

Performance Objectives and Models for General Purpose Multi-Layered Testbed Power Systems Simulators

Marija Ilić milic@ece.cmu.edu

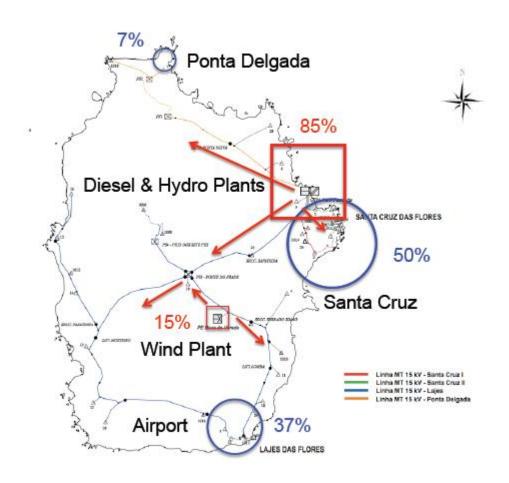
Electric Energy Systems Group (EESG) http://www.eesg.ece.cmu.edu/, Director

Presentation for 10th CMU Electricity Conference

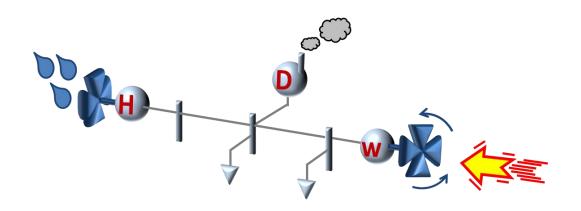
https://www.ece.cmu.edu/~electriconf/

April 1,2015

How It all started—hindsight view


- Innovation in power systems hard and slow
- Outdated assumptions in the new environment
- No simulators to emulate time evolution of complex event driven states
- Fundamental need for more user-friendly innovation/technology transfer
- General simulators (architecture, data driven) vs. power systems simulations (physics-based, specific phenomena separately)
- Missing modeling for provable control design
- Difficult to define performance objectives at different industry layers;
 coordination of interactions between the layers for system-wide reliability and efficiency; tradeoff between complexity and performance
- Challenge of managing multiple performance objectives

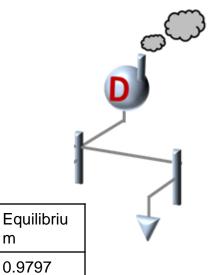
- EESG Ilic group http://www.eesg.ece.cmu.edu/
- Dynamic Monitoring and Decision Systems (DyMonDS) framework for enabling smart SCADA; direct link with sustainability (enabler of clean, reliable and efficient integration of new resources); main role of interactive physics – based modeling for IT/cyber
- Cooperative effort with National Institute of Standards (NIST)
 for building Smart Grid in a Room Simulator (SGRS)
- ***Recent new unifying modeling in support of DyMonDS***



From old to new paradigm—Flores Island Power System, Portugal

Controllable components—today's operations (very little dynamic control, sensing)

H – Hydro


D - Diesel

W - Wind

*Sketch by Milos Cvetkovic

Two Bus Equivalent of the Flores Island Power System

Generator	Diesel
$x_d[pu]$	8.15
$x_q[pu]$	8.15
$x'_d[pu]$	0.5917
$x_q'[pu]$	0.5917
$T_{q0}^{\prime}[s]$	2.35
$T'_{d0}[s]$	2.35
J[s]	2.26
D[pu]	0.005

Transmission line	From Diesel to Load bus	
	0.3071	
	0.1695	

Base values			
$S_b = 10MVA$ $V_b = 15KV$			

AVR	Diesel	
	400	
	0.02	
	1.3	
	1	
	0.1667	
	0.03	
	1	

Governor	Diesel
	40
	0.6
	1/0.03
	0.2

Base values $S_b = 10MVA$, $V_b = 0.4KV$

State

 $e_q'[pu]$

 $\delta[rad]$

 $\omega[pu]$

 $v_r[pu]$

 $e_{fd}[pu]$

 $v_f[pu]$

 $P_m[pu]$

a[pu]

