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The Internet of Things Vision

A world where everything is tagged, monitored and remotely
controllable via the Internet

What should the model for these machine communications be?
What standards or media?
Let’s look at what has been M2M in the past....
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Machines are already on the Internet

Industrial Automation

Electric Power Systems, Pipelines (Water, Fuel), Building
Control, Manifacturing plants...
Monitoring: Sensor telemetry and databases
Automation: The discipline focused on the design of automation
software is called Hybrid Control
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Supervisory Control And Data Acquisition

SCADA reference model birth nest was the Electric Power sector
Very wide area systems (the size of a country) → divide and
conquer with hierarchical control
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The Programmable Logic Controller

PLC/Digital Relay: an industrial computer control system

Input Scan: Scans the state of the Inputs
Sensing Devices, Switches and Pushbuttons, Proximity Sensors,
Limit Switches, Pressure Switches,...

Program Scan: Executes the program logic
Output Scan: Energize/de-energize the outputs

Valves, Solenoids, Motor, Actuators,Pumps
Housekeeping: Update the state
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Data Modeling for Machines (PLCs)

In Software Engineering data modeling is the process of creating
a data model for an information system
It has three steps

1 Conceptual model
2 Logical Model
3 Physical Model - organizes data into tables, and accounts for

access, performance and storage details
In a model a data item is the smallest unit of data
A collection of data items for the same object at the same time
forms an object instance (or table row).
Data Items are identified by object (o), property (p) and time
(t). The value (v) is a function of o, p and t

v = F(o, p, t)

Typical values for PLC are input/output single bit (coils) and
registers (16/32 bits, analog values)
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Communications among PLCs

Ladder Code 

• Programmable Logic Controller (PLC)

• Remote Terminal Units (RTU)

• Intelligent Electr. Devices (IED)

Originally most controllers used serial communications
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Networking among PLCs

Ladder Code 

• Programmable Logic Controller (PLC)

• Remote Terminal Units (RTU)

• Intelligent Electr. Devices (IED)

This now can surf the Internet

Today most of them are Ethernet based, but this is changing,
wireless being the next big contender
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Protocols for Industrial Control

First application Layer Protocols (e.g. Modbus, DNP3) which
are above OSI layer 3 or 2
Deeper into the layers: Zigbee is based on the wireless IEEE
802.15 standard
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ZigBee: Industrial Control Gets Personal...

ZigBee was conceived for low power, low rate, sensor networking
in a variety of applications
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A watershed moment?

The transition from Mainframe to PC changed computation

12 / 61



Will the same happen for industrial control?

Stages: 1) viral technology adoption; 2) evolution, first almost a
toy then more useful; 3) software is developed to meet a variety
of purposes; 4) hardware becomes more powerful
Example: ZigBee Smart Energy V2.0 specifications define an
IP-based protocol to monitor, control, inform and automate the
delivery and use of energy and water
In Power Systems the birth nest of SCADA was meant for the
grid core
IoT ⇒ intelligence at the edge of the grid

Huge opportunity for change from current consumption and
generation model
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Cognitive Power Systems
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Cognitive Electric Consumption

For consumers the grid is plug and play → at most good
appliances reduce energy consumption
The moment at which we draw power is chosen carelessly → we
need to generate just in time → we depend on fossil fuels to do
that
Demand is random but not truly inflexible, but today there is no
widespread standard appliance interface to modulate it

Demand Response (DR) programs tap into the flexibility of
end-use demand for multiple purposes
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The role of flexible demand

Large generator ramps + reserves for dealing with uncertainty
blow up costs and pollution

If we can modulate the load (via Demand Response Programs), we
can increase renewables and reduce reserves (cleaner, cheaper power)
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The Smart Grid vision

Intelligent homes will be price responsive
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The Smart Grid System Challenge

Designing the price...
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Challenges for Demand Response (DR)

Aggregation is needed (Whole Sale Market blind below 100MW)
Challenge 1: Heterogenous population of appliances
Challenge 2: Real time control of millions of them
Challenge 3: Modeling their aggregate response in the market
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Research on coordinating Distributed Resources

