Project 1 Part II: Metaproduct Primes

What you know
- Basic BDD data structure and JAVA implementation
- A little bit about these things called “metaproducts”

What you don’t know
- All the tricks with metaproducts
- Using these to do Prime Implicants

Copyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this material in any form without my express permission.
About Metaproducts

Notation was created to support applications where we need to preserve the structure of things like SOP expressions

- ...ie, if you really WANT to write \(x + x' \)
- ...and you want to represent and manipulate it as a BDD, what to do?

Metaproduct notation

- Replace each variable “x” with a pair \((rx, sx)\)
- If you see \(x \) in a product, then you get \((rx)(sx)\) in metaproduct
- If you see \(x' \) in a product, then you get \((rx)(sx')\) in metaproduct
- If you don’t see any \(x \) or \(x' \) at all, then you get \((rx')\) in metaproduct

In English

- \(rx \) is the occurrence variable \(\rightarrow rx==1 \) says “\(x \) is here”, \(rx==0 \) says “no \(x \)”
- \(sx \) is the sign variable \(\rightarrow sx==1 \) says “\(x \) is positive”, \(sx==0 \) “negative”

Metaproduct Example

Suppose \(F(x,y) = x + xy' \)

- This is really just \(== x \), of course
- Its BDD would be simply

As a metaproduct

- Assume var ordering was \(x < y \)
- Then new ordering is \(x < rx < sx < y < ry < sy \)
- \(x \) becomes \((rx)(sx)(ry')(sy')\)
- \(xy' \) becomes \((rx)(sx)(ry)(sy')\)
Metaproduct Example

- You interpret this by looking at “satisfying paths” to “1” node
 - There are 2 paths from root to “1”, each makes a product term

\[
\begin{array}{cc}
0 & 1 \\
x & \text{x is here...} \\
\text{x is pos...} & y \\
\text{y is not here.}
\end{array}
\]

Result: \(x \)

\[
\begin{array}{cc}
0 & 1 \\
x & \text{x is here...} \\
\text{x is pos...} & y \\
\text{y is here...}
\end{array}
\]

Result: \(xy' \)

- Put the final products together for final answer: \(x + x'y \)

Metaproduct Example

- What happens if a variable is not present?
 - We already saw this, but its worth noting
 - In \(F(x,y) = x + xy' \), consider “x” term
 - There’s no “y” in there, but we still have to deal with “y”
 - Rule is: if there’s no variable in there, you still have to include the occurrence variables for the missing original vars, but you include them in the negative polarity to note their absence

\[
\text{So, term “x” becomes } (rx)(sx)(ty')
\]

Means “no y vars in here”

- If this was \(F(x,y,z,w) = x \), what would happen?
 - We’d get \((rx)(sx)(ry')(rz')(rw') \)
Metaproduct Primes

Turns out you can represent Prime Implicants with metaproduct notation

xy zw

These are all Primes – biggest product terms you can circle in a Kmap for your function

xy zw

These are NOT all Primes – not all biggest product terms you can circle in this Kmap

Like with Boolean functions, problem is SIZE

- A function can have many many primes – way too many enumerate one by one
- This is why representing them with something like a BDD is attractive, since its good at “compressing” Boolean functions
- But this is also why we need a special notation, since we DON’T want the BDD to CHANGE our function to its canonical form
- We need to represent it in some SOP form

Big question: how do we find Primes using metaproducts

- Of course, it’s gotta be something recursive, right…?
Metaproduct Primes

There’s another Shannon-style recursive decomposition
- You start with a BDD in your original variables
- You end up with a BDD in the (occurrence, sign) metaproduct variables
- Final BDD represents, as SOP form, ALL the primes

Basic decomposition
- Let $P(BDD \text{ root of } F) = \text{metaproduct BDD for all PRIMES in function } F$

...why does that work?
- Roughly speaking –this is just the messy check for how to “reassemble” primes when they get split up during a Shannon decomposition