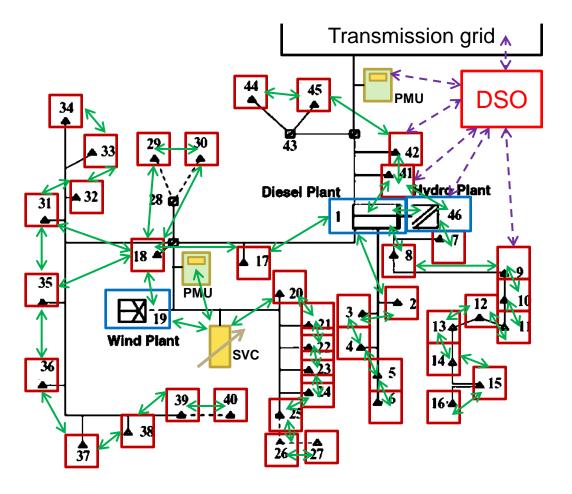
m

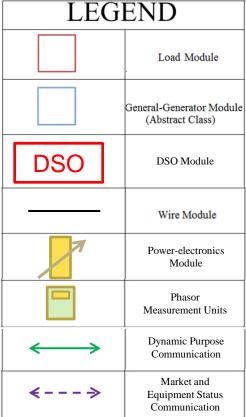
1

0

0

0.01


0.9797


0.0173

0.8527

0.7482

Information exchange in the case of Flores---new (lots of dynamic control and sensing)

Smart grid --multi-layered interactive dynamical system

- Requires new modelling approach
- Key departures from the conventional power systems modeling
 - system is *never* at an equilibrium
 - all components are dynamic (spatially and temporally); often actively controlled
 - 60Hz component may not be the dominant periodic signal
 - system dynamics determined by both internal (modular) actions and modular interactions
- Groups of components (module) represented in standard state space form

Comparison of today's and emerging dynamic systems

- Small system example
- Qualitatively different disturbances require different dynamic models
 - Case 1: zero mean disturbance; static load model
 - Case 2: non zero mean disturbance; load a dynamic distributed energy resource (DER)
- Short summary of modeling assumptions for today's hierarchical control (Case 1)
- Critical issues with static load modeling and its implications on system feasibility
 - Importance of Q
- Critical issues with non zero mean disturbance
 - Steady state 60 Hz and nominal voltage assumption may not hold
- Proposed unifying dynamic modeling –Basis for DyMoNDS (Case 2)
 - All components are dynamic (ODEs; discrete time models); based on systematic temporal model reduction
 - Has inherent spatial structure (multi-layered interactive models)
 - Interactive information exchange (no longer top-down only) to ensure consistent implementation of multi-layered control architecture

Case 1: zero mean disturbance & static load model

Assumed zero-mean deviation from prediction equilibria conditions

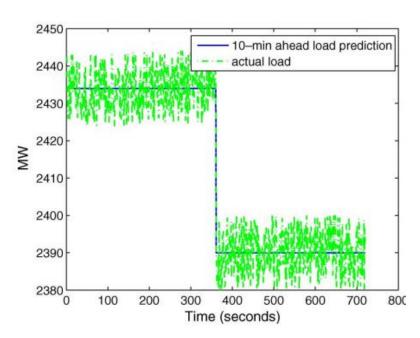
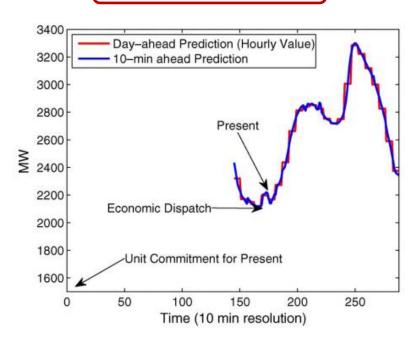
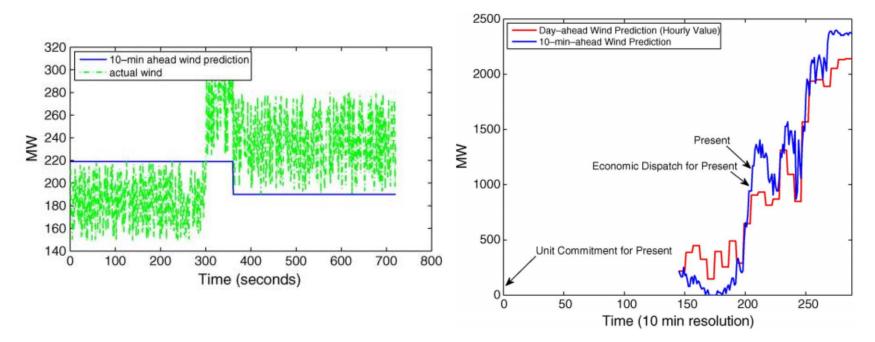


