
Group 6: Team Slackers

Design Document for Fault Tolerance Evaluation

1. Chief experimenter: Hyunwoo Kim

2. List of client invocations that we will measure:

Method One Way? Database Access? Request Size Reply Size*

enterLot N Y 8 4 * array length

exitLot N Y 4 0

getClientID N N 0 4

getOtherLotAvailability N Y 4 4 * array length

getLots N Y 0 4 * array length

moveUpLevel N Y 4 4

moveDownLevel N Y 4 4

getCurrentLevel N N 0 4

getMaxLevel N Y 0 4

getMinLevel N Y 0 4
* Size of the reply before the experiment padding is added

3. List of implementation changes required for fault-tolerance evaluation:

1. Two-way invocation

1. For each invocation, all methods in the server that we're going to measure return a reply 
that the client receives

2. Tunable reply size

1. Add new structures in the IDL and change the method return types in ClientManager to 
permit the passing of padded return values from the server to achieve a test’s reply size 
parameter

2. Modify calls to the ClientManager methods to use the real return values embedded 
within the padded return values

3. Inter-request time

1. The methods in the FaultTolerantClientManager on the client side will wait for the inter-
request time’s value after notifying the Logger that the method call completed.

4. Other changes

1. Add command-line parsing in the server and client main() methods to permit passing of 
the test parameters – number of clients, inter-request time, and reply size – from the test 
scripts

2. Add a text user interface on the server to permit both manual log flushing and server 
shutdowns

Group 6: Team Slackers Page 1 of 3



3. Pass client host names from the client to the server in the getClientManager() and 
getExistingClientManager() methods so that the server knows the host name of its caller 
for the client host name probe

4. All server-side method implementations in ClientManagerImpl, except for 
closeClientManager(), will inform the probe logger of when each method call begins 
and when each method call ends along with the called method name and the calling 
client’s host name. Normal returns and exception throwing will inform the probe logger 
that the method call ended. Note that getClientManager(), getExistingClientManager(), 
and poke() exist in the ClientManagerFactoryImpl and are not measured

5. Create a Logger class that the server and client call to notify of method entries and exits. 
Internally, this class measures specific time points in microseconds. This class stores its 
logging data in a preallocated array until flushed either manually from the server’s text 
user interface or automatically from being filled. Flushing writes all the logging data to 
specially-named log files on the disk.

6. Create a LogEntry object that the Logger class uses to represent a single log entry. 
When measured methods notify the Logger that the method is complete, those methods 
pass in the LogEntry object instance returned when that method notified the Logger that 
a method call was starting

7. Flush the Logger’s logs to log files on the disk during the client’s shutdown

8. The ClientManager methods implemented in the FaultTolerantClientManager class in 
the client, except for closeClientManager(), will inform the Logger of method call starts 
and method call completions.

9. Ensure that the existing client and server startup scripts run Java in the foreground and 
pass all command-line parameter arguments to Java with $@

10. Create scripts that can start up the desired number of servers and clients, run them, and 
collect the logged results

4. List of scripts required for fault-tolerance evaluation and the design for fault-tolerance 
evaluation (e.g., how you're planning to put the scripts together, gotchas, etc.):

Script Location Type Description

server/server bash Starts a single server instance in the foreground (already 
implemented)

client/client bash Starts a single client instance in the foreground (already 
implemented)

tests/client-test text Command list to pipe into the client’s stdin stream to 
cause the client to test the remote methods that we want to 
test

tests/runall bash Runs all 48 test configurations by calling tests/runone 
with different command-line parameter arguments

Group 6: Team Slackers Page 2 of 3



Script Location Type Description

tests/runone bash Runs a single test configuration as configured by the 
command-line parameter arguments. This is accomplished 
with the following actions:

1. Start a server instance on each server listed in 
tests/servers using a backgrounded SSH session, 
redirecting stdin to a file descriptor that the script 
later writes into to tell the server to flush logs and 
exit

2. Start a clients instance on each computer listed in 
tests/clients in the background using SSH and, on 
the remote side of each SSH connection, pipe 
tests/client-test into the client as its stdin

3. Wait for the clients to exit
4. Inform the servers that they need to exit by, one at 

a time, foregrounding and sending the exit 
command

tests/servers text Lists the name of each server to start a server on in 
separate lines

tests/clients text Lists the name of each computer to start a client on in 
separate lines

5. Plan at this point:

1. Finish the code modifications (they are almost complete)

2. Implement the scripts

3. Run the tests/runall script to produce the output log files in client/ and server/ for all 48 
configurations

4. Analyze the results

Group 6: Team Slackers Page 3 of 3


