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Building Energy Control see

e Building energy management in smart grid has
become an important research area

e Individual scenarios might include:
e Demand response
e Peak power management

e Demand shifting based on time-of-use pricing and/or
renewable energy generation
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Distributed Building Control see

e Each controller focuses on a single building

e These individual “optimal” controllers create a
greedy distributed system.

e This can generate:
e New peak spikes at non-peak hours
e Supply-demand imbalances
e \oltage/frequency instability
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Distributed Control Issues see

Time of Use Pricing — Greedy Distributed Control: Unstable

0.14 ‘ ‘
UNSTABLE!!
0.121- |
£)
Z
c
i
ke
>
]
Q
(0]
(@)
]
O
>
| | |
98600 2:00 - 8:00 14:00 20:00
Time of Day

e \We need to monitor the system in a holistic way
e Observe and eliminate the discrepancies
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Smart Grid Swarm Simulator (S2Sim) see

OpenDSS based grid simulator

Simulates grid dynamics: power, voltage

Evaluates and quantifies grid stability

Enables evaluation of the quality of distributed
control of smart buildings
e Treats each building as a black box

e Allows co-simulation of individual controllers or data
feeds from real-time sensor/actuator systems



S2Sim Design Overview
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e Communication engine manages

external client connections
e OpenDSS engine calculates grid
dynamics

e Consumption management
engine evaluates power values
and sends price feedback
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Smart Price Feedback Mechanism See

Smart Price Feedback — Greedy Distributed Control: Stable
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e S2Sim calculates a price for each client

e Higher deviation = Higher price
e Clients reduce their consumption to avoid high prices



Base Model: UCSD Microgrid see

UCSD Microgrid 69 kV
Simplified One-Line Diagram
40 MW peak load oc oc GIS
30 MW Co-gen

1.2 MW solar PV

1.8 MW Fuel Cell

3.8 Mgal chilled storage

10 tons electric chillers MW MC ME
S tons steam chillers C ®_

12 kV BTE East Campus
Substation

C B D
N ? N - N @E East ‘/
North Campus o0 | * Campus

’ l_. @ S@ @ Revelle

SIO C'P *
IGPP * m '_E \
— 17| »

APy
&5 @i—’ e 1 MW each

2

3IMW
Iﬂ}m > » To campus
Loads on all feeders L@[ [EI ey s Gt
DRs on some feeders " #2 3. 8 Million Gal -
®— PMU \#1 = L From Campus




Current System
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e Current circuit can support up to 12MW, corresponding to
a town with approx. 10000 residents

e A joint effort of six universities



Individual Clients 5
UCSD/UCB/UPenn/CMU/UMich/Caltech see
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Example Scenario ©
Step 1: Voltage deviation occurs see

Client Id Client Name Client Description
118 UCB1 UCB-CALTECH HVAC Controller
117 UcCSD2 UCSD Medical Facility
115 UMICH1 Battery Bank Controller
119 UucB2 UCB SDH Hall - Office Building Controller
116 UCSD1 UCSD Campus Dormitory
120 UPENN1 MLE+ HVAC Controller

 Six individual smart building controller
« Sudden power spikes can increase stability, hence price
« Gradual power spikes result in gradual price increase
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Example Scenario ©
Step 2: Stability is restored see
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e \When consumption decreases, stability is restored
e The price keeps increasing due to high deviation
e After consumption increases again, voltage/price increases
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Example Scenario
Step 3: Price reduces
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e After a while price starts to reduce
e At the end, the price stabilizes
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Next Steps see

e Consider the system twofold.

e Building controllers: Revise the individual building
controllers to account for the grid dynamics

e Grid: Smart grid control instead of individual greedy
distributed control

e Combine these separate parts to create an optimal
close-loop feedback system

e Joint optimization of building savings and grid
operation
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Summary see

e Smart grid energy management is an important topic
e Residential (house) energy management

e Building energy management — HVAC in office and
commercial buildings

e Uncoordinated individual control mechanisms can endanger
the grid stability

e Distributed energy management in a smart grid

e S2Sim: Simulates grid dynamics; evaluates and quantifies
grid stability

e Created a realistic grid model, corresponding to a small town

e Monitor and prevent instability events

e Devised a smart price feedback mechanism