Fig. 3. 10-min-ahead load prediction and second-by-second actual load.

$$L(t) = \hat{L}[H] + \Delta_{LH}(t)$$

$$L(t) = \hat{L}[k] + \Delta_{Lk}(t)$$




Fig. 2. Day-ahead and 10-min-ahead load prediction, and timing of UC and ED functions.

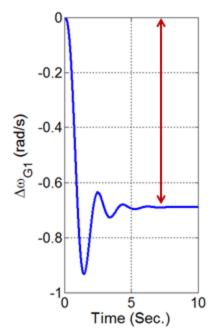
$$\|\hat{L}[H]\| \gg \|\Delta_{LH}(t)\|$$

 $\|\Delta_{LH}(t)\| > \|\Delta_{Lk}(t)\|$.

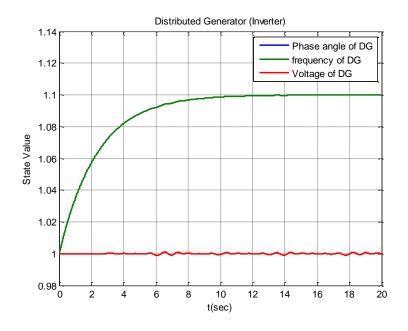
Wind power disturbance – multiple time scales

disequilibria conditions Observe the non-zero mean deviation from prediction

$$P_{Gw}(t) = \hat{P}_{Gw}[H] + \Delta_{Gw_H}(t)$$


$$P_{Gw}(t) = \hat{P}_{Gw}[k] + \Delta_{Gw}(t)$$

$$\begin{aligned} \|\Delta_{Gw_H}(t)\| \gg \|\Delta_{Gw_k}(t)\| \\ \|\hat{P}_{Gw}[k]\| \gg \|\Delta_{Gw_k}(t)\|. \end{aligned}$$



Fundamental effect of non-zero mean disturbance

- Synchronous machine with non zero mean disturbance in real power load
 - Structural singularity [2]

 Wind power plant with power electronics connected to constant impedance load [3]

DyMonDS modeling for simulations

- On the Flores island when one replaces PQ load with a DER/storage and its control
- Multi-temporal, multi-spatial and interactive to simulate the response of the system to multi-rate disturbances
- Show the effect of embedded distributed control (multi-temporal, multi-layered) on closed-loop response

Multi-temporal dynamic model of controllable load (DER)—standalone module level

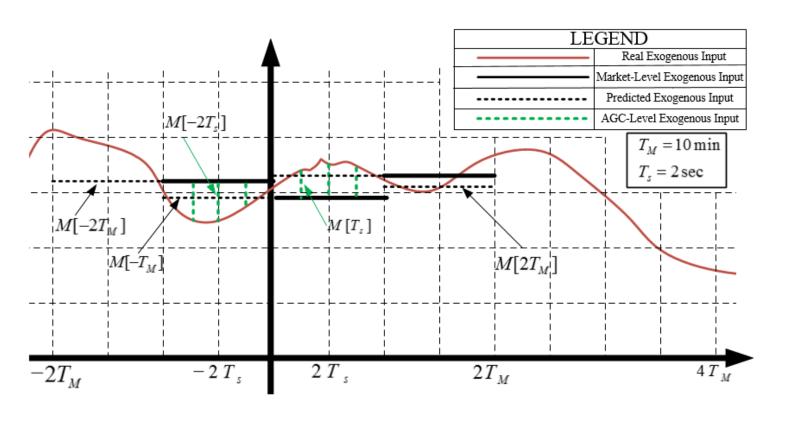
DER dynamics replaces static load and is modeled as any other dynamic component

