Distributed Fault Tolerance:
Lessons from Delta-4

David Powell

LAAS-CNRS

36 IEEE Micro

Because they avoid extensive redesign of specialized hardware, software-implemented
approaches to fault tolerance are very resilient to change. Europe’s Delta-4 project argues
persuasively for implementing fault tolerance in a distributed fashion. Our Delta-4 approach
achieves fault tolerance by replicating capsules—runtime representations of application
objects—on distributed, LAN-interconnected nodes. It can configure capsule groups to tolerate
either stopping or arbitrary failures. Its multipoint protocols serve to coordinate capsule
groups and for error processing and fault treatment.

ost modern computing systems are

distributed systems. Organizational

considerations, as when sharing

data in an integrated information
system, often demand such arrangements. Phys-
ical constraints, as in process control, may also
argue for distribution. Sometimes, simple eco-
nomics motivates the choice, as when hardware
resources must be shared.

Lamport! once jokingly defined a distributed
system as “one that stops you getting any work
done when a machine you've never even heard
of crashes.” More seriously, but similarly, Fischer?
claims that the main distinction between distrib-
uted systems and parallel ones is the uncertainty
they introduce through unreliable communica-
tion and faulty nodes.

Lamport's witticism and Fischer's distinction
both underline dependability as an inherent con-
cern of distribution. Consequently, distribution
can be a motivation for fault tolerance, because
users of distributed systems want, at worst, a
slight degradation in performance should an ele-
ment elsewhere in the system fail.

Of course, fault tolerance is essential for appli-
cations, even nondistributed ones, that require
extremely high levels of availability or reliabili-
ty. Achieving fault tolerance is impossible with-
out redundancy, which often makes distribution
the appropriate paradigm for defining redun-
dancy and managing it to achieve fault tolerance.

That is, fault tolerance can be a motivation for
distribution.

To define an open system architecture with
distributed fault tolerance. the Delta-4 project?
investigated this symbiotic relationship between
distribution and fault tolerance. (See the Delta-4
project box.) For our purposes here, I take dis-
tributed fault tolerance to mean software-imple-
mented fault tolerance achieved solely by
message-passing between the nodes of a dis-
tributed system. The nodes constitute the units of
hardware redundancy and can communicate
only by means of a message-passing communi-
cation system (in Delta-4, a local area network).
The architecture is open in that it is

e based on open. distributed processing con-
cepts and, whenever possible, open system
interconnection communication standards;
and

e uses standard. oft-the-shelf processors and
standard LAN technology with a minimum
of specialized hardware.

Fault and failure assumptions

These two motivations for distributed fault tol-
erance—distribution-motivated fault tolerance
versus fault tolerance-motivated distribution—
correspond not only to different viewpoints but
often also to divergent application contexts. In
each context the reasons for fault tolerance are

0272-1732/94/$04.00 © 1994 IEEE

quite different, thus so are the relevant assumptions about
faults and failures.

Distribution-motivated fault tolerance. This viewpoint
is often the realm of networked computer systems, where a
collection of autonomous nodes comprise the distributed
system, each node under the control of a separate user or
administrator. The applications in this context are often not
critical. Given users will quite likely be lenient towards crash-
es of their own workstations—after all, they are probably
the only ones to blame—but much less so if they are fre-
quently bothered by failures of other nodes.

Application designers could implement fault tolerance
mechanisms to hide the effects of quite mundane incidents
affecting a remote node. Such incidents might include a
power outage, a crash of its local operating system (perhaps
due to a software bug), a scheduled maintenance interven-
tion, a network incident leading to communication discon-
nection, or quite simply because its user turned it off before
going home! Users elsewhere might perceive all these inci-
dents as annoying faults if they prevent them from carrying
out their work (remember the Lamport “syndrome”).

Consequently, we often interpret “fault”™ tolerance in such
systems as tolerance for the inaccessibility or unavailability
of other nodes, where unavailable means “as if they weren't
there.” Designers of distributed fault tolerance mechanisms
under this viewpoint implicitly assume that nodes are fail-
silent—they either carry out their intended function or, as
seen from the rest of the system, they simply disappear.

