes actually returned by the read call. On receiving a request, PVFS issues a read of the full request-
size. Each additional read call specifies the remaining request-size (number of bytes not yet received). A
request is considered to have been received when the request-size equals the number of bytes received. Note
that, implicitly, a request must require at least two reads in order to estimate the transmission time. Also,
while this transmission time is merely an estimate of the actual transmission time (because it does not factor
in the amount of time to send the request’s first packet), it grows linearly with the actual transmission time.

3.2 /proc Instrumentation

In Linux, OS-level performance metrics are made available as text files in the /proc pseudo file system.
Thus, /proc instrumentation is the mechanism by which OS-level performance metrics are sampled and
collected. Most /proc data is collected via sysstat 7.0.0’s sadc program [17]. sadc is used to periodically
gather disk-, and network-related performance metrics at a sampling interval of one second. Although sysstat
supports the collection of many types of metrics (e.g., CPU usage), because this work is primarily concerned
with performance problems due to storage and network resources, sadc’s use is restricted to sampling to
disk- and network-related metrics.

Disk-related metrics: Sysstat provides both disk-throughput (tps, rd_sec, wr_sec) and disk-latency
(await, svctm) metrics for storage. Specifically, the following metrics are collected:

• Transfers per second (tps). Number of I/O requests made to the disk per second; includes both read and
write requests.

• Reads per second (rd_sec). Number of sectors read from the disk per second.
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• Writes per second (wr_sec). Number of sectors written to the disk per second.

• Average request size (avgrq-sz). Average size (in sectors) of disk I/O requests.

• Average queue length (avgqu-sz). Average number of queued disk I/O requests; this is a generally a
low integer (0-2) when the disk is under-utilized, and increases to ≈100 as the disk utilization saturates.

• Average wait time (await). Average time (in milliseconds) that a request waits to complete; includes
queuing delay and service time.

• Service time (svctm). Average service time (in milliseconds) of I/O requests; this is the pure disk-
servicing time, and does not include any queuing delay.

• Bandwidth utilization (%util). Percentage of CPU time in which I/O requests are made to the disk.

Network-related metrics: Sysstat provides the following network-throughput metrics:

• Packets received per second (rxpck).

• Packets transmitted per second (txpck).

• Bytes received per second (rxbyt).

• Bytes transmitted per second (txbyt).

Unfortunately sysstat provides only throughput data for network performance metrics. To obtain network-
congestion data as well, the contents of /proc/net/tcp is sampled, on both clients and servers, once ev-
ery second. /proc/net/tcp captures per-connection metrics and, in particular, TCP congestion-control
data [34] from which network congestion can be deduced. Specifically, /proc/net/tcp provides the
sending congestion window (cwnd) metric—the number of segments allowed to be sent outstanding with-
out acknowledgment.
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Chapter 4

Diagnostic Approach

Parallel file system workloads typically have high bandwidth requirements. For example, scientific appli-
cations may write from many client nodes to a single very large file. Parallel file systems support these
high bandwidth workloads by distributing the workload across many server machines to achieve greater
throughputs than a single server could. In this case, the hardware resources that are most likely to pose
as bottlenecks are network and storage. Fail-stop performance problems usually result in an outright crash
of a server, making it relatively straightforward to indict the culprit server. This work targets non-fail-stop
disk and network performance problems as this class of hardware performance-faults can reduce server
performance by at least an order of magnitude, without escalating into an outright server crash.

4.1 Failures of Interest

This work defines a performance fault as a problem that has an observable negative effect on I/O throughput.
There are basically three resources—CPU, disk, network—being contended for that are likely to result in
throughput degradation. CPU is an unlikely bottleneck as parallel file systems are mostly I/O-intensive, and
fair CPU scheduling policies should guarantee that enough time-slices are available. Thus, focus is on the
remaining two resources, disk and network, that are likely to pose performance bottlenecks.

Motivated by anecdotal experience of problems encountered in production deployments (§ 2.2), this
work separates failures involving disk and network resources into two classes. The first class is hog faults,
where a rogue process on the monitored file-servers creates an unusually high workload for the specific
resource. The second class is busy or loss faults, where an unmonitored (i.e., outside the scope of the server
OSes) third-party creates a condition that causes a performance degradation for the specific resource. To
explore all combinations of problem resource and class, this work studies the diagnosis of four problems—
disk-hog, disk-busy, network-hog, packet-loss (network-busy).

Disk-hogs can result from a runaway, but otherwise benign, process. They may occur due to unexpected
cron jobs, e.g., an updatedb process generating a file/directory index for GNU locate, or a monthly
software-RAID array verification check. Disk-busy faults can also occur in shared-storage systems due
to a third-party/unmonitored node that runs a disk-hog process on the shared-storage device; this is viewed
differently from a regular disk-hog because the increased load on the shared-storage device is not observable
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as a throughput increase at the monitored servers.
Network-hogs can result from a local traffic-emitter (e.g., a backup process), or the receipt of data

during a denial-of-service attack. Network-hogs are observable as increased throughput (but not necessarily
“goodput”) at the monitored file servers. Packet-loss faults might be the result of network congestion, e.g.,
due to a network-hog on a nearby unmonitored node, or due to result of packet corruption and packet-loss
from a failing NIC.

4.2 Observations of Parallel File System Behavior

This section highlights some (empirically-based) observations of PVFS’s and Lustre’s behavior that, it is
believed, generally characterize the behavior of striped-based parallel file systems.1

[Observation 1] In a homogeneous (i.e., identical hardware) cluster, I/O servers track each other closely
in throughput and latency, under fault-free conditions.

For N I/O servers, I/O requests of size greater than (N−1)× stripe_size results in I/O on each server for a
single request. Multiple I/O requests on the same file, even for smaller request sizes, will quickly generate
workloads2 on all servers. Even I/O requests to files smaller than stripe_size will generate workloads on all
I/O servers, as long as enough small files are read/written. This is observed for all three target benchmarks,
dd, PostMark and IOzone. For metadata-intensive workloads,3 it is expected that metadata servers also track
each other in proportional magnitudes of throughput and latency.

[Observation 2] When a performance fault occurs on at least one of the I/O servers, each of the other
(fault-free) I/O servers experiences an identical drop in throughput.

When a client I/O syscall involves requests to multiple I/O servers, the client has to wait for all of these
servers to respond before proceeding onto the next syscall.4 Thus, the cluster’s performance, as perceived
by the client, is constrained by the performance of the slowest server. This is referred to as the bottlenecking
condition.