When we factored on y, we “chopped up” the prime like this

When we factored on y, we “chopped up” the prime like this
Metaproduct Primes

“Reading” the decomposition

\[P(x) = P(L \ast H) \]

- If there’s no “x” vars, then get primes in \(L \ast H \)
- If neg “x’” var, get primes in \(L \) that are NOT in \(L \ast H \)
- If pos “x” var, get primes in \(L \) that are NOT in \(L \ast H \)

Let’s be a little more careful on the details of BDDs and ops

- Assumes you have AND and NOT (i.e., “!”) on BDDs
- Assumes \(P() \) calculated just like ITE, as a top-down recursion
- Assume var order is fixed: for varys \(x,y,... \), its: \(x < _x _x _x < y < _y _y _y \)

\[P(x) = P(\text{AND}[P(), \neg P(\text{AND}[,]))] \]

\[\text{AND}[P(), \neg P(\text{AND}[,]))] \]

\[\text{AND}[P(), \neg P(\text{AND}[,]))] \]
Metaproduct Primes: Termination

So we know the recursion is:

\[P(\) = \]

\[P(\text{AND}[L,H]) \]

\[\text{AND}[P(0), \neg P(\text{AND}[L,H])] \]

\[\text{AND}[P(1), \neg P(\text{AND}[L,H])] \]

\[x \]

...next question: what are the termination conditions for \(P(\) \)?

\[\text{So, when can we quit, and return a known BDD node answer?} \]

\[\text{Easy case: } P(0) = 0 \]

\[\text{Harder case: } P(1) = \text{a little messy...} \]

Suppose vars are: \(x, y, z, w \), and we have this recursion

\[P(\) = \]

\[This \text{ just } ^{\text{“0”}} \]

\[This \text{ is the product of complements of all occurrence vars later in the order, ie, after sx} \]

\[In \text{ this case: } (ry')(rz')(rw') = \]

\[1 \]

\[0 \]

\[1 \]

Intuition

\[\text{P(0) means “you're done – nothing more at all this prime term”} \]

\[\text{P(1) means “you're done – but remember that these vars are absent”} \]
Primes Example

\[f(x,y,z) = x' + y'z = 2 \text{ primes} \]

Apply recursion at root of \(f() \)

\[
\begin{align*}
P(\overline{x}) &= P(x) \\
L &= H
\end{align*}
\]

Ordinary BDD with var order: \(x < y < z \)

Primes Example

Applying recursion at root of \(f() \)

\[
\begin{align*}
P(\overline{x}) &= P(x) \\
\text{AND}[P(), \overline{P()}] \\
\text{AND}[P(), \overline{P()}] \\
\text{AND}[P(), \overline{P()}] \\
\end{align*}
\]
Primes Example

Do the obvious simplifications now (just to simplify for this manual example)

\[P() = \]

\[\text{AND} [P(), \neg P()] \]

This was just
\[P(\text{foo}) \oplus \neg P(\text{foo}) = 0 \]

Prime Example

\(<\text{OK, we need to do this one next}\>

\[P() = \]

\[\text{AND} [P(), \neg P()] \]

\[\text{AND} [P(), \neg P()] \]

\[\text{AND} [P(), \neg P()] \]

\[\text{AND} [P(), \neg P()] \]

\[\text{AND} [P(), \neg P()] \]
Prime Example

Again, do obvious simplifications (just for this manual ex)

\[P(0) = 0 \]
\[P(1) = 1 \]
\[P(0) \land P(1) = P(0) \land P(1) \]
\[P(0) = 0 \]
\[P(1) = 1 \]
\[P(0) \land P(1) = 0 \]

We have to do this one next – and it's easy...

\[P(0) = 0 \]
\[P(1) = 1 \]
\[P(0) \land P(1) = P(0) \land P(1) \]
\[P(0) = 0 \]
\[P(1) = 1 \]
\[P(0) \land P(1) = 0 \]
Prime Example

We have to do this one next – and its easy...

\[P(1) = \overline{z} \overline{1} \overline{0} \]

This is \(P(1) = \) product of complements of the vars later in the order than sz. Since sz is the LAST var in the order, the rule is: this is just “1”

Prime Example

Return results up recursive call tree...