The unreliability of the underlying communication net-
work presents one final consideration for this category of
system. Other applications, or even other organizations, usu-
ally share such a network, so the designer of 4 distributed ser-
vice or application has little influence on its design. The
application designer therefore may need to devise specific
fault tolerance techniques to deal with network partitioning.

Fault tolerance-motivated distribution. Such systems
much more strongly emphasize very high levels of depend-
ability compared to fault-intolerant (nondistributed) systems.
The applications of such systems are typically much more crit-
ical than in the previous case—a failure here could have dire
economic consequences or even lead to the loss of life.
Consequently, considerable attention focuses on the definition
of the basic units of distribution (redundant fault-containment
regions), the faults the system can tolerate, the way compo-
nents fail, and the means by which they are interconnected.

Distributed fault tolerance operates on the basic premise
that faults affecting processes executed by different nodes
are independent, so nodes are natural candidates for defin-
ing fault containment regions. This hypothesis is, of course.
quite reasonable for physical faults (or, more formally. inter-
nal accidental faults*). Assuming independence in the man-
ifestations of external accidental faults (or disasters), such as
fire and floods, is also quite fair, provided the nodes are suf-

Delta-4 project

The Delta-4 project began in March 1986 at the ini-
tiative of two major European companies—Bull SA in
France and Ferranti International in the UK—as part of
the European Strategic Programme for Research in
Information Technology (ESPIRIT). The aim was to
“Define and design an open dependable distributed
architecture (whence the project’s name), that is, a mul-
tivendor fault-tolerant platform for distributed applica-
tions.” The project drew on the combined expertise of
eight research and academic institutions: IEI-CNR (Italy),
IITB-Fraunhofer (Germany), INESC (Portugal), LAAS-
CNRS (France), LGI-IMAG (France), MARI (UK), a soft-
ware house: Sema Group (France), and two potential
user companies: Crédit Agricole and Renault (France).

Although the overall economic situation of the com-
puting industry since the project ended has prevented
wide commercial deployment of the project’s results, it
was technically very successful. Several fully integrated
prototypes attest to the feasibility of distributed fault tol-
erance techniques for heterogeneous, off-the-shelf hard-
ware. During the project’s lifetime—March 1986 to
January 1992—several hardware technology updates
occurred with little or no impact on the system soft-
ware. This strikingly demonstrates one of the major
advantages of a software-implemented approach to fault
tolerance. Other advantages of this approach include a
certain degree of disaster tolerance and design-fault
tolerance.

ficiently far apart. Interestingly. the premise quite reasonably
applies to some accidental design faults. Differences in local
execution environments of processes operating on different
nodes can cause some such faults to manifest themselves in
different ways. Gray® refers to such faults as “Heisenbugs”
because they go away when you look at them.

Not only must we consider the types of faults the system
is to tolerate, we must also envisage the admissible effects
these faults have on node (or process) behavior—that is,
node failure modes. In fault tolerance-motivated distributed
systems, we aim to distribute computation over a collection
of redundant nodes. possibly in the same physical box, to
provide the illusion of a single virtual machine that never
fails. This single virtual machine may have multiple users,
but operates under the control of a single administrator. We
would not expect the nodes in such a machine to random-
ly disappear by users turning them off or rebooting them.
Since high dependability is the primary aim of distribution in
this case, we also usually globally protect the system against
power failures and purposely design the interconnection net-
work itself for fault tolerance.

February 1994 37

Host Host Host eee | HOSE Host
NAC[~|Nac[” " INAC NAC[~[NAC
L Local area network I

Figure 1. Hardware architecture.

Overall, we can consider the nodes in such a distributed.
fault-tolerant machine as being individually much more reli-
able than those considered under the “computer network™
viewpoint. However, the causes of node failure that we argue
as being less relevant in a more tightly coupled, distributed
fault-tolerant machine—shutdowns, reboots, power outages,
network disconnections, operating-system crashes—are the
very ones that largely justify the fail-silent node assumption
in a computer network environment. Can we reasonably
assume that the remaining causes of node failure result in
nodes failing only by crashing?