When one of the servers experiences a performance fault, that server’s per-request service-time in-
creases. Because the client blocks on the syscall until all server responses are received, the client’s syscall-
service time also increases. This leads to slower application progress and fewer requests/sec from the client.
The overall effect is a proportional decrease in throughput on all I/O servers.

1Preliminary investigation of two other parallel filesystems, GlusterFS [5] and Ceph [39], also exhibit the behavior observed in
PVFS and Lustre, suggesting that this diagnosis approach would apply to them as well.

2Pessimistic workloads might not result in equitable workload distribution across I/O servers; one server would be dispropor-
tionately deluged with requests, while the other servers are idle. Examples include a workload that constantly rewrites the same
stripe_size chunk of a file, or one that writes to the stripe_size chunks of a file that are stored on the same I/O server. Performance
faults under such workloads would escape diagnosis.

3The metadata servers—at least in PVFS—will never be exactly equivalent since metadata operations often involve path
lookups. With the root directory being entirely located on a single metadata server, that particular server should see the most
activity as every path lookup requires looking though “/” in addition to later directories. Still, one expects throughput/latency
increases and decreases to be reflected across all metadata servers.

4Since Lustre performs client side caching and readahead, client I/O syscalls may return immediately even if the corresponding
file server is faulty. Even so, a maximum of 32 MB may be cached (or 40 MB pre-read) before Lustre must wait for responses.
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Figure 4.1: Peer-divergence of rd_sec for
iozoner workload with disk-hog fault.
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Figure 4.2: No divergence of rd_sec for
iozoner workload with disk-busy fault.

[Observation 3] When a performance fault occurs on at least one of the I/O servers, the other (fault-free)
I/O servers are unaffected in their per-request service times.

Because there is no server-server communication (thus, no server inter-dependencies), a performance fault
on one I/O server will not negatively influence latency (per-request service-time) of the other servers. If
these servers were previously highly-loaded, one expects latency to possibly improve (due to potentially
decreased resource contention). If the servers were only marginally loaded, one would expect no change.

[Observation 4] For disk-hog (network-hog) faults, disk- (network-) throughput increases on the faulty
server and decreases at the non-faulty servers.

A disk-hog or network-hog fault is due to a third-party that creates additional I/O traffic that is observed as
increased disk- or network-throughput. The additional I/O traffic creates resource contention that ultimately
manifests as a decrease in file server throughput on all servers (leading to the bottlenecking condition of
observation 2). Here, disk-throughput is measured in terms of the metrics rd_sec and wr_sec (or alter-
natively tps). Network-throughput is measured in terms of rxbyt and txbyt (or rxpck and txpck).
Thus, disk- and network-hog faults can be localized to the culprit I/O server by looking for asymmetry (or
peer-divergence) in the disk- and network-throughput metrics, respectively. This is seen in Figure 4.1.

[Observation 5] For disk-busy (packet-loss) faults, disk- (network-) throughput decreases on all servers.

For disk-busy (packet-loss) faults, there is no asymmetry in disk (network) throughputs, respectively, across
I/O servers (because there is no other process that creates observable throughput, and the server daemon
has the same throughput on all of the nodes). Instead, there is a uniform decrease in the disk (network)
throughput metrics across all servers. Thus, disk-busy and packet-loss faults cannot be localized to the
culprit I/O server by looking for peer-divergence in the disk-and network-throughput metrics, respectively.
This is seen in Figure 4.2.

[Observation 6] For disk-busy and disk-hog faults, disk-latency increases on the faulty server and de-
creases at the non-faulty servers.
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Disk-latency metrics (await, svctm) exhibit different responses to network and disk faults. For disk-
busy and disk-hog faults, await, avgqu-sz and %util all increase on the faulty I/O server as the disk’s
responsiveness decreases and requests start to backlog. The increased await on the faulty server results
in an increased server response-time, effectively making the client wait longer before it can issue its next
request. The additional delay experienced by the client reduces its I/O throughput, resulting in the fault-free
servers having increased idle time. Thus, the await and %util metrics decrease on the fault-free I/O
servers, enabling a peer-comparison-based approach to diagnose disk-hog and disk-busy faults. This is seen
in Figure 4.3.

[Observation 7] For network-hog and packet-loss faults, the TCP congestion-control window decreases
significantly on the faulty server, as compared to the non-faulty servers.

The cwnd metric indicates the number of segments that the TCP congestion-control algorithm allows to
be outstanding (i.e., without acknowledgment) on the wire for a given client-server connection. The goal
of congestion control is to allow cwnd to be as large as possible, without experiencing packet-loss due
to overfilling packet queues. When packet-loss occurs and is recovered within the retransmission timeout
interval, the congestion window is reduced to half. If recovery takes longer than retransmission timeout,
cwnd is reduced to one segment.

When nodes are transmitting data, their cwnds metrics either stabilize at high (≈100) values or oscillate
(between ≈10–100) as congestion is observed on the network. However, during both network-hog and
packet-loss experiments, cwnds of connections to the faulty server drops by several orders of magnitude
to single-digit values and hold steady until the fault is removed, at which time the congestion window is
allowed to open again. Observation of these sustained drops compared to non-faulty I/O servers enables
peer-comparison diagnosis for both network faults. This is seen in Figure 4.4.

4.3 Discussion on Metrics

Comments on disk-throughput metrics: There is a notable relationship between the disk- and network-
throughput metrics: tps×avgrq-sz=rd_sec+wr_sec. This relationship is partially to blame for the
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reliability of disk-throughput metrics in diagnosis. Of the metrics, rd_sec and wr_sec are more accurate
in capturing real disk activity, and are strongly correlated across peer I/O servers. The peer relationship of
tps across servers, and that of avgrq-sz across servers, are not as strong, as a lower transfer rate can
be compensated by making larger-sized requests. Occasionally, one sees the tps and avgrq-sz metrics
fluctuate on one or more servers due to behavioral differences in the flush daemon or differing construction
of the scatter gather lists used for device DMA—in the extreme, this behavior can result in wrongly indicting
a fault-free node as the culprit. Thus, rd_sec and wr_sec are the preferred throughput metrics for this
work.

Comments on svctm: The impact of disk faults on svctm is perhaps a bit counterintuitive. Essentially,
there are three factors that influence the service time of a particular request: the cost of locating the re-
quest’s starting sector (seek time and rotational delay), the cost of media-transfer time, and the cost of a
potential reread/rewrite in the event of a read/write error. Normally, the disk is servicing other (potentially
unobservable) requests that might result in increased seek time, in the event of a disk fault. Thus, for an
unchanged avgrq-sz, svctm will increase on the faulty I/O server, as compared to its peer I/O servers.
However, in the case of a disk-hog fault, the hog process might be issuing requests of different size than
PVFS or the flush daemon—if the hog process’ disk requests are smaller in size, then, there is a decrease
in media-transfer time that might result in a decrease of svctm on the faulty I/O server, as compared to its
peer I/O servers.

