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How It all started—hindsight view 

 Innovation in power systems hard and slow 

 Outdated assumptions in the new environment 

 No simulators to emulate time evolution of complex event driven states 

  Fundamental need for more user-friendly innovation/technology transfer 

 General  simulators (architecture, data driven)  vs. power systems simulations 

(physics-based, specific phenomena separately) 

 Missing modeling for provable control design 

 Difficult to define performance objectives at different industry layers; 

coordination of interactions between the layers for system-wide reliability and 

efficiency ; tradeoff between complexity and performance 

 Challenge of  managing multiple performance objectives   
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 EESG  Ilic group http://www.eesg.ece.cmu.edu/ 

 Dynamic Monitoring and Decision Systems (DyMonDS) 

framework  for enabling smart SCADA; direct link with 

sustainability (enabler of clean, reliable and efficient 

integration of new resources); main role of interactive physics –

based modeling for IT/cyber 

 Cooperative effort with National Institute of Standards (NIST) 

for building Smart Grid in a Room Simulator (SGRS)  

 ***Recent new unifying modeling in support of DyMonDS*** 
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From old to new paradigm—Flores Island 
Power System, Portugal 
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Controllable components—today’s operations 
(very little dynamic control, sensing) 

H – Hydro 

D – Diesel 

W – Wind 

*Sketch by Milos Cvetkovic  

15 



Two Bus Equivalent of the Flores Island Power System 
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Information exchange in the case of Flores---new 
(lots of dynamic control and sensing) 
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Smart grid --- 
multi-layered interactive dynamical system 

 Requires new modelling approach 

 Key departures from the conventional power systems modeling  

 system is *never* at an equilibrium  

 all components are dynamic (spatially and temporally); often actively controlled 

 60Hz component may not be the dominant periodic signal 

 system dynamics determined by both internal (modular) actions and modular 

interactions 

 Groups of components (module) represented in standard state space form 
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Comparison of today’s and emerging dynamic systems 

 Small system example 

 Qualitatively different disturbances require different dynamic models 

 Case 1: zero mean disturbance; static load model  

 Case 2: non zero mean disturbance;  load  a dynamic distributed energy resource (DER) 

 Short summary of modeling assumptions for today’s hierarchical control  (Case 1) 

 Critical issues with static load modeling  and its implications on system feasibility 

 Importance of Q 

 Critical issues with non zero mean disturbance 

 Steady state 60 Hz and nominal voltage assumption may not hold 

  Proposed unifying dynamic modeling –Basis for DyMoNDS (Case 2) 

 All components are dynamic (ODEs; discrete time models); based on systematic temporal 

model reduction 

 Has inherent spatial structure (multi-layered interactive models) 

 Interactive information exchange (no longer top-down only) to ensure consistent 

implementation of multi-layered control architecture  
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Case 1: zero mean disturbance & static load model 

 Assumed zero-mean deviation from prediction            equilibria conditions 

20 
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Wind power disturbance – multiple time scales  

 Observe the non-zero mean deviation from prediction           disequilibria conditions 
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Fundamental effect of non-zero mean disturbance  

 Synchronous machine with non 

zero mean disturbance in real 

power load  

 Structural singularity [2]  
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[2]Q. Liu. Wide-Area Coordination for Frequency Control in Complex Power Systems. Ph.D. Thesis, CMU, Aug 2013. 

[3] X. Miao, M. Ilic. EESG working paper, 2015 

 Wind power plant with power 

electronics connected to constant 

impedance load [3] 
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DyMonDS modeling for simulations 

 On the Flores island when one replaces PQ  load with a DER/storage and its control 

 Multi-temporal, multi-spatial and interactive to simulate the response of the system 

to multi-rate disturbances  

 Show the effect of embedded distributed control  (multi-temporal, multi-layered)   on 

closed-loop response 
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Multi-temporal dynamic model of controllable load (DER)—stand-
alone module level 

 DER dynamics replaces static load and is modeled as any other dynamic component 

with non zero exogenous disturbance  

 

 

 

 

 

 

 Responsive load (for example: Smart building) can have:   
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Multi-temporal exogenous input – Zoom Out 
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Multi-temporal exogenous input – Zoom In 



Generalized  multi-temporal family of interacting models – module 
level 
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Multi-layered interactive models for interconnected system 
(unifying transformed state space) 

 Standard state space of interconnected system 

 

 

 

 

 

 Less assumption and communication are needed; 

 System dynamics are separated into multi-layer system: internal layer and interaction 

layer;  

 Based on above frame work, different control strategy can be used and designed: 

competitive or cooperative control 
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Required information exchange for interconnected system 

 To ensure reliability (stability, feasibility) 

 Must be exchanged interactively. They 

represents the total incremental energy & its 

rate of change; In steady state, decoupled 

assumption will be P & Q 

 Ranges (convex function) instead of points 

exchanged (DyMonDS) 

 For distributed interactive optimization   

 System-level optimization is the problem of 

“clearing” the distributed bids according to 

system cost performance [P, Q info processing 

requires AC OPF instead of DC OPF] 
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Basis for DyMonDS SGRS 
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Information Exchange Between Modules 
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 General Module Structure  
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Integration of Smart Consumers (DER) 

What will the price be tomorrow at 2pm? 

What is the maximum power I can draw without penalty? 

 

I have spare power to share. 

Can you store my excess power? 

From NIST Framework Document, SP1108 



Concluding remarks 

 Physics-based modeling of electric power systems with non-zero mean disturbances 

 Multi-layered dynamic models with explicit interaction variables relevant for coordinating 

levels 

 Basis for consistent interactive communication within the  multi-layered architecture  

 Examples of problems with non-interactive information exchange (potentially unstable 

markets) 

 Examples of enhanced AGC (E-AGC) for consistent frequency stabilization and regulation in 

response to non-zero mean disturbances 

 Examples of fast power electronically switched cooperative control  

 General communication protocols for DyMonDS Smart Grid in a Room Simulator (SGRS) 

based on these models  

 The basis for general purpose scalable SGRS to emulate system response in the emerging 

power systems 

 The challenge for user is to change their centralized method to DyMonDS based form 
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Thank you & Questions 
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