The reasonableness of any such failure mode assumption
is captured by the notion of assumption coverage.® defined
as the probability of the assumption being true when a node
fails. In this case, the coverage of a crash-only assumption
equals the coverage of any self-checking mechanisms built
into the nodes aimed at silencing the node should a fault
occur. If the self-checking coverage is commensurate with
the required application dependability, we can justifiably
assume that nodes fail only by crashing. Otherwise, we must
make weaker assumptions and devise distributed fault toler-
ance techniques that can accommodate more severe failure
modes such as omission and timing failures. or even com-
pletely arbitrary failures.®” As I describe next, Delta-4 follows
what could be perceived as a “fence-sitting approach.” where-
by we can adopt both strong and weak failure mode assump-
tions according to the criticality of the considered application
and knowledge about the available hardware.

Hardware architecture

The Delta-4 architecture is an open architecture that can
employ off-the-shelf hardware to provide fault tolerance in
money-critical (but not life-critical) applications. The repli-
cation of code and data on different computational nodes
interconnected by a LAN provides for fault tolerance.

Since the self-checking coverage of off-the-shelf hardware
often cannot justify the crash-only failure assumption. the
architecture allows users to configure very critical applica-
tions to tolerate arbitrary failures. However, not all applica-
tions warrant the constraints and cost of tolerating arbitrary
failures. Therefore, the Delta-4 architecture also provides
simpler mechanisms when stronger failure assumptions are
admissible. Users can follow both approaches. even in the
same system, for different applications.

38 IEEE Micro

Off-the-shelf hardware is either fail-silent (crash-only) or
fail-uncontrolled (admitting arbitrary modes of failure).
Unfortunately. if complete nodes can fail arbitrarily, we must
make the node interconnection scheme much more com-
plex than with the single (or possibly. duplex) broadcast
channel that would suffice for fail-silent nodes. For exam-
ple. a fail-uncontrolled node connected to multiple channels
could fail by saturating all channels, thus bringing down the
complete system. Furthermore, protocols for ensuring agree-
ment under such a failure mode assumption are notorious-
ly complex and time consuming. The Delta-4 architecture
therefore follows a hybrid approach that splits each node
into two subsystems (Figure 1):

* an off-the-shelf computation component, called a host,
that may be fail-uncontrolled;

® a communication component, called a network attach-
ment controller (NAC). that we assume to be fail-silent.

The fail-silence assumption for the network attachment
controllers alleviates the problems regarding the use of
broadcast channels and agreement protocol complexity. A
standard LAN (8802.4 or 8802.5) interconnects the NACs of
each station. Duplex (or even simplex) channels can pro-
vide a very low probability of communication system failure
in the maintainable environments for which Delta-4 is intend-
ed.® We therefore consider the communication system as
hard core and make no attempt at the application level to
tolerate physical network partitioning.

The NAC consists of a pair of piggy-backed cards that
plugs into the host's backplane bus and interfaces the node
with the physical communication channels. The NAC close-
ly resembles any other standard LAN controller card. As
described in the Implementing fail-silence box. the only dif-
ference is that it uses built-in hardware self-checking to sub-
stantiate the assumption that it is fail-silent.

Software architecture and communication
system

The NACs are the only specialized hardware components
in the Delta-4 open system architecture. System software
implements the remainder of the Delta-4 functionality and the
mechanisms for fault tolerance on top of either the hosts' local
operating systems or the NACs’ real-time kernels. The system
software contains three main components (Figure 2, page 53):

» a host-resident infrastructure for supporting distributed
applications:

¢ a computation and communication administration sys-
tem (executing partly on the hosts and partly on the
NACs): and

e a multipoint communication protocol stack (executing
on the NACs).

P

Hardware self-checking mecha-
nisms support the “fail-silence”
assumption for the network attach-
ment controllers. Figure A shows the
functional diagram of a NAC for
interfacing a VME-based host to an
8802.5 token ring. The figure distin-
guishes two functional parts: a pro-
tocol processor that executes all the
high-level communication protocols
(including the Inter-Replica proto-
coD) and a LAN adapter that supports
the LAN-specific layer 1 and 2 pro-
tocols.

Except for a few small devices
such as a common clock and inter-
rupt and bus synchronization cir-
cuits, the drawing completely
duplicates the protocol processor
section. The NAC copies all DMA-
produced addresses and input data
from the master system bus through
a bridge to the shadow system bus.
The master and shadow CPUs oper-
ate in lock-step; the controller com-
pares their data buses on all
memory accesses and most other
CPU cycles, including CPU writes to
the LAN adapter. Any fault causing
an error on either bus forces both
CPUs to halt until a reset occurs, and
forces the LAN adapter to reset and
disconnect from the ring. Any mes-
sage that is aborted part way
through its transmission will be
rejected by the normal message val-
idation checks performed at the
receiving end.