Other metrics: While performance faults might manifest on other metrics (such as CPU usage, context-
switch rate, paging rate, etc.), these secondary manifestations are due to the overall reduction in I/O through-
put during the faulty period. As these metrics report “nothing new”, they are not factored into diagnosis and
root-cause analysis.
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Chapter 5

Experimental Set-Up

5.1 Testbed

Experiments are performed on a cluster of AMD Opteron 1220 machines, each with 4 GB RAM, two Seagate
Barracuda 7200.10 320 GB disks (one dedicated for PVFS/Lustre storage), and a Broadcom NetXtreme
BCM5721 Gigabit Ethernet controller. Each node runs Debian GNU/Linux 4.0 (etch) with Linux kernel
2.6.18. The machines run in stock configuration with background tasks turned off. PVFS experiments
consist of 10 combined I/O and metadata servers and 10 clients, while Lustre experiments consist of 10
object storage (I/O) servers with a single object storage target each, a single (dedicated) metadata server,
and 10 clients.

For these experiments PVFS 2.8.0 is used in the default server (pvfs2-genconfig generated) con-
figuration with two modifications. First, the Direct I/O method (TroveMethod directio) is used
to bypass the Linux buffer cache for PVFS I/O server storage as it ensures syscall metrics reflect disk
service times instead of cache hits, and also because its use confounds diagnosis with OS-level perfor-
mance metrics (see § 8.2 for the difficulties introduced by cache behavior). Second, the Flow buffer size
(FlowBufferSizeBytes) is increased to 4 MB (from 256 kB) to allow larger bulk data transfers and
enable more efficient disk usage.

The PVFS kernel client is also patched to eliminate the 128 MB total size restriction on the
/dev/pvfs2-req device request buffers and to vmalloc memory (instead of kmalloc) for the buffer
page map (bufmap_page_array) to ensure that larger request buffers are actually allocatable. The PVFS
kernel client is then invoked with 64 MB request buffers (desc-size parameter) in order to make 4 MB
data transfers to each of the 10 I/O servers.

For Lustre experiments the etch backport of the Lustre 1.6.6 Debian packages are used in the default
server configuration with a single modification to set the lov.stripecount parameter to −1 to stripe
files across each object storage target (I/O server).

The nodes are rebooted immediately prior to the start of each experiment. Time synchronization is
performed at boot-time using ntpdate; no time synchronization is performed during experiments to avoid
data discrepancies due to unexpected time adjustments. For PVFS experiments, a new ext2 file system is
created on the dedicated storage disk of each server node after nodes are rebooted. Then, in both PVFS and
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Lustre experiments, the PVFS/Lustre mkfs routine is invoked to set up the storage subsystem.1 Once the
servers are initialized and the client is mounted, the monitoring agents are initialized and capture metrics to
a local (non-storage dedicated) disk, sync is performed, followed by a 15-second sleep, and the experiment
benchmark is run.

The experiment benchmark runs for 120 seconds in fault-free mode, prior to fault injection. The fault
is then injected for 300 seconds and then deactivated. The experiment continues to the completion of the
benchmark, which is ideally timed to run for a total of 600 seconds in the fault-free case. This run time
allows the benchmark to run for at least 180 seconds after a fault has been removed in order to determine if
there are any delayed effects.

5.2 Workloads

The five experiment workloads used are derived from three experiment benchmarks: dd, PostMark, and IO-
zone. For all workloads, the same workload is invoked concurrently on all clients. The first two workloads,
ddw and ddr, either write zeros (from /dev/zero) to a client-specific temporary file or read the contents
of a previously written client-specific temporary file and write the output to /dev/null.

dd [36] performs a constant-rate, constant-workload large-file read/write from/to disk. It is the simplest
large-file benchmark to run, and it was chosen in order to analyze and understand the response of the system
prior to running more complicated workloads. Although not necessarily representing the behavior of any
specific application, dd models the behavior of scientific computing workloads with constant data-write
rates, an important class of applications that PVFS aims to support.

The next two workloads, iozonew and iozoner, consist of the same common file-system benchmark,
IOzone v3.283 [8]. iozonew is run in write/rewrite mode and iozoner in read/reread mode. Each IOzone
benchmark uses only a single test to ensure that faults are injected with the same workload characteristics
across each redundant experiment, making results comparable. IOzone’s behavior is similar to dd in that it
has two constant read/write phases. Thus, IOzone is a large-file I/O-heavy benchmark with few metadata
operations. However, there is an fsync and a workload change half-way through the benchmark.

The fifth benchmark is PostMark v1.51 [22]. PostMark was chosen as a metadata-server heavy workload
with small file writes (all writes < 64kB thus, writes occur only on a single I/O server per file).

5.2.1 Configurations of Workloads

For the ddw workload, a 17 GB file is used with a record-size of 40 MB for PVFS, and a 30 GB file is used
with a record-size of 10 MB for Lustre. File sizes are chosen to result in a fault-free experiment runtime
of approximately 600 seconds. The PVFS record-size was chosen to result in 4 MB bulk data transfers to
each I/O server, which was empirically determined to be the knee of the performance vs. record-size curve.
The Lustre record-size was chosen to result in 1 MB bulk data transfers to each I/O server—the maximum
payload size of a Lustre RPC. Since Lustre both aggregates client writes and performs readahead, it was
found that varying record-size does not significantly alter Lustre read or write performance. For ddr a

1Lustre’s mkfs automatically reformats the storage partition using its custom ldiskfs file system, hence no separate formatting
step is performed.
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27 GB file is used with a record-size of 40 MB for PVFS, and a 30 GB file is used with a record-size of
10 MB for Lustre (same as ddw).

For both the iozonew and iozoner workloads, an 8 GB file is used with a record-size of 16 MB (the
largest record-size that IOzone supports without modification) for PVFS. For Lustre a 9 GB file is used with
a record-size of 10 MB for iozonew, and a 16 GB file is used with the same record-size for iozoner.
The postmark workload uses the default configuration with 16,000 transactions for PVFS and 53,000
transactions for Lustre to give a sufficiently long-running benchmark.