Note – I'm leaving in all the separate “0” and “1” nodes just to simplify the drawing – it's a REAL BDD, there's only a single “1” and a single “0”…
Prime Example

\[P(1) = \text{AND}[P(0), \text{NOT}(1)] \]

Since we know \(P(1) = \) product of complements of vars below \(sx \) in the order, this is supposed to be: \((ry')(rz')\), so we get...

\[\text{AND}[P(0), \text{NOT}(0)] \]

...which is just ordinary BDD ops
Prime Example

BDD ops give this

\[\text{AND} [\ , \ \text{NOT}()] \]

Return results up recursive call tree…

\[P() = \]

\[\text{AND} [P(), \text{NOT}()] \]

© R. Rutenbar 2001, CMU 18-760, Fall 2001
..and, that’s the Final Metaproduct for Prime()

Look for paths from root to “1”

x is not here
y is here
y is negative
z is here
z is positive

This prime is \(y'z \)

Final Primes

More paths

x is here
x is negative
y is not here
...can ignore y sign
z is not here
...can ignore z sign

This prime is \(x' \)
Final Primes

\[... \text{hey, there's another one...?} \]

An unfortunate fact about metaproducts: they can be redundant about primes. You don't get the wrong ones – but you can get right ones several times.

This prime is also \(x' \)

Metaproduct Primes

\[\text{So what did we do?} \]

Ordinary BDD with var order: \(x < y < z \)

BDD for Primes(\(f \)) in metaproduct form

Primes = paths from root to “1”. Can be redundant.
What do we want?

- We want you to add $P(BDD \text{ for function } f)$ as an operator to your JAVA BDD package
- Do it exactly like we showed here
 - Just like ITE: you descend the starting BDD for f, and you recursively “trace out” the BDD for $P(f)$
 - Assume you have all the vars defined in the right initial order. This means if the real vars are x, y, YOU have x, rx, sx, y, ry, sy in order
- You have 2 basic goals
 - To be able to transform a BDD for function f into $Prime(f)$
 - To print out some interesting “info” about these primes

Things to be careful about

- Before doing anything, you probably want to build the function: $(rx')(ry')(rz')... (rlast')$ for ALL your vars. And make an array of pointers to the nodes, so that when you need $P(1) = \text{product of complemented occurrence nodes below me}$ – you can just look it up
- You still need to call FindOrCreateNode() on the 2 new nodes you make. You want to build sx and its children first, call FindOrCreateNode(sx), then finish the recursion on rx, then call FindOrCreateNode(sx).
- Do you want to do something like a different OPS table for the Prime computation? (It’s not required…but think about it)
- You will want to write a “printprime” routine that walks the paths to the “1” node, and prints out sensible product terms. DO NOT worry about the redundancy issue – not your problem.
- You also want to build a “numprimes” routine that just prints out the number of paths to the “1” node. Think about it – you don’t have to walk them all to do this, it’s a very simple recursion if you know numprimes(hichild) and numprimes(lochild), and numprimes(1)=1 and numprimes(0)=0
Metaproduct Primes: Summary

- Interesting, sort of funky BDD application
 - Twists the usual interpretation of "canonical BDD form" around a lot
 - Works fine, a bit arcane
 - (This is a simplification of how people really do it. There are a bunch of other optimizations to get rid of those redundancies that make it a lot faster. Not worth the grief to go thru them all...they violate a lot of BDD rules.)

- For Project 1
 - Implement Prime(f)
 - Look on the /afs/ece/class/ee760/proj1 directory for more details, and for some info about benchmarks to run
 - Ask TA and Prof questions if there are any issues at all on this one