The particular chip set used for
this LAN adapter—the Texas
Instruments TMS380—prevents self-
checking of the LAN adapter part of

implementing fail-silence

Host backplane
(VME)

Shadow

16/32 |

16/32 swap

Master

CPU

68020

Protocol processor

LAN adapter
interface ROM*
38030
LAN adapter bus*
16+2 bits
—| Communications Protocol Heartbeat
8 processor handler
o 38010 38020
Ring Watchdog

Interface

Ring ?8 g*Ring

in out

Figure A. NAC functional diagram. *Byte parity protected. (Courtesy Ferranti
Int’l, United Kingdom.)

To support open object-oriented distributed computation, a distributed application. It provides the means for generat-
we developed a particular host-resident infrastructure for the ing and supporting interactions between runtime software
Delta-4 architecture: the Delta-4 Application Support components called capsules (executable representations of
Environment (Deltase). According to the philosophy of open objects). Deltase provides a runtime environment that can
distributed processing, Deltase facilitates the use of hetero- hide the differences in underlying local operating systems.
geneous languages for implementing the various objects of In practice. though, all the implemented Delta-4 prototypes

February 1994 39

the NAC by duplication and comparison due to the non-
determinism in switching between the two clock sources
of the protocol handler. Those sources are the local clock
from the communications processor and the clock derived
from the incoming data stream. However, this chip set
does provide some built-in self-checking mechanisms:
byte-wise parity-checking on all data transferred over the
LAN adapter bus and a watchdog timer (a monostable
timer retriggered every 10 ms by the adapter’s program
code) controlling the insertion of the NAC into the ring.
In addition, a self-test program executes prior to inserting
the NAC into the ring.

These self-checking mechanisms are aimed at protect-
ing the NAC against faults in the NAC itself. However, we
must still protect the NAC against external faults that could
cause it to violate the assumed fail-silent behavior. In par-
ticular, we must ensure that a fault in the local host does
not corrupt data in the NAC local memory that has already
been validated by the Inter-Replica protocol. Conse-
quently, we implemented a memory write-protection
mechanism that prevents DMA write accesses to the NAC
local memory except in areas to which the NAC software
(executed by the self-checking CPU pair) has specifically
and dynamically granted permission. The implemented
protection mechanism provides two separate masks for

Implementing fail-silence (continued)

write access from the host and from the LAN adapter. Pro-
tection comes in 128-byte granules.

This particular NAC design arose out of concern for the
poor error-detection coverage achieved with an earlier
prototype that did not use duplication-and-comparison in
the protocol processor. We estimated coverage using phys-
ical fault injection.! The estimated 1-second latency error
detection coverage for the early prototype with limited
self-checking was only 30 percent. Even after 100 seconds’
latency. the estimated error detection coverage was still
only 75 percent.? The improved design described here led
to a significant improvement as the 1-second and 100-sec-
ond latency error detection coverages were an estimated
97 and 99 percent.?

References

1.). Arlatetal., “Experimental Evaluation of the Fault Tolerance
of an Atomic Multicast Protocol,” /EEE Trans. Reliability, Vol.
39, No. 4, IEEE Computer Society Press, Los Alamitos, Calif.,
Oct. 1990, pp. 455-467.

2.). Arlat et al., “Dependability Testing Report LA3—Fault-
Injection on the Extended Self-Checking NAC,” Report
91396, LAAS-CNRS, 1991 (available from the author).

are based on Unix whereby Deltase capsules map onto Unix
processes.

The administration system provides the mechanisms for
managing a Delta-4 system. It consists of both support for
network management in the classic sense as well as support
for computation management. The administration system
carries out three basic tasks:

¢ configuration management, which supports planning
and integration of redundancy and distribution;

¢ performance management, which includes system sta-
tus monitoring by event counting and polling; and

e fault management, including automatic fault treatment
and support for maintenance interventions.