5.3 Fault Injection

In fault-induced experiments, a single fault is injected at a time into one of the I/O servers with the intent of
inducing a degraded performance for either network or disk resources, causing the system to bottleneck on
that resource.

A disk-hog problem is simulated by running a dd process, reading 256 MB blocks (using direct I/O)
from an unused partition on one of the storage disks.

A disk-busy problem is simulated by running an sgm_dd process (from the Linux sg3_utils pack-
age [16]), which issues low-level SCSI I/O (SG_IO) commands via the Linux SCSI Generic (sg) driver, to
read 1 MB blocks from the same unused partition on one of the storage disks. By using SCSI I/O commands
via the sg driver the SCSI Disk (sd) driver is bypassed, hence these commands are not reflected in the
storage disk’s throughput performance metrics, and are thus, unobservable2 as they would be if they were
made by a third-party server to a shared storage device.

A network-hog problem is simulated either by having a third-party open a TCP connection to a listening
port on one of the PVFS I/O servers and sending zeros to it (write-network-hog) or by having the I/O server
send zeros to the third-party (read-network-hog).

A server receive-packet-loss (receive-pktloss) problem is simulated by a netfilter firewall rule that prob-
abilistically matches packets received at one of the I/O servers drops them with probability 5%. A server
send-packet-loss (send-pktloss) problem is simulated by a firewall rule on all clients that matches packets
incoming from a single server (this has the same effect as placing the firewall rule on the server output,
except that in the latter case, netfilter returns an error to the sending application instead of silently dropping
packets).

2The term “unobservable” refers to the fact that the workload is not directly observed as transactions (tps) or throughput
(rd_sec/wr_sec). However one can infer the workload based on its impact on latency.
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Chapter 6

Diagnosis Algorithm

Both the syscall statistic- and OS performance metric-based approaches target disk and network performance
problems for diagnosis in parallel file system clusters. Both algorithms rely on the hypothesis that, under
fault-free conditions, different I/O servers have similar average behavior (because of an equitable distribution
of client requests across them). Both algorithms also exploit the expected asymmetrical (i.e., peer-divergent)
behavior of faulty I/O servers, as compared to their fault-free counterparts, to identify the faulty servers.

6.1 Syscall-Based Diagnosis

This approach diagnoses disk and network performance problems by statistically comparing the time-series
of syscall durations across all the I/O servers in a PVFS cluster. As previously stated, this algorithm relies on
the hypothesis that fault-free I/O servers have similar average behavior. However, even under fault-free con-
ditions, servers can behave differently (even small hardware differences, such as storage disks with different
performance profiles, can cause some of the server disks to be request saturated). Such heterogeneity is ac-
counted for through a fault-free training phase. The underlying hypothesis is that while a saturated server’s
syscall service times would likely differ from those of non-saturated servers under fault-free conditions, the
deviation of a faulty server would be more pronounced.

For each syscall of interest, time-series of average syscall service times is generated at each server by
dividing the sum syscall duration by the number of syscalls at 1-second intervals. The algorithm compares
the time-series of syscall service times at all of the servers to detect any anomalous time-series (and thence,
the associated anomalous server). Every second, a representative value is computed (currently, the median
of the syscall service times across all the non-faulty/non-saturated servers is used) of the syscall service
times for the non-faulty nodes. A server is flagged as anomalous if its syscall service time differs by more
than a predetermined threshold from this representative value.

In the training phase, the maximum deviation of a server’s syscall service times is determined from
the representative (median) value under fault-free conditions. This phase also determines which servers
are likely to be saturated under fault-free conditions. The ddw and ddr workloads are currently used,
only under fault-free conditions, to determine the threshold values. These workloads place the highest
throughput demands on server disks, and thus are most likely to saturate some servers and produce maximum
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Figure 6.1: Histograms of rd_sec (ddr with disk-hog fault) for one faulty and two non-faulty servers.

deviation. For each server, the maximum deviation of its service times from the median value is detected
and the maximum deviation is used to choose the threshold value for that server. For actual deployment, a
PVFS administrator would first run the ddr and ddw workload under fault-free conditions to determine the
threshold values for each server.

6.2 Performance Metric-Based Diagnosis

This diagnosis technique analyzes OS-level performance metrics to diagnose faulty servers in both PVFS
and Lustre clusters in two phases. The first phase of the peer-comparison diagnostic algorithm identifies the
culprit I/O server for the faults targeted.

6.2.1 Identifying the Culprit Server

In development of the peer-comparison diagnostic algorithm, several statistical properties were considered
(e.g., the mean of the metric value, the variance of the metric value) as candidates for comparison across
I/O servers, but ultimately the probability distribution function (PDF) of each metric value was chosen as
the best property to compare. The reason is that the PDF captures many of the other statistical properties,
such as the mean and variance. Figure 6.1 shows how a metric’s histograms/PDFs differ between the culprit
server and the other non-faulty servers.

Histogram-Based Approach

In this analysis approach, the PDFs of a specific black-box metric values are determined over a win-
dow of time (of size WinSize seconds) at each I/O server (the current implementation uses a histogram
as an approximation of the PDF, but other approaches, such as kernel density estimation techniques, are
equally applicable). To compare the resulting PDFs across the different I/O servers, a standard measure,
the Kullback-Leibler (KL) divergence [14], is used as the distance between two distribution functions, P
and Q. The KL divergence of a distribution function, Q(), from the distribution function, P(), is given by
D(p||q) = ∑i P(i) log P(i)

Qi . Since the KL divergence is not symmetric (i.e. D(p||q) 6= D(q||p)), a symmetric
version of the KL divergence, given by D′(p||q) = 0.5(D(p||q)+D(q||p)) is used in this analysis.

The following procedure is performed for each of the metrics of interest. Note that i will be used to
represent one of these metrics. Taking the PDFs of metric i for two distinct I/O servers at a time, the
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pairwise KL divergences for i is computed. A pairwise KL-divergence value for i is flagged as anomalous if
it is greater than a certain predefined threshold. An I/O server is flagged as anomalous if, within the current
window, its pairwise KL-divergence for i with more than those of half of the other servers is anomalous. The
window is shifted in time by WinShi f t (there is thus an overlap of WinSize−WinShi f t samples between two
consecutive windows), and the analysis is repeated for the new window. A server is indicted as the culprit if
it is anomalous in one or more of the chosen metrics.

Time Series-Based Approach

The previously described histogram-based approach is used for all performance metrics except cwnd. Un-
like other metrics, cwnd tends to be noisy under normal conditions. This is intentional as TCP congestion
control otherwise prevents synchronized connections from fully utilizing the underlying link capacity. Thus
cwnd analysis is fundamentally different from other metrics as there is no closely-coupled peer behavior.