Most of the work is on the home price response side
Detailed model: Model each individual appliance constraints
[Joo,Ilic,’10], [Huang, Walrand, Ramchandran,’11], [Foster,Caramanis,’13]

Scalability is an issue
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The Smart Grid system level challenge

Tank model: Flexible demand requires a certain amount of
energy. Fill the flexible demand tank by the end of the day...
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]

Inaccurate representation of what customers want
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The Smart Grid model that was really emerging

Price sensitive demand and Measurement & Verification

Customers have a baseline load (measured with smart-meters)
LMP prices are communicated (via smart-meters)
Customers shed a certain amount of the baseline
The diminished demand is verified with smart-meters
Customers are paid LMP for the Negawatts (or punished)

This is what the Smart-Grid was going to be
Advocated by utilities, promoted by a FERC order (law) 745...
....blocked by the courts (DC Circuit Court)
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Alternatives?...
The notion of baseline and negawatts price is ill posed:

How can I measure what you will be able to not consume and
verify that you have not consumed it?
What is a good model for a price for lack of demand?

Alternatives? Differentiating via Quantized Population Models
Cluster appliances and derive an aggregate model
The Internet of Energy: appliances that say what they want
(Hide customers with differentially private codes)

[Chong85],[Mathieu,Koch, Callaway,’13],[Alizadeh, Scaglione, Thomas,’12]...
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Population Load Flexibility
Definition of Flexibility
The potential shapes that the electric power consumption (load) of an
appliance or a popoulation of appliances can take while providing the
sought economic utility to the customer

Categories of appliances covered
1 Interruptible rate constrained EVs with deadlines and V2G X
2 Thermostatically Controlled Loads X
3 Deferrable loads with dead-lines X
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Example of Load flexibility: Ideal Battery
One ideal battery indexed by i

Arrives at ti and remains on indefinitely
No rate constraint
Initial charge of Si
Capacity Ei

The flexibility of battery i is defined as

Li(t) = {Li(t)|Li(t) = dxi(t)/dt, xi(ti) = Si, 0 ≤ xi(t) ≤ Ei, t ≥ ti}.

In English:
Load (power) = rate of change in state of charge x(t) (energy)

Set Li(t) characterized by appliance category v (ideal battery)
and 3 continuous parameters:

θi = (ti ,Si ,Ei)

But how can we capture the flexibility of thousands of these batteries?
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Aggregate flexibility sets

We define the following operations on flexibility sets L1(t), L2(t):

L1(t) + L2(t) =
{
L(t)|L(t) = L1(t) + L2(t), (L1(t),L2(t)) ∈ L1(t)× L2(t)

}

nL(t) =
{
L(t)|L(t) =

n∑
k=1

Lk(t), (L1(t), ..,Ln(t)) ∈ Ln(t)
}
,

where n ∈ N and 0L1(t) ≡ {0}.
Then, the flexibility of a population Pv of ideal batteries is

Lv(t) =
∑
i∈Pv

Li(t) (1)

flexibility of population = sum of individual flexibility sets

What if we have a very large population?

27 / 61



Quantizing flexibility

Natural step → quantize the paramaters: θi = (ti ,Si ,Ei)

θ 7→ ϑ ∈ Finite set T v

Quantize state and time uniformly with step δt = 1 and δx = 1
Discrete version (after sampling + quantization) of flexibility:

Li(t) = {Li(t)|Li(t) = ∂xi(t), xi(ti) = Si , xi(t) ∈ {0, 1, . . . ,Ei}, t ≥ ti}.

