

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 1

Analysis Document for High Performance Real Time-

Fault Tolerance Evaluation

Team 6: Slackers
Steven Lawrance

Puneet Aggarwal

Karim Jamal

Hyunwoo Kim

Tanmay Sinha

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 2

1. List of client invocations that we measured

Method One

Way?

Database

Access?

Request Size

(in bytes)

Reply Size* (in

bytes)

enterLot N Y 8 4 * array length

exitLot N Y 4 0

getClientID N N 0 4

getOtherLotAvailability N Y 4 4 * array length

getLots N Y 0 4 * array length

moveUpLevel N Y 4 4

moveDownLevel N Y 4 4

getCurrentLevel N N 0 4

getMaxLevel N Y 0 4

getMinLevel N Y 0 4

*Size of the reply before the experiment padding is added

The getLots() method was the only method tested for this phase’s experiments.

The average size of the original replies, before serialization, was 16 bytes due to four

lots in the system.

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 3

2. Analysis of experimental results from our high performance RT-FT

evaluation

Strategy 1

Our first strategy was to adjust the client-side fault recovery wait time, which the

code calls the fault recovery “timeout,” though it’s not really a timeout on method

invocations. The client has this wait time because the replication manager takes time

to inform the naming service of the new primary, and continuous name service

polling from the clients makes the system crawl.

We graphed our failover times after running the experiments with different client-side

fault recovery wait times.

Figure 1. Plot for wait time 0 ms

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 4

Figure 2. Plot for wait time 1000 ms

Figure 3. Plot for wait time 2000 ms

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 5

Figure 4. Plot for wait time 3000 ms

Figure 5. Plot for wait time 4000 ms

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 6

After analyzing the available data the observations are as follows

• The best results can be seen with 4000ms wait time.

• Event though there is a lot of reduction in fail-over time for lower values, we can

observe a significant amount of jitter.

• The reason for the jitter is that the client doesn’t get the updated primary server from

the naming service in a timely manner. The replication manager’s fault detection

wait time, similarly called the fault detection “timeout” in the implementation, was

held constant at 5000ms across this strategy’s experiments. This means that the

replication manager waits for 5000ms after serially checking every registered server.

• Average recovery time is reduced by some amount through this client-side wait time

variation strategy (from about 5-6 secs to 4.5-5 sec for 4000ms wait time).

• Our main goal is to have a bounded real-time failover, and simply adjusting the

client-side wait time did not adequately provide that.

Strategy 2

Implementing the IOGR (Interoperable Object Group Reference)

In this strategy, the client gets the list of all active servers from the naming service.

The client caches this list for fast access, but it has to refresh it if all servers in that

cached list have become faulty.

The following graphs show the fault recovery times after this strategy was

implemented.

Figure 6. Plot after IOGR strategy (same axis as without any strategy)

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 7

Figure 7. Plot after IOGR strategy (original axis)

Figure 7. Pie Chart after IOGR strategy

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 8

Observations after implementing the IOGR strategy:

• The recovery time is significantly reduced from between 5-6 seconds to less than

half a second.

• The time to get the new primary from the naming service is eliminated in the

particular case that the pie chart measured, which was a cache hit on the cached

server list.

• The most time taken is in restoring the client manager.

• The graph plotted on a different axis shows some amount of jitter. After all the

active servers are dead, the client has to go to naming service to refresh the list.

Strategy 3

Open TCP/IP connection

After getting the IOGR implemented, the main component of the end-to-end latency

is time taken in obtaining the client manager object. In this strategy, the client

maintains open TCP/IP connections with all the active servers. As a result, the time to

create a connection is saved, reducing the client manager restore time.

The following graphs show the fault recovery latencies in strategy 3 for 1 client.

Figure 8. Plot after implementing strategy 3(same axis as without strategy)

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 9

Figure 9. Plot after implementing strategy 3(original axis)

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 10

Figure 10. Pie chart after implementing strategy 3

Observations after implementing the strategy 3 as open TCP/IP connections for 1 client

• The recovery time is reduced compared to the IOGR strategy.

• Most of the time taken is still in restoring the client manager.

• There is noticeable jitter when observed on a different axis.

• We had to run the client for 30,000 method invocations to get at least 20 faults

injected. We tried to increase the fault injection rate to achieve at least 20 faults in

10,000 method invocations, but the results were not well-bounded. Keeping the

client fault injection rate consistent between the 1-client and 10-client

experiments helps make the results more comparable.

The following graphs show the fault recovery latencies on strategy 3 for 10 clients.

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 11

Figure 11. Plot after implementing strategy 3 for 10 clients

(same axis as without any strategy)

Figure 12. Plot after implementing strategy 3 for 10 clients(original axis)

Team 6: Slackers

Lawrance, Aggarwal, Jamal, Kim, Sinha 12

Figure 13. Pie chart after implementing strategy 3 for 10 clients

Observations after implementing the strategy 3 as open TCP/IP connections for 10

clients:

• Significant reduction is observed in the fail-over time.

• Most of the time is still taken in restoring the client manager.

• It can also be observed that significant amount is taken in waiting for acquiring a

lock that is shared with the failover thread. This might be due to, among other

things, the increased load on the naming service that this strategy has created as

each client refreshes its cache of the active servers from the naming service every

1.5 seconds. When a fault occurs while the background thread is in the process of

failing over, then this lock wait time can be observed.

• The client restoration time is lower in this pie chart probably because the relevant

servers might have been busier at the time that the 1-client measurements were

taken.

As a result of these experiments and analyses, we can state that we have achieved a

bounded failover time of one second when the fault detection wait time is set to 1500ms,

the fault injection rate is set to 4000ms, at most 10 clients are using the system, two

servers are running, the faults are kill-server faults (kill -9 or killServer()), CPU load on

the servers is minimal, memory usage on the servers is minimal, no network faults or

performance degradations are taking place, the replication manager is running, and all

other conditions are normal.