Fortunately, there is a simple heuristic for detecting packet-loss using cwnd. TCP congestion control
responds to packet-loss by halving cwnd, which results cwnd exponential decay after multiple loss events.
When viewed on a logarithmic scale, sustained packet-loss results in a linear decrease for each packet lost.
Alternatively, the distance between two log-cwnd values is a linear function of the number of losses that
have occurred.

To support analysis of the cwnd, a variant of the time-series analysis algorithm describe in § 6.1 is
used. First, a time-series is generated by performing a moving average on cwnd with a window size of 31.
This attenuates the effect of sporadic transmission timeout events while still affording reasonable diagnosis
latencies (i.e., under one minute). Next, the time-series is converted to a logarithmic scale by taking the com-
mon logarithm of averaged cwnd values. Then, every second, a representative (median) value is computed
of the log-cwnd values. A server is flagged as anomalous if its log-cwnd is more than a predetermined
threshold—determined by ROC-based threshold selection—below this representative value.

6.2.2 Checklist for Root-Cause Analysis

In addition to indicting the culprit node, one can also infer the resource that is the root-cause of the fault.
The following checklist diagnoses the root cause when any of the steps in the decision-making sequence
below turns out to be positive (answer is YES). If a step is positive, one halts at that step, and arrives at the
root-cause and culprit node—one does not need to proceed further. If a step is negative (answer is not YES),
one proceeds to the next step of decision-making.

• Observe peer divergence in disk throughput (rd_sec or wr_sec). If YES, declare disk-hog fault and
indict culprit node.

• Observe peer divergence in disk latency (await). If YES, declare disk-busy fault and indict culprit node.

• Observe peer divergence in network throughput (rxbyt or txbyt). If YES, declare net-hog fault and
indict culprit node.

• Observe peer divergence in network congestion (cwnd). If YES, declare packet-loss fault and indict
culprit node.

25



Chapter 7

Results

7.1 Syscall-Based Diagnosis Results

Table 7.1 shows the accuracy (true- and false-positive rates1) of the syscall-based algorithm for diagnosing
performance faults using different syscalls for the different workloads. For each fault, only those syscalls
causing a non-zero true/false positive are shown.

The dread and ncread syscalls, which are not used by the write-intensive (ddw and iozonew)
workloads, do not help with diagnosis for those workloads. Thus, the left half of the table omits the ddw
and iozonew workloads. Similarly, the dwrite and nsread syscalls, which are not used by the read-
intensive (ddr and iozoner) workloads, do not help with diagnosis for those workloads. Thus, the right
half of the table omits the ddr and iozoner workloads. The postmark workload is included in both
halves of the table since it includes read as well as write syscalls.

The low false-positive rates are an artifact of threshold selection (which minimizes only the false-positive
rate). An ROC-based approach to threshold selection would likely increase the false-positive (as well as the
true-positive) rate. Different syscalls are useful for diagnosing different problems. For instance, dread
and dwrite are useful for diagnosing disk-related problems while nsread and ncread are useful for
diagnosing network-related problems. While each syscall diagnoses only a subset of the problems, a com-
bination of syscalls can effectively diagnose many performance problems.

Fault Syscall read-heavy workloads Syscall write-heavy workloads
ddr iozoner postmark ddw iozonew postmark

TP FP TP FP TP FP TP FP TP FP TP FP
disk-hog dread 1 0 1 0 1 0.1 dwrite 0.4 0 0.4 0 1 0.1
disk-busy dread 1 0 1 0 0.9 0.1 dwrite 0.4 0 0.4 0 1 0.1
write-network-hog nsread 0 0 0 0 0.9 0
read-network-hog ncread 0 0 0 0 1 0 nsread 0 0 0 0 1 0

dwrite 0.22 0 0 0 1 0
receive-pktloss ncread 0 0 0 0 0.8 0 nsread 0 0 0 0 0.9 0
send-pktloss ncread 0 0 0 0 1 0

Table 7.1: Results of syscall-based diagnosis. TP (FP) = true (false) positive ratio.

1TP is the fraction of experiments where all faulty servers are correctly diagnosed as faulty, FP is the fraction where at least
one non-faulty server is misdiagnosed as faulty.
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Fault Metric ddr ddw iozoner iozonew postmark Fault Overhead
TP FP TP FP TP FP TP FP TP FP Min Max

disk-hog rd_sec 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 13.1% 43.6%
await 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0
svctm 0 0 0.9 0 0 0 0.9 0 0.9 0

disk-busy rd_sec 0 0 0 0 0 0 0 0.1 0 0 22.8% 41.5%
await 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0
svctm 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0

write-network-hog rxbyt 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 −4.1% 8.3%
txbyt 0 0 0.9 0 0 0 0.9 0 0.9 0.1

read-network-hog rxbyt 0.7 0 0 0 0.8 0 0 0 0.7 0 9.4% 31.8%
txbyt 0.9 0 0.9 0 1 0 0.9 0 0.9 0.1

receive-pktloss txbyt 0 0 0.2 0 0 0 0.4 0 0 0 −0.8% 18.5%
cwnd 0 0 1 0 0 0 1 0 0 0.1

send-pktloss txbyt 0 0 0 0 0 0 0 0 0 0.1 −4.0% 32.4%
cwnd 1 0 0 0 1 0 0 0 0 0

Table 7.2: Results of PVFS performance metric-based diagnosis. TP (FP) = true (false) positive ratio.

7.2 Performance Metric-Based Diagnosis Results

7.2.1 PVFS Results

Table 7.2 shows the accuracy (true- and false-positive rates) of the performance metric-based algorithm
for diagnosing performance faults for the different workloads in PVFS. For each fault, only those metrics
causing a non-zero true/false positive are shown. The table also shows the minimum and maximum fault
overheads, calculated as the increase in workload runtime with respect to their fault-free counterparts.

As exhibited by the Fault Overhead columns in Table 7.2, faults do not manifest equally on all workloads.
Three faults, disk-hog, disk-busy, and read-network-hog, have significant (≈10% increase or above) impact
on workload runtime for all workloads. The receive-pktloss and send-pktloss only have significant impact
on workload runtime for write-heavy and read-heavy workloads respectively. Since the other workloads
have minimal network throughput demands,2 any packets lost due to this fault are quickly recovered by
TCP. Thus, it is important not to count “false negatives” for these workloads against the diagnosis strategy
as no performance problem is actually observed. However, it is important to count false positives for these
workloads as they contribute to misdiagnosis. Finally, the write-network-hog fault has no significant impact
on any workload,3 so its false negatives are also to be discarded.

