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Background

\/

*»* Electric Vehicles (EVs) have the potential to be a valuable resource
to the electric grid

\/

** EVs are a large deferrable electric load

= EV owners don’t care when an EV charges
= EV owners only concern is sufficient energy for driving
= Flexibility allows “smart charging” control to achieve many objectives
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Research Questions

** How can we integrate EVs into Electric Energy markets
= Enable demand response to system conditions
= Compensate the intermittency of renewables
= |ncrease power system efficiency

** How does the system cost or EV driver’s cost depend on EV
charging strategy?

** How does can data analytics improve the smart charging of
self interested EVs?
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Approach

** Developed algorithms for integrating EVs into the DYMONDS
adaptive load management (ALM) framework [1-4]

» Implement a stochastic simulation on the “Smart Grid in a
Room Simulator” (SGRS)

» Simulate the process of online learning from data

** Evaluate costs under different EV charging strategies
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Adaptive Load Management
(ALM) [3,4]

Tertiary layer

Market Clearing
Price/Quantity

Demand for a

Primary layer range of prices

End-users
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Implementation on the SGRS

» Multi-layered, interactive
DYMONDS architecture

% Object-oriented modeling
of smart grid agents

s Each “module” runs as a
separate computing
process

% Event-driven, distributed
simulation

Communication
Channel

\

N-}

% Communication by TCP/IP

Price Forecaster

r
Generator

Inflexible Load

Power System

e

6
Carnegie Mellon




Simulation Sequence of Events

Inflexible Load
simulates new values of
load for each bus

New values of load are
transmitted

Inflexible Load creates
load forecast for each
bus for the next 24hrs

Inflexible Load sends
load forecast to Price
Forecaster

Price Forecaster

-
Generator

Power System

e
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Simulation Sequence of Events

5. Price Forecaster creates
a price forecast for each Price Forecaster Inflexible Load
bus for the next 24 hrs :

4|
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6. Price forecasts aresent [ !
to GeneratorsandEV [ i [ h
N Generator
LSES \‘ \s_}

Power System

e

7. In Parallel

A. All Generators create
supply bid functions

B. All EV LSEs create
aggregate demand bid
functions
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Simulation Sequence of Events

8. Demand and supply bids

are submitted to the ISO Price Forecaster Inflexible Load
\JMM \
9. ISO updates power \_
system object with new - N
data Generator

Power System

10-<?[
y

10. Power System object
performs DCOPF to
clear power market
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Simulation Sequence of Events

11. ISO sends market clearing
prices and quantities to
market participants

A.  Market participants
advance internal clocks

Price Forecaster

12 A

Inflexible Load

12. 1SO sends market clearing
price and quantity data
to the Price Forecaster
A. Price Forecaster may

update price model
using new data

B. Price Forecaster
advances internal clock
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Simulation Sequence of Events

13. ISO notifies Inflexible
Load that market has
cleared

A. Inflexible Load advances
internal clock

B. ISO advances internal clock

14. Sequence Repeats

*Simulation runs on 10
minute timesteps

Price Forecaster

Generator

Inflexible Load
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Power System

e
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IanEXible Load MOduIe Inflexib:le Load
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** Important functions

= Randomly generates new load values for all buses
= Forecasts load for all buses

** Bus loads modeled as cross-correlated stochastic processes
** Model fit to DUQ node (Pittsburgh) load data
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Inflexible Load Module [‘“f'“‘b'e“ad }

** Mean + SARMA time series model
** U - Mean model
= Accounts for Time of Day, Workday/Weekend seasonality

24 24
ult] = Bo + Bulultl+ D AT+ D Buililtlu[t]
=2 =2

R

+ X - Seasonal ARMA model
1 1
X;[t] = ¢1xj[t—l]+¢24xj[t—24E]+¢24*xj[t—24ﬂ—1]

+* Cross-correlated noise

L[t] = diag(s)«[t] + x[t]+ N (0, %)
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Price Forecaster

Price Forecaster Module

\

** Important functions

= Stores market results

= Fits model of prices using stored market data

= Forecasts prices for next 24 hours, at all buses
“* Mean + AR model of prices for each bus j

72]['[] = u;[t]+ x;t]
** Mean model » »

wilt]= B0+ BiwhWlt]+ D Byl + D By i LI+ B 1 LTt]+ B, L[]
<» AR model - 2

X;j[t] = ¢ x; [t —1]
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Generator