Lv
ϑ(t) = Flexibility of a battery with discrete parameters ϑ

Let av
ϑ(t) , number of batteries with discrete parameters ϑ

Lv(t) =
∑

ϑ∈T v

av
ϑ(t)Lv

ϑ(t),
∑

ϑ∈T v

av
ϑ(t) = |Pv|. (2)
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Bundling Batteries with Similar Constraints

Population Pv
E with homogenous E but different (ti ,Si)

Define arrival process for battery i

ai(t) = u(t − ti)→ indicator that battery i is plugged in

We prefer not to keep track of individual appliances
Random state arrival process on aggregate

ax(t) =
∑

i∈Pv
E

δ(Si − x)ai(t), x = 1, . . . ,E

Aggregate state occupancy

nx(t) =
∑

i∈Pv
E

δ(xi(t)− x)ai(t), x = 1, . . . ,E
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Control Actions

Activation process from state x ′ to x :

dx,x′(t) = # batteries that go from state x to state x ′ up to time t

Naturally, ∂dx,x′(t) ≤ nx(t).
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Controlled Aggregate Load flexibility

Lemma
The relationship between occupancy, control and load are:

nx(t + 1) = ax(t + 1) +
E∑

x′=0
[dx′,x(t)− dx,x′(t)]

L(t) =
E∑

x=0

E∑
x′=0

(x ′ − x)∂dx,x′(t)

Notice the linear and simple nature of L(t) in terms of dx,x′(t)
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Bundling Batteries with Non-homogeneous Capacity

Results up to now are valid for batteries with homogenous
capacity E
The capacity changes the underlying structure of flexibility
We divide appliances into clusters q = 1, . . . ,Qv based on the
quantized value of Ei
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Quantized Linear Load Model

Load flexibility of heterogenous ideal battery population

Lv(t) =
{
L(t)|L(t) =

Q∑
q=1

Eq∑
x=0

Eq∑
x′=0

(x ′ − x)∂dq
x,x′(t)

∂dq
x,x′(t) ∈ Z+,

Eq∑
x′=1

∂dq
x,x′(t) ≤ nq

x (t)
}

nq
x (t) = aq

x (t) +
Eq∑

x′=0
[dq

x′,x(t − 1)− dq
x,x′(t − 1)]

Linear, and scalable at large-scale by removing integrality constraints

Aggregate model= Tank Model [Lambert, Gilman, Lilienthal,’06]
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Rate controlled, Interruptible charge, V2G (EVs)

The canonical battery can go from any state to any state and has
no deadline or other constraints.
What about real appliances? Some are simple extensions
Rate-constrained battery chage, e.g., V2G

Interruptible consumption at a constant rate, e.g., pool pump,
EV 1.1kW charge
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Deadlines

You can add deadlines using the same principle: cluster
appliances with the same deadline χq

Then, you simply express the constraint inside the flexibility set

Lv(t) =
{
L(t)|L(t) =

Qv∑
q=1

Eq∑
x=0

Eq∑
x′=0

(x ′ − x)∂dq
x,x′(t)

∂dq
x,x′(t) ∈ Z+,∀x, x ′ ∈ {0, 1, . . . ,Eq}

Eq∑
x′=1

∂dq
x,x′(t) ≤ nq

x (t),∀x < Eq → nx(χq) = 0
}

(3)
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How to generalize the information model

1 State-space parametric description of the set Li(t) of possible
load injections of specific appliance i

2 Event-driven: Appliances are available for control after ti with
initial state Si ; (arrival is ai(t) = u(t − ti) unit step)

3 Divide and conquer: Define a representative set Lv
q(t) for a given

appliances cathegory (v), quantizing possible parameters (q) and,
if continuous, quantize the state (x)

4 Aggregate and conquer: Describe total flexibility Lv(t) using:
Aggregate arrival and state occupancy

aq
x (t) =

∑
i∈Pv,q

δ(Si − x)ai(t), nq
x (t) =

∑
i∈Pv

E

δ(xi(t)− x)ai(t)

Aggregate control knob

dq
x,x′(t) = # appliance moved from x to x ′ before time t

∂dq
x,x′(t) = dq

x,x′(t + 1)− dq
x,x′(t) = # ... at time t
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Real-time: How do we activating appliances?