For faults that do have significant impact on the respective workloads, the checklist for root-cause analy-
sis (§ 6.2.2) indicts faulty nodes with a 92.6% true-positive rate and 1.43% false-positive rate. The checklist
diagnoses the root cause with a 89.5% true-positive rate and 3.14% false-positive rate. Syscall-based di-
agnosis, in comparison, indicts faulty nodes with a 51.0% true-positive rate and 0.57% false-positive rate.
Thus, performance metric-based diagnosis provides greater confidence over syscall-based diagnosis.

2Opposing-flow dd/IOzone workload only transmit ACKs, and PostMark is seek-bound.
3Most significantly impacted workload is postmark at 8.3%, all others are < 3.5%.
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Fault Metric ddr ddw iozoner iozonew postmark Fault Overhead
TP FP TP FP TP FP TP FP TP FP Min Max

None (control) rd_sec 0.1 0 0 0 0
disk-hog rd_sec 0.1 0.1 0.9 0 0.1 0 0.9 0 0.9 0 6.1% 27.6%

await 0 0 0.9 0.1 0 0 0.9 0.1 0.9 0
svctm 0 0 0.9 0 0 0 0.9 0 0.9 0

disk-busy rd_sec 0.1 0.1 0 0 0 0 0 0 0 0 19.0% 54.1%
await 0.9 0 0.9 0.1 0.9 0 0.9 0 0.9 0
svctm 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0

write-network-hog rd_sec 0 0.1 0 0 0 0 0 0 0 0 −2.5% 16.4%
await 0 0 0.1 0.1 0 0 0 0 0 0
rxbyt 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0
cwnd 0 0 0 0.1 0 0 0 0 0 0

read-network-hog rd_sec 0.1 0.1 0 0.1 0 0 0 0 0 0 −1.2% 34.6%
rxbyt 0.7 0 0 0 0.8 0 0 0 0.7 0
txbyt 1 0 0.9 0 1 0 0.9 0 0.9 0

receive-pktloss rd_sec 0 0.1 0 0 0 0 0 0 0 0 9.8% 53.9%
await 0 0 0 0.1 0 0 0 0 0 0
txbyt 0 0 0 0.1 0 0 0 0 0 0
cwnd 0 0 1 0 0 0 1 0 0 0

send-pktloss rd_sec 0.1 0.1 0 0 0 0 0 0 0 0 −1.0% 48.0%
await 0 0 0 0.1 0 0 0 0 0 0
cwnd 1 0 0 0 1 0 0 0 0 0

Table 7.3: Results of Lustre performance metric-based diagnosis. TP (FP) = true (false) positive ratio.

7.2.2 Lustre Results

Table 7.3 shows the accuracy (true- and false-positive rates) of the performance metric-based algorithm for
diagnosing performance faults for the different workloads in Lustre. The true- and false-positive rates are
computed using ROC thresholds generated from PVFS workloads, illustrating that the diagnosis training
is flexible across both workloads and file systems. It is expected, though, that generating thresholds with
Lustre would improve results.

The impact of faults (as illustrated by fault overheads) on Lustre is similar that of PVFS. However, since
some workloads exhibit much greater runtime variance than under PVFS, the use of runtime overhead is less
well suited for evaluating fault impact under Lustre. This is especially true for the ddw workload, which has
a fault-free runtime variance of ±10%. Thus, it is for this reason that ddw experiments are not included in
the Fault Overhead columns in Table 7.3.

For faults that do have significant impact on the respective workloads, the checklist for root-cause analy-
sis indicts faulty nodes with a 84.7% true-positive rate and 4.00% false-positive rate. The checklist diagnoses
the root cause with a 83.2% true-positive rate and 5.14% false-positive rate. Thus, performance metric-based
diagnosis for Lustre provides confidence comparable to that of PVFS.
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Instrumen- File Overhead for Workload
tation System ddr ddw iozoner iozonew postmark
syscap PVFS 0.2% 0.6% −0.4% 0.7% 64.4%
strace PVFS −0.1% −0.8% −3.3% 0.0% 138.8%
/proc PVFS 0.9% 0.0% −0.1% −0.8% −0.6%
/proc Lustre 1.0% 0.3% 0.1% 0.4% 0.2%

Table 7.4: Instrumentation overhead: Increase in run-time w.r.t. non-instrumented workload.

7.3 Overheads

Table 7.4 reports overheads for three different kinds of black-box instrumentation for PVFS and one kind
for Lustre for the five workloads. Overheads are calculated as the increase in mean workload runtime (for
10 iterations) with respect to their uninstrumented counterparts.

Concerning the two syscall-based instrumentation sources (syscap and strace), since four of the
five workloads are I/O-heavy, with large bulk transfers, relatively few syscalls are made for the amount of
data transferred. Since network and disk transfers consume the majority of time in these I/O operations, the
added runtime overhead (< 1%) is negligible.

In contrast, the metadata-heavy postmark workload has many small data transfers or metadata oper-
ations (create, remove, etc.) on many small files. Since the time to issue the syscall takes as long as (if not
longer than) the time to carry out the requested operation, syscall instrumentation has a significant overhead
(64% and 139% for syscap and strace, respectively).

Concerning /proc-based instrumentation, because it does not alter the operation of syscalls, its over-
heads are more modest, making it more appropriate for metadata-heavy workloads. Indeed, all runtime
overheads are (< 1%) for /proc, thus its added runtime overhead is negligible.
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Chapter 8

Conclusions & Future Work

8.1 Syscalls vs. Performance Metrics

In § 7 it is determined that OS-level performance metrics provides greater diagnosis confidence, superior root
cause determination, as well as lower overheads than syscall statistics. Thus, it appears that performance
metrics would be the preferred approach over syscall statistics. However, there are other advantages and
disadvantages of syscall statistics compared to performance metrics that should be considered.

8.1.1 Disadvantages of Syscalls

Currently, the use of syscall statistics in performance diagnosis has limited appeal for these reasons:

• High data and resource demands. In the current design of syscap all syscall events for a process are
recorded. The most syscall-conservative workload (ddw) generates an average of 11,000 syscall events
and 1 MB of data per second per server. This is data that needs to either be parsed and processed (a cum-
bersome task in its own right) or at least compressed and sent across the network for real-time analysis.
This problem could be mitigated by altering the design of syscap to include the metric extraction, and
only process the subset of syscalls necessary to derive the appropriate statistics. Alternatively, sketches [7]
may be used to sample syscall events at rates much less than the frequency of the events themselves, which
allows less data and fewer resources to be used.