The notions of managed objects and domain managers
form the basis for the management system. A managed object
is a hardware or software component (such as a Deltase cap-
sule) that, besides its normal functionality, is formally char-
acterized by attributes, operations, and events by which
domain managers can observe and control the component.
A domain manager is a system server that is responsible for
managing a set or domain of similar or related managed

40 IEEE Micro

objects. Of particular relevance to fault tolerance is the notion
of a replication domain manager for carrying out fault treat-
ment (more on this later).

The multipoint communication protocol stack provides
two major innovative features:

* multipoint associations for connection-oriented com-
munication between groups of communication end-
points (for example, in different Deltase capsules); and

e the ability to coordinate communication to and from
replicated communication endpoints (a special form of
group).

The structure of the protocol stack follows the OSI refer-
ence model (see Figure 3) and incorporates compatibility with
ISO protocol standards whenever possible. However, since
there are not yet any standard protocols for multipoint com-
munication, the Delta-4 stack implements a number of spe-
cific protocols (indicated by bold characters on Figure 3).

The core of the Delta-4 group communication mechanisms
is the Atomic Multicast protocol (AMP),? which is imple-
mented within layer 2 on top of a standard medium-access
control protocol. This two-phase accept protocol allows data

frames to be delivered to a group of

logically designated gates. The pro-

tocol ensures unanimity—the con-
troller delivers frames either to all

User application(s)

1

addressed gates on nonfaulty nodes
or to none of them. This can occur if
the sender fails or if a recipient gate

Delta-4 Application
Support Environment

Multipoint communication
protocol stack

Administration
system

cannot accept a frame due to lack of
receive credit. The protocol ensures

Host operating system

NAC kernel

that frames are delivered to all
addressed gates in a consistent order.

Host
environment

NAC
environment

AMP makes sure as well that all
members of a gate group are consis-
tently notified of any changes in
membership of that group (due to

Figure 2. Software architecture.

nodt? failure or reinsertion). (Another Multipoint Multipoint OSil layers
version of AMP—called Turbo CMISE MMS
AMP—was specially targeted at the Multipoint ACSE 7
8802.5 token ring and was imple- ACSE ISO 8649-8650
mented as a hardware and firmware Multipoint presentation Presentation 1SO 8822-8823 6
extension of the existing token ring
medium access control protocol.) Multipoint session Session SO 8326-8327

All communication entities exe- 5
cute on the real-time kernels of the Inter replica
fail-silent NACs. Therefore, we
assume that each communication Multipoint transport 4
entity reacts in bounded time in the
absence of NAC failure or otherwise (Inter-fink)
crashes. 'If messages are never.lost Atomic multicast 2
and delivered in bounded time, Turbo AMP
time-outs on responses to protocol Standard MACs
frames can reliably detect remote
crashes. Physical layer of standard LANs 1

However, real networks can lose
messages, sO our system uses time
redundancy by message retry to give ACSE Association control servjce elern_em -
the illusion of such a perfect net- CMISE Common management miormg_tnoq service element

MMS Manufacturing message specification

work. AMP incorporates a frame MAC Medium-access control protocol
retry mechanism that tolerates a pre-

defined number (called omission
degree) of successive omission fail-
ures. If a remote entity does not
respond after the predefined num-
ber of retries, the sender assumes it has crashed. Such an
assumed crash triggers the distributed election of an active
monitor that ensures completion of any interrupted multi-
casts (to ensure unanimity) and informs all group partici-
pants of the new view of the group membership.

On top of AMP, the Inter-link protocol extends the AMP
service to interconnections of LANs. The Multipoint transport
protocol, a lightweight, connection-oriented protocol, adds
segmentation, reassembly, and flow control functions to the
underlying service. The next sublayer is the Inter-replica pro-

Figure 3. The multipoint communication protocol stack.

tocol (IRP), which is at the heart of the Delta-4 fault tolerance
mechanisms. This protocol coordinates communication to
and from endpoints that are replicated on different nodes
such that replication is hidden from the sources and the des-
tinations of messages sent to or by the considered endpoint.
Hiding replication involves not only transparently delivering
messages to all endpoint replicas (using the underlying mul-
ticasting), but also requires arbitration between send events
across the set of endpoint replicas such that destinations only
receive a single message. This arbitration can optionally

February 1994 41

Deolta-4
bk d

To specify and
configure fault
tolerance on a flexible,
service-by-service basis,
Delta-4 can
replicate capsules

independently.

include error-detection or error-detection-and-compensation
by comparison of replicated messages.