Arrival and Activation Processes
aq(t) and dq(t) → total recruited appliances and activations before
time t in the q-th queue

Easy communications: Broadcast time stamp Tact :
aq(t − Tact) = dq(t)

Appliance whose arrival is prior than Tact. initiate to draw power
based on the broadcast control message
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Quantized Models in Data Analysis and Simulation
Ex. Electric Vehicles Data + Take participation as given for now

Ex-ante Planning
1 From historical data forecast

statistics of arrivals in clusters
(e.g. [Alizadeh, Scaglione, Kurani,
Davies 2013] for PHEVs)

2 Use a Model Predictive Control
(MPC) framework with Sample
Average Approximation (SAA) to
make market purchase decisions

Real-time Control
1 We perform DLS
2 Decide the profit

maximizing schedule
3 Activate appliances
4 Refresh future arrival

forecasts based on new
observations
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Ex-ante Stochastic Population Models

In DLS, appliance arrival event is explicitly communicated
Modeling challenge is similar to that of forecasting and serving
non-stationary traffic for a call-center...
PHEV charging events studied in [Alizadeh, Scaglione, Davies,

Kurani 2013]
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Day Ahead Market Level Simulation

Population of 40000 PHEVs + 1.1 kW non-interruptible charging
Tank model = PHEVs effectively modeled as canonical batteries
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Uncontrolled load profile
Optimized DA bid using tank model
Real−time Load − MPC

• Real-world plug-in times
and charge lengths
• 15 clusters (1-5 hours
charge + 1-3 hours laxity)
• PHEV demand = 10% of
peak load
• DA= Day Ahead
• PJM market prices DA
10/22/2013 • Real time
prices = adjustments cost
20% more than DA
• DA = LP + SAA with
50 random scenarios +
tank model
• RT = ILP + Certainty
equivalence + clustering
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Proposed scheme

Quantized Deferrable EV model
Load following dispatch very closely when using our model
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• Same setting
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Regulation through TCL loads

Regulation market:
To participate the aggregator must be able to

1 Increase/decrease demand by a certain step of variable height m
from the baseline

2 Hold the demand at that value for a certain duration ξ (follow
the AGC signa)

We evaluated ξ to be the 97 % quantile of the zero-crossing time
from historical AGC signals (19 min. based on PJM signals)
Capacity estimated for the population of 10000 home air
conditioners is 2.05 MWs

M ′ =
Q∑

q=1
min

t
M q(t)

where M q(t) is the maximum deviation m from the baseline that
a load in cluster q can tolerate at time t with 0.05m error
(determined simulating the response of each cluster using Lq(t))
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Regulation through TCL loads
Real Time the TCLs are controlled for 6 h based on clustering
deadlines (60 clusters)
Temperature is Jan 29th 2012 in Davis;
Ξi = ξi ∼ U ([2000, 4000]) Btu/h, ki =∼ U ([50, 200]) W/C, x∗i ∼
U([69, 75]), Bi ∼ U ([2, 4]) F
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Figure : Simulated response of the TCL population (10000) to regulation
signals and three 2 ton A/C units temperatures. The y-axis range i=
comfort band.
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Pricing specific flexible uses

47 / 61



Dynamically Designed Cluster-specific Incentives
Characteristics in ϑ have 2 types: intrinsic and customer chosen
We cluster appliances based on intrinsic characteristics
Customer picks operation mode m, e.g., laxity χ based on price

We design a set of incentives cv,q
m (t),m = 1, . . . ,M v,q for each cluster

[Alizadeh, Xiao, Scaglione, Van Der Schaar 2013], see also [Bitar, Xu 2013],
[Kefayati, Baldick, 2011]
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The advantage of differentiating pricing...

Figure : Differentiated Pricing and Scheduling (top) and Dynamic Retail
Pricing (bottom).