• Process-local viewpoint. syscap is currently only used to instrument PVFS client and server processes,
restricting the vantage point of syscap to PVFS activity only. /proc instrumentation, on the other
hand, has a global view of node activity and can see the behavior of both PVFS and rogue third-party
processes. This allows OS-level performance metrics to diagnose more fault classes, and provide an extra
dimension of root-cause analysis than syscalls can provide for performance problems.

• Opaque caches. I/O syscall requests that result in cache hits due to prefetching, or cache writebacks
with delayed writes, record the service time of memory operations as opposed to the corresponding disk
operations. In experiments Direct I/O is used to avoid this behavior. It is unclear how exactly this may
skew training thresholds if Direct I/O were not used.
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• Cross-syscall manifestations. The dread and dwrite metrics assume that syscall service time is dom-
inated by the wait time of a disk request (sum of request queue time and disk service time). However,
syscalls may be delayed by processing of soft interrupt and context switches even when disks do service
requests timely. This may result in other resource exhaustion problems, which would increase the number
of soft interrupts and manifest as anomalous dread or dwrite metrics. Indeed this is reflected in the
results for read-network-hog faults that occasionally show up in the dwrite metrics.

8.1.2 Advantages of Syscalls

Despite the previous disadvantages, the use of syscalls and syscall statistics may still be advantages as they:

• Can diagnose non-performance faults. [21] describes the use of syscap in diagnosis of non-performance-
related propagated error and server crash/hang faults in addition to performance problems. Since the di-
agnosis of these non-performance problems currently require the use of syscall instrumentation, syscall
statistics may still be used as part of a comprehensive problem diagnosis strategy.

• Have potential to characterize workloads. The diagnosis strategies described in this work rely on peer-
comparison to determine the performance characteristics of a normal workload, through which anomalous
performance may be deduced. In traditional remote file systems (e.g., NFS, AFS, etc.) that lack peer I/O
servers, additional context is required in order to determine if changes in performance are due to intended
workload change or performance faults. Syscall event streams are a rich source of contextual information
concerning application behavior. By observing the types of requests made by an application, one may be
able to characterize workloads in a manner sufficient to determine if the resulting performance matches
expectations.

8.2 Experiences

This section describes some of the experiences encountered in diagnosing performance problems in parallel
file systems, highlighting counterintuitive or unobvious issues that arose during experimentation.

8.2.1 Heterogeneous Hardware

Peer-comparison diagnosis relies on peers exhibiting similar performance characteristics. Systems com-
prised of heterogeneous hardware, most notably hardware of different make or models, often exhibit differ-
ent performance characteristics that may violate this assumption. Unfortunately, even supposedly homoge-
neous hardware (same make, model, stepping, etc.) may exhibit slightly different performance characteris-
tics that impede diagnosis. Most often these differences exhibit themselves when the devices are pushed to
performance extremes such as disks or network interfaces under full load.

The diagnosis techniques developed here are able to compensate for some deviations in hardware per-
formance as long as algorithm training is performed under extreme workloads where these performance
distinctions are exhibited. In this case similar performance deviations will be tolerated as normal behavior.
The tradeoff, however, is that performance faults of lower severity (such that their performance impact is
below the level of normal deviation) may be masked.
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A secondary concern of heterogeneous hardware are factors that are non-linear in influence. For exam-
ple, buffer cache thresholds are often set as a function of the amount of free memory in a system. Thus
nodes that have different memory configurations will have different caching semantics which may exhibit
as non-linear changes in performance that are not easily accounted for in training. It is more important that
such factors (namely, amount of system memory) be consistent across nodes.

8.2.2 Disk Saturation

Disk saturation occurs when the rate of incoming I/O requests exceeds the rate at which the disk can service
them, which results in queuing of backlogged requests and response delays. The most immediate indication
of disk saturation is when %util is at or near 100%. Secondary indications are an increase of avgqu-sz
into the 10s or 100s range, and a significant increase in await as compared to svctm (queuing delay).

For systems or workloads where disks are not (or cannot) be saturated by normal usage, disk satura-
tion is a good indication of disk-hog or disk-busy conditions. Unfortunately, many application and cluster
configurations result in disk saturation for normal workloads. Under ideal conditions, disk saturation would
occur at the same time across all nodes, and thus peer-divergence would be minimal despite value changes
across many metrics. Unfortunately, due slight difference in device performance characteristics, it is most
often the case that a single disk reaches saturation before others. When this occurs there is a tendency for
that disk to remain in saturation while the %util of other disks backoff, which exactly mimics the effect of
a disk-busy fault on that node despite no increase in workload (see Observation 6 in § 4.2 for an explanation
of the effect). Thus disk-busy faults must be distinguished from normal saturation by the degree of the effect
(deviation in await or %util).

8.2.3 Buffer Cache

During experimentation it was discovered that the behavior of the Linux buffer cache confounds disk metrics
for PVFS write workloads. The modal behavior of the buffer cache greatly influences disk operation despite
only minor differences in node state and nearly identical client requests. [33] describes the behavior of the
Linux buffer cache which is simplified here to a model with three modes: (i) periodic write, (ii) background
write, and (iii) foreground write.

In periodic write mode, write requests are committed to the Linux buffer cache as dirty pages which
remain in the cache until they expire, typically after 30 seconds. A pdflush thread wake up periodically,
typically every 5 seconds, to write pages that have recently expired. Thus, disk throughput consists of a
periodic aggregated write profile.

In background write mode, write requests are received with sufficient rate such that a threshold quantity
(dirty_background_ratio—typically 10%) of active memory fills with dirty pages before they ex-
pire. Once this threshold is reached, a pdflush thread writes a sufficient quantity of unexpired pages to
reduce the number of dirty pages below this threshold again. For a steady flow of incoming write requests,
this results in a steady state background write behavior where pages are written to disk with the same average
throughput as incoming requests.

In foreground write mode, write requests are received at a rate that exceeds that which pdflush can
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Figure 8.1: Single (left) and multiple (right) client cwnds for ddw workloads with receive-pktloss faults.

write out in background mode. Once the quantity of surplus pages in the buffer cache exceeds dirty_ratio
(typically 40%) of active memory, Linux then forces user processes to commit dirty pages directly to disk,
blocking any process that attempts to write to the disk until this is done.