The IRP services are available either to standard ISO
upper-layer protocols or upper-layer multipoint protocols
specific to Delta-4 that allow connection-oriented commu-
nication between groups of logically distinct communication
endpoints.

Fault tolerance

Capsules, the runtime representations of Deltase objects,
are the units of replication for achieving fault tolerance. To
specify and configure fault tolerance on a flexible, service-
by-service basis, Delta-4 can replicate capsules indepen-
dently. Programmers of a Deltase object do not need to know
that the capsule corresponding to the object they are pro-
gramming—or indeed, of any other object with which it com-
municates—may be replicated.

Achieving fault tolerance by replicated processing involves
two issues:

* How should we manage the interactions between a
replicated capsule and other (possibly replicated) cap-
sules so that the latter are unaware that some of the for-
mer’s replicas may be faulty?

¢ How can we maintain (or restore) the number of cap-
sule replicas at the level required to sustain this illusion,
despite the occurrence of further failures?

These two issues relate, respectively, to error processing and
fault treatment.

Error processing. To achieve fault tolerance on a cap-
sule-by-capsule basis, error processing occurs entirely with-
in the scope of each group of replicas without resorting, for
example, to the use of transactions or conversations to coor-
dinate error processing over logically distinct capsules.

42 |EEE Micro

Consequently, Delta-4 must confine errors within replica
groups. Any recovery or compensation action taken within
a given group must not require actions by any other group.

We have investigated three different, but complementary,
techniques and implemented them in the Delta-4 architec-
ture: active, passive, and semi-active replication.

Active replication. With this technique, all replicas process
all input messages concurrently so that their internal states
are closely synchronized. In the absence of faults, outputs
can be taken from any replica. The active replication
approach allows quasi-instantaneous recovery from a node
failure. Furthermore, because it can cross-check (in value
and time) messages produced by different (active) replicas,
it adapts to both the fail-silent and fail-uncontrolled node
assumptions. However, active replication requires that all
replicas be guaranteed to be deterministic in the absence of
faults. If nonfaulty replicas process identical input message
streams, the approach must guarantee that they produce
identical output message streams. One way of achieving this
guarantee is to oblige the programmer to ensure that cap-
sules behave as state machines. !

Delta-4 directly manages active replication!'! by means of
the IRP. The communication endpoints of actively replicated
capsules are themselves replicated and configured either
according to a fail-silent assumption (only late-timing errors are
detected) or a fail-uncontrolled assumption (both timing and
value errors are detected). If it detects any errors, the IRP caus-
es the incriminated endpoint replica to abort and reports the
errors to the administration system to initiate fault treatment.

Active replication has also been studied (under various
names) in the Software-Implemented Fault Tolerance,!?
Circus. " Isis,'* and Advanced Automation System'® projects.
To our knowledge, however, the Delta-4 implementation is
the only one that manages replicated output messages at
their logical source rather than at their destination and allows
arbitrary (host) failures to be tolerated over a general (non-
meshed) communication network. (To be fair, although
Cooper!? assumed that processors only failed by crashing,
he did study the concept of a collator to vote on multiple
replies from nondeterministic server replicas.)

Passive replication. In this technique, only one of the repli-
cas (the primary replica) processes the input messages and
provides output messages. In the absence of faults, the other
replicas (the standby replicas) do not process input messages
and do not produce output messages. Checkpoints system-
atically sent by the primary replica every time it sends a mes-
sage do, however, regularly update the internal states of
these standby replicas. We can envisage passive replication
only if we assume that nodes are fail-silent. Unlike active
replication, this technique does not require computation to
be deterministic. However, the performance overheads of
systematic checkpoints and rolling back for recovery may
not be acceptable in certain applications—especially in real-

time applications. (The use of periodic instead of systemat-
ic check pointing leads to a lower check pointing overhead
but sacrifices the possibility of accommodating nondeter-
ministic computation.)