Both schemes harness a subset of the true flexibility of demand

LDR(t) ⊆ L(t)
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Differentiated pricing
An aggregator hires appliances and directly schedules their load
Set of differentiated prices based on flexibility

cv(t) = {cv
ϑ(t),∀ϑ ∈ T v}

Differentiated discounts cv(t) from a high flat rate → incentives
Appliances choose to participate based on incentives → av

ϑ(cv(t))

LDR(t) =
V∑

v=1

∑
ϑ∈T v

av
ϑ(cv(t))Lv

ϑ(t). (4)

Reliable: aggregator observes av
ϑ(cv(t)) after posting incentives

and before control - no uncertainty in control
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Incentive design

Optimal posted prices? The closest approximation is the
“optimal unit demand pricing”
Customers valuation for different modes correlated (value of EV
charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)
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The Incentive Design Problem

Independent incentive design problem for different categories v
and clusters q → Let’s drop q, v for brevity
Aggregator designs

c(t) = [c1(t), c2(t), . . . , cM (t)]T , (5)

From recruitment of flexible appliances, the aggregator saves
money in the wholesale market (utility):

u(t) = [U1(t), . . . ,UM (t)]T (6)

Aggregator payoff when interacting with a specific cluster
population:

Y (c(t); t) =
∑

m∈M

Payoff of mode m︷ ︸︸ ︷
(Um(t)− cm(t))

∑
i∈P(t)

indicator of mode m selection︷ ︸︸ ︷
ai,m(c(t); t) . (7)

ai,m(c(t); t) = 1 if load i picks mode m given incentives c(t)
Goal: maximize payoff Y (c(t); t)
Problem: we don’t know how customers pick modes
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Probabilistic Model for Incentive Design Problem
At best we have statistics → Maximize expected payoff
Probability of load i picking mode m:

Pi,m(c(t); t) = E{ai,m(c(t); t)}. (8)

Incentives posted publically - Individual customers not important
Define the mode selection average probability across population:

Pm(c(t); t) =
∑

i∈P(t) Pi,m(c(t); t)
|P(t)| (9)

p(c(t); t) = [P0(c(t); t), . . . ,PM (c(t); t)]T → what we need
(10)

Maximize expected payoff across cluster population

max
c(t)�0

E

 ∑
m∈M

(Um(t)− cm(t))
∑

i∈P(t)

ai,m(c(t); t)

 =

max
c(t)�0

known︷ ︸︸ ︷
(u(t)− c(t))T

unknown︷ ︸︸ ︷
p(c(t); t) (11)
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Modeling the customer’s decision
Approaches to model p(c(t); t)? (average probability that the
aggregator posts c(t) and a customer picks each mode m)

1 Bayesian model-based method: rational customer - max(Vi(t))
Risk-averseness captured by types

customer utility Vi(t) =
∑
v,q

cv,q
m (t)− Rq,v

i,m(t)

Rq,v
i,m(t) = γv,q

i rv,q
m (t), γi random variable drawn from one PDF

2 Model-free learning method: customers may only be boundedly
rational. We need to learn their response to prices
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The whole picture
Pricing Incentive design:

Design incentives to recruit appliances
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Planning:
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Make optimal market decisions based on forecasted flexibility
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The whole picture
Pricing Incentive design:

Design incentives to recruit appliances
Planning:

Forecast arrivals in clusters for different categories
Make optimal market decisions based on forecasted flexibility

Real-time:
Observe arrivals in clusters
Decide appliance schedules dq(t) to optimize load
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Residential charging...

Aggregator schedules 620 uninterruptible PHEV charging events
Prices from New England ISO DA market - Maine load zone on
Sept 1st 2013
How many do we recruit (out of 620) and with what flexibility?
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Welfare Effects in Retail Market
Welfare generate via Direct Load Scheduling (DLS) vs. idealized
Dynamic Pricing (marginal price passed directly to customer - no
aggregator)
Savings summed up across the 620 events (shown as a function of
time of plug-in)
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Conclusion

We have discussed an information, decision, control and market
models for responsive loads
These models allow to use high level data and convert them in
models of load flexibility for mapping data into models and for
scalable simulations
Extension: Model prosumers assets such as distributed renewable
resources, like roof-top solar
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