Disk performance metrics tends to be similar across nodes as long as all nodes are within periodic or
background write modes. However, if nodes are operating in different modes, metrics may deviate signifi-
cantly. This is particularly so if one or more of the nodes is in foreground write mode and the corresponding
disks are saturated. Even if all nodes are performing foreground writes, the disk performance metrics may
still vary significantly depending on the contents of the cache and the number of queued requests, both
of which are dependent on the time at which the foreground write threshold is reached, which itself is a
function of node memory and underlying device performance.

The buffer cache has also been witnessed to negatively influence recovery time due to lingering mani-
festations even after a fault has been removed. In the event of a disk-hog or disk-busy fault that results in
disk saturation on the faulty node and a buildup of dirty pages, once the fault is removed it may take time
to flush the expired dirty pages and this extra recovery workload may carry seek penalties that delays write
performance as compared to fault-free nodes.

For these reasons the experiments in this work avoid the use of the buffer cache when monitoring per-
formance of PVFS. Fortunately, PVFS 2.8.0 includes a Direct I/O storage method that bypasses the buffer
cache while providing improved performance for high-bandwidth writes. In contrast, Lustre, which uses
both client and server side caching, has not exhibited the same disk metric deviations across I/O servers, and
thus it was not sought to modify its caching properties for this work.

8.2.4 Multiple Clients

Performance metrics for single client workloads vs. multiple client workloads differ in some significant
ways. For example, in PVFS clusters with caching enabled, the buffer cache aggregates contiguous small
writes for single client workloads which considerably improves throughput performance. The buffer cache
does not aggregate as well small writes from multiple client workloads and the penalty due to interfering
seeks greatly reduces throughput and pushes disks towards saturation. Thus, for PVFS large application
write record sizes (preferably order MB per server) are needed to maximize multiple client performance.
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Figure 8.2: Disk-busy fault influence on faulty server’s cwnd for ddr workload.

Single vs. multiple clients also has an impact on network congestion (see Figure 8.1). Single client
write workloads result in bulk data transfers being sourced from a single point with relatively little network
congestion (opposing flows comprise of only server ACKs). This results in steady client cwnd figures that
deviate sharply during fault. Multiple client write workloads result in bulk data transfers source from many
points that interfere with each other and the resulting congestion creates chaotic, widely varying cwnd

figures. While faulty cwnds are still distinguishable, it highlights the need to train on worst case workloads.

8.2.5 Cross-Resource Fault Influences

It is given that faults will have cross-metric influence on a single resource. For example, a disk-hog fault im-
mediately results in increased throughput on the faulty disk, but since it also pushes that disk into saturation
it results in increased request queuing and latency. However, there are instances in which faults affecting
one resource may manifest in metrics concerning another resource in an unintuitive way.

Consider a disk-busy fault’s influence on the faulty server’s sending congestion windows during a large
read workload (see Figure 8.2). cwnd values are updated only when a server is both sending and experienc-
ing congestion, thus the cwnd metric, perhaps counterintuitively, does not describe the amount of present
network congestion when a server is not sending data. In the case of the disk-busy fault, data transfer occurs
between a single client and the servers in three distinct phases: in (i) the clients send requests to each of the
servers, in (ii) the fault-free servers respond quickly then fall idle, and in (iii) the faulty server responds after
a significantly delayed disk read request.

In PVFS, the lack of client readahead blocks clients on the faulty server responses, effectively synchro-
nizing the clients so that the above phases occur simultaneously on all clients. Bulk data transfers occur in
phases ii and iii, but during phase ii all fault-free servers are transmitting which creates network congestion
and chaotic cwnd values whereas during phase iii only the faulty server is transmitting, and in the inverse
of the single client scenario, it experiences virtually no congestion and thus maintains a stable, high cwnd
value. This creates a divergence in the faulty server’s cwnd as compared to its peers, indicating a potential
network-related fault when there is only a disk-busy fault present.

This cross-resource fault influence may question the validity of the root-cause analysis checklist de-
scribed in § 6.2.2. However, since the TCP congestion-control metrics are the only ones known to suffer
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from this counterintuitive property, it may be mitigated by placing greater confidence in disk metric anoma-
lies over network metrics in the checklist. Note that since Lustre does use client readahead, read calls are
not as well phase synchronized across clients, and thus, this influence does not manifest as severely.

8.3 Future Work

An in-kernel utility for syscall instrumentation is under consideration for development. Such a utility would
record syscalls and their arguments to an internal buffer and provide interfaces for reading the buffer and
for specifying which syscalls should be logged. By performing selective logging of syscalls and avoiding
additional context switches, this utility would significantly improve worst-case instrumentation overheads
and decrease the data/resource burden, which also allows for faster analysis.

An incremental improvement on this work is to improve metric analysis by using a different measure
for comparing PDFs. KL divergence, since it performs bin-by-bin comparison, tends to be overly sensitive
to changes in the WinSize and WinShift parameters. This results in poor true- and false-positive rates when
these parameters are not properly tuned (i.e., via ROC curves) for the specific file system cluster. It is
speculated that other measures, such as the Earth Mover’s Distance (EMD) [40] would enable a more robust
analysis that is less sensitive to tuning, enabling easier deployment. OSprof [20] uses EMD on similar data
with good results.

Next, the scope of problem diagnosis will be expanded to include additional file systems (for which
preliminary work has already been performed on GlusterFS and Ceph), realistic workloads, and additional
faults. To support the latter two goals, work is underway to start collecting performance metrics and other
workload data from production/stable PVFS deployments. This workload data will be used to target more
representative workloads.

Finally, it is desired to seek a new instrumentation source in the messaging (e.g., PVFS BMI, Lustre
RPC) layers of parallel file systems. By observing client-server I/O requests on the wire, one could obtain
more accurate workload and performance characteristics than those provided at the syscall or OS levels.
Such instrumentation has not been previously sought as the proprietary nature of file system protocols has
meant that any implementation is applicable to only a single, existing file system. However, with the recent
standardization of Parallel NFS (pNFS) [32] as a common interface for parallel storage, instrumentation of
pNFS in addition to proprietary protocols would allow both current and future file systems to benefit from
problem diagnosis at the messaging layer.

8.4 Conclusion

This work demonstrates and compares two black-box analysis strategies for performance faults in parallel
file systems. In doing so, a number of (empirically-based) observations are made about PVFS’s and Lus-
tre’s behavior with regard to performance faults, and these observations are used in the development of the
diagnosis algorithms. Both diagnosis strategies are shown to detect and diagnose a number of performance
problems with a low false-positive rate. Finally, a number of experimental experiences are reported, which
contribute to understanding how to improve and better approach problem diagnosis in future work.
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