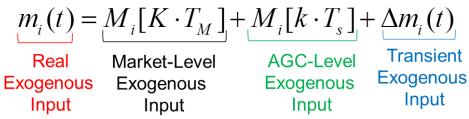
with non zero exogenous disturbance

$$\dot{x}_i(t) = f_i\left(x_i(t), x_j(t), u_i(t), m_i(t)\right)$$

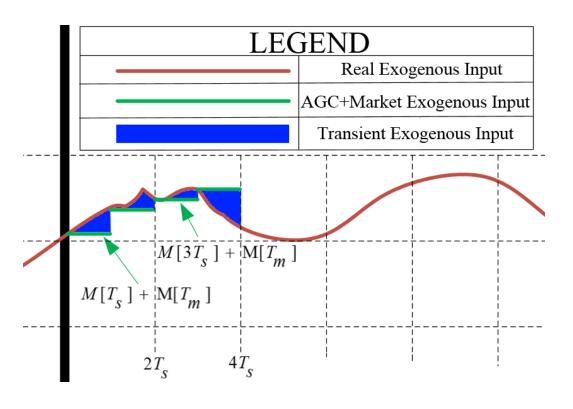
$$x_i(0) = x_{i0}$$

$$m_i(t) = M_i[K \cdot T_M] + M_i[k \cdot T_s] + \Delta m_i(t)$$
where $m_i(t)$ - Exogenous input $x_i(t)$ - State variable of Module i $t_i(t)$ - State variable i - i -


Bus 1

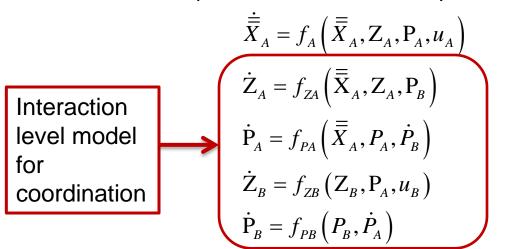

Responsive load (for example: Smart building) can have:

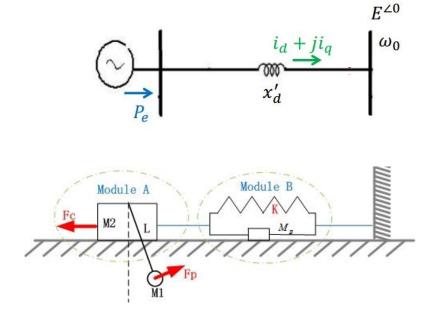
$$u_{i} = \underbrace{u_{i}(t)} + \underbrace{u_{i}^{ref} \left[k \cdot T_{s}\right]} + \underbrace{u_{i}^{ref} \left[k \cdot T_{M}\right]}_{AGC}$$
Local AGC Market


Multi-temporal exogenous input – Zoom Out

Multi-temporal exogenous input – Zoom In

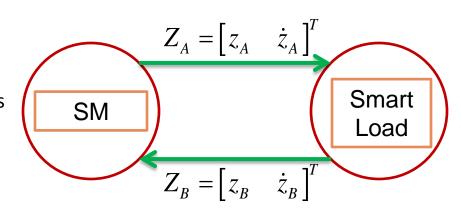
$$\begin{split} & m_i(t) = M_i [K \cdot T_M] + M_i [k \cdot T_s] + \Delta m_i(t) \\ & \text{Real Market-Level} & \text{AGC-Level Exogenous} \\ & \text{Exogenous Exogenous} & \text{Exogenous} \\ & \text{Input} & \text{Input} & \text{Input} \end{split}$$

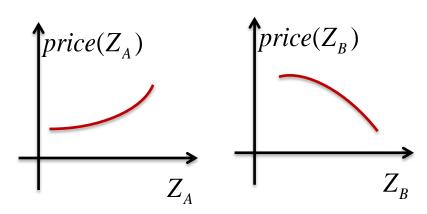

Generalized multi-temporal family of interacting models – module level


Electromagnetic (EM) phenomena	Electro- mechanical (EMEch) phenomena	Quasi-stationary (QS) regulation	QS short- term	QS long(er)- term
Time-varying phasors (EM)	Time- varying phasors (EMech)	driven by controlled by	driven by and controlled by	New equipment/top ology driven by long-term predictions