Generator Module |

** Important functions
" Create supply function for market
= Calculate dispatch Pmin and Pmax using current state

** Generator’s Profit Maximization Problem [1,2]

.
max Y #[t]P[t] - C (P[t])

P[t] 4=
Subject to:

| P[t]-P[t-1]|<R, WVt
P.in < P[t]< P, vt

ax!
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Generator

Generator Module

Lsa
** Creation of Supply Function [1,2]
= Solve 3 optimization problems
o 1T
<« {11=#[1], (2], .., R[T]}
<+ {09 = [1], 7[2], ..., R[T]}
rra ] Marginal cost function with “dynamics
f[1] - iy
e -~ internalized
///‘ Dispatch limits
/‘/ given current output
P*[1]
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EV Driving Simulation Object

7

* Important functions
= Randomly generates transportation behavior
= Determines energy needs and charging deadline for each EV

7

** Generating transportation behavior
= Generated trip depends on Time of Day, Weekend/Workday
= Each time an EV plugs-in:

+* Randomly generate next unplug time

+* Randomly generate following plug-in time
+* Determine state of charge required to complete the trip
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V752 4 Carnegie Mellon >



EV Modeling Based on Drivers Behavior

Tertiary Layer (Market) ;':

y
Secondary Layer "
(Generators and LSEs)

Sub-Primary Layer (Beyond the
Boundaries: Elaborate Modeling of
Each EV)

18
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Questions and Objective <

Let’s assume that you want to drive from point A to
point B on a map:

= Does vehicle powertrain technology matter for the energy
consumption rate?

= There are many types of vehicle and driving behaviors...

How to determine energy consumption for each vehicle type
based on the available driving cycle and the technical features
of vehicle?
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EV Drivers Behavior Data Set
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EV Energy Needs

** Sample driving cycle for one vehicle

20 T T T T T
~ 181 =
h H — -

i M Al A 1 Iur{\ M 1

= average speed=7.7040

max speed=18.0335 miles/hr

avg+std=13.3028 miles/hr

| avg-std=2.1052 miles/hr

Speed(miles/h

200 400 600 800 1000 1200
Time (second)

= T — T T

** Power Consumption Calculation

1M, |
B, = §Z(v§ + U?) + §pOdAva§: + C, M, gvy

** Calculated for many vehicle types and driving cycles
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@
Distribution of Energy Consumption/10

minutes

350 ——————————————————— T ————

Number of Vehicles

2.5 3 3.5 4
Energy Consumption/10 minutes
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EV Object -

** Important functions
= Requests new driving schedule from Driving Simulation
= Updates own state of charge and connection status
= Optimize charging given driving schedule, prices
= Calculates own dispatch Pmin/Pmax

** EV’s Charge Optimization Problem

T-1
min » z[t]P[t]A
Pm; [tIPLt]A,
Subject to:
T-1
1) Epeq < ZnAt P[t]+ E,
=1
2) 0<P[t]<P,., Vtefl..T-1
23
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EV LSE Module

** Important functions

= Relays price forecast to EVs

= Requests demand points from EVs

= Creates Aggregate EV demand function

= Calculates aggregate dispatch Pmin and Pmax of EVs
= Dispatches EVs

24
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EV LSE Module

** Creation of aggregate demand function [3]

= Submits 3 forecasts to each EV

00

¢ 1 = T
“ fo={1=7[1],7[2],.., Z[T]}
“ f3 =109 = 7[1],7[2], ..., Z[T]}

= Estimates aggregate demand function

|1 , , :
(1] N Marginal benefit function
RN with “dynamics internalized”
o~ . _
R Dispatch limits
'\\ given current states
£rs & Proc|1] Carnegie Mellon >
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Independent System Operator
(1SO)

** 1SO important functions ;

= Updates Power System object with new demand and supply bids

= Communicates market clearing prices, quantities to other modules

** Power System important functions

= Solves DCOPF with flexible generation and demand
min > Ci(R)- > Bi(D)
P i
Subject to:
1) Zpi :ZDi
i i
2) |FKE™ VI
3) Pimin < P| < Pimax Vi
4) D™ <D, <D™ Vi
26
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Demo

e

*

Simple 4 bus power system

e

*

500 MW mean system load

NS

* 1 generator
500 EVs ~14% of mean load

e

*
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