Delta-4 manages passive replication by system code, called
a rep_entity, included in a capsule when an application
object is compiled.' The primary rep_entity atomically mul-
ticasts all data messages and associated checkpoints to the
standby rep_entities. Both the primary and the standby
rep_entities then forward data messages to their final desti-
nations using the replicated endpoint mechanism of the IRP
to ensure that exactly one message is sent, even if the pri-
mary fails.

Passive replication is essentially the same approach as the
well-known process pair approach found in the Tandem
Guardian operating system. In Delta-4, however, as in Isis'*
and AAS, " passively replicated groups can include more than
one standby replica, so near-coincident failures can be
handled.

Semi-active replication. In this hybrid of active and pas-
sive replication, only one replica (the leader replica)
processes all input messages and provides output messages.
In the absence of faults, the other replicas (the follower
replicas) do not produce output messages. Their internal
state is updated either by direct processing of input mes-
sages or, where appropriate, by means of notifications (or
minicheckpoints) from the leader replica. Semi-active repli-
cation seeks to achieve the low recovery overheads of active
replication while relaxing the constraints on computation
determinism. Delta-4 can use notifications to force the fol-
lowers to obey all nondeterministic decisions made by the
leader replica.

Semi-active replication, or the leader-follower model as it
is sometimes called, was initially developed in the context of
the Delta-4 Extra Performance Architecture!” since it has some
interesting real-time properties. First, it can use notifications
to inform follower replicas about the order in which the leader
replica consumes messages. Therefore. messages no longer
need to be sent by the totally ordered atomic multicast pro-
tocol, but can use a higher performance “reliable™ multicast
protocol (a protocol ensuring unanimity but not order). This
model also allows high priority messages to jump the queue
without introducing inconsistencies across the replica group.

Second, this model can use notifications to implement con-
sistent preemption of computation across a replica group.
For this, a precompiler must introduce preemption points
that fix the points in computation at which execution may be
preempted. When a follower replica reaches a preemption
point, it waits for a notification from the leader replica that
tells it whether to continue (to the next preemption point or
to a later one) or to let a specified input message preempt
computation at that point.

We can also use the semi-active replication technique for

In Delta-4, passively
replicated groups
can include more
than one standby
replica, so near-coincident

failures can be handled.

replicating large. off-the-shelf software components about
which no assumption can be made concerning replica deter-
minism and internal states (such as commercially available
database management software). However, this technique
cannot be a generic mechanism. The model must either iden-
tify potential sources of nondeterminism in the source code
(if this is available). Otherwise. it must provide a purposely
designed front-end to the replicas that maintains consisten-
¢y by means of semantic-dependent leader-follower notifi-
cations. We used this technique to replicate an Oracle
database in one of our prototypes.

At first sight, the semi-active replication technique requires
nodes to be fail-silent because the notifications from a faulty
leader could otherwise propagate errors to the followers.
However, we could relax this restriction if each notification
indicates the leader’s choice among a predefined finite set of
decisions. If the notification received from a faulty leader
indicates a decision inside this finite set, although the leader
may not have taken that decision. the followers can still fol-
low it since it is a valid one. If the received notification is
not in the finite set. all the followers will know and take a
default decision.

In both cases. the IRP can detect and compensate for errors
in the output messages from the leader and follower repli-
cas. Even if we adopt the more restrictive fail-silent assump-
tion (as we did for the implementations of this technique that
we actually carried out), the IRP allows arbitration between
messages sent by the leader and follower replicas to ensure
that exactly one message is sent. even if the leader fails.

Fault treatment. The error processing techniques
described just now allow capsule interactions to proceed
even though a subset of replicas of each capsule may be
faulty. However, if nothing more is done, subsequent faults
could cause most or all of the replicas in a group to fail,
thereby leading to system failure. Fault treatment, one of the
roles of the administration system, avoids such exhaustion of
redundancy.

February 1994 43

Delta-4

W\

An application association

L

® Replication doméin

[Ye

@

/ o

Host

association

SMAP associatiol

{IRP;

O single endpoint
@ Replicated endpoint

Figure 4. Error reporting and fault treatment.

For an explanation of fault treatment in Delta-4, let's look
at an example. Figure 4 illustrates a simple Delta-4 system
with five nodes, each split into its constituent host and NAC
components. The figure shows two triplicated application
capsules, Pand Q, whose replicas have been initially allo-
cated to node sets {1, 2, 4