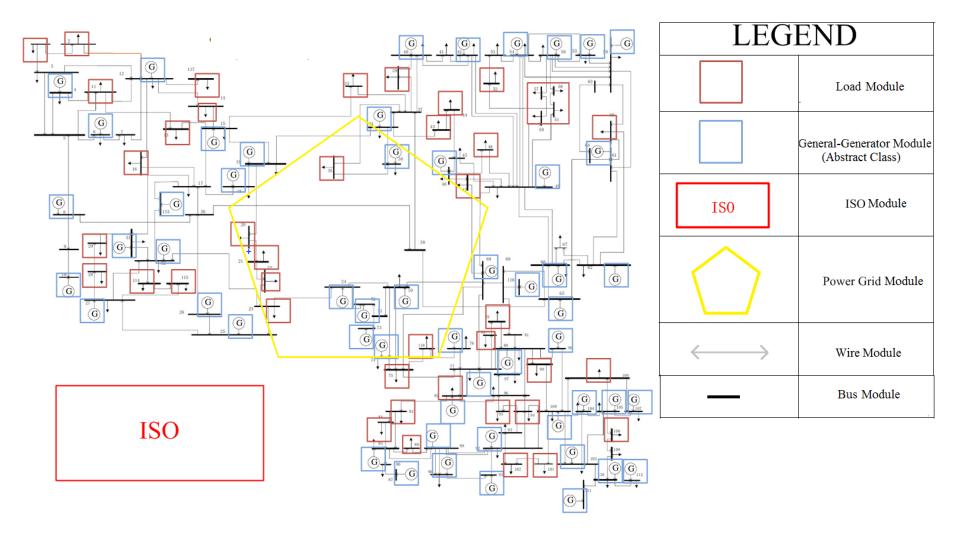
Multi-layered interactive models for interconnected system (unifying transformed state space)

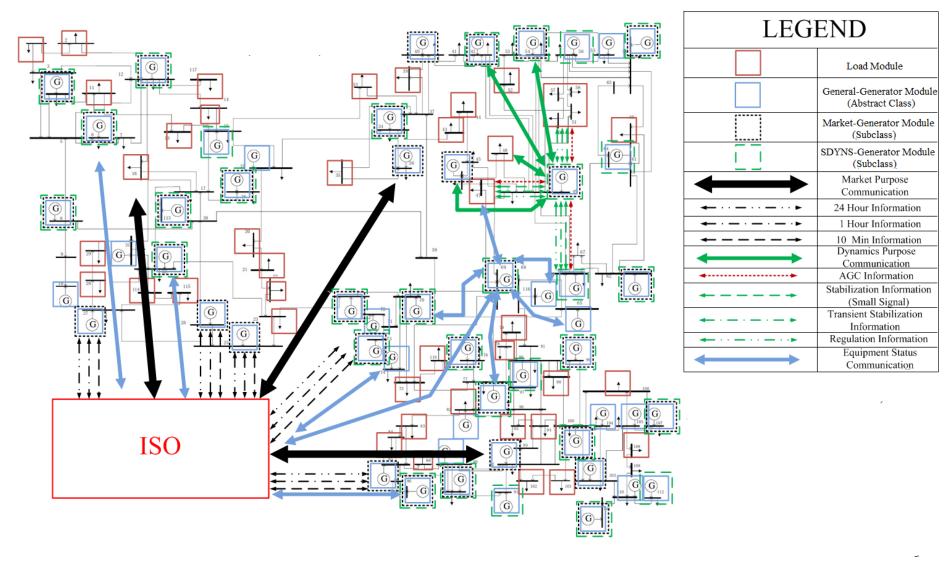
Standard state space of interconnected system



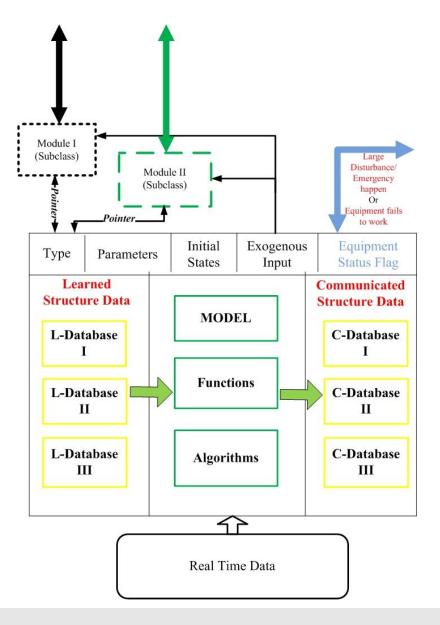

- Less assumption and communication are needed;
- System dynamics are separated into multi-layer system: internal layer and interaction layer;
- Based on above frame work, different control strategy can be used and designed:
 competitive or cooperative control

Required information exchange for interconnected system

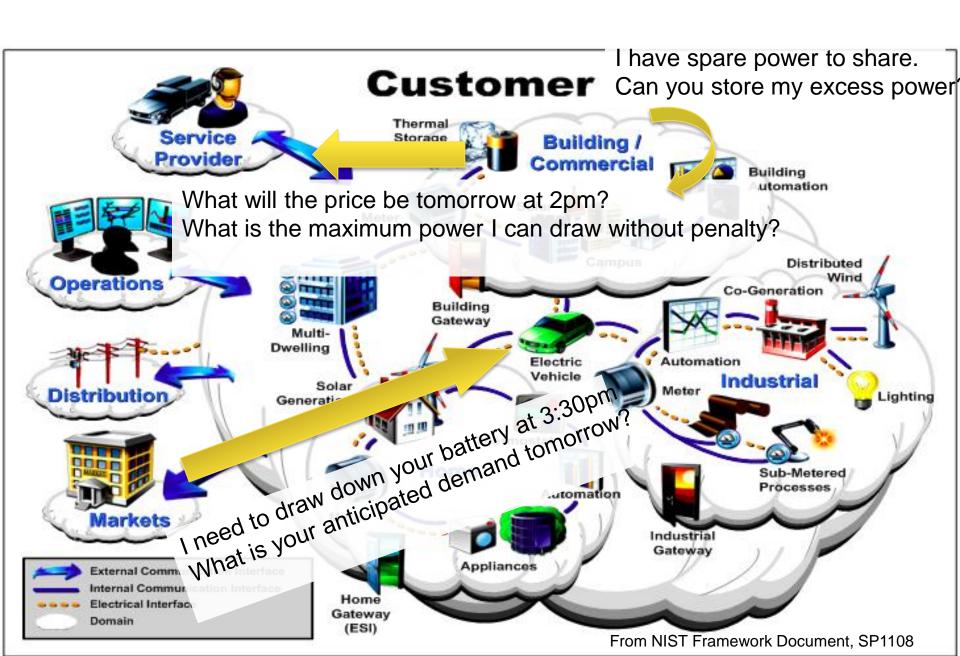

- To ensure reliability (stability, feasibility)
 - Must be exchanged interactively. They represents the total incremental energy & its rate of change; In steady state, decoupled assumption will be P & Q
 - Ranges (convex function) instead of points exchanged (DyMonDS)
- For distributed interactive optimization
 - System-level optimization is the problem of "clearing" the distributed bids according to system cost performance [P, Q info processing requires AC OPF instead of DC OPF]



Basis for DyMonDS SGRS



Information Exchange Between Modules



General Module Structure

Integration of Smart Consumers (DER)

Concluding remarks

- Physics-based modeling of electric power systems with non-zero mean disturbances
- Multi-layered dynamic models with explicit interaction variables relevant for coordinating levels
- Basis for consistent interactive communication within the multi-layered architecture
- Examples of problems with non-interactive information exchange (potentially unstable markets)
- Examples of enhanced AGC (E-AGC) for consistent frequency stabilization and regulation in response to non-zero mean disturbances
- Examples of fast power electronically switched cooperative control
- General communication protocols for DyMonDS Smart Grid in a Room Simulator (SGRS)
 based on these models
- The basis for general purpose scalable SGRS to emulate system response in the emerging power systems
- The challenge for user is to change their centralized method to DyMonDS based form

Thank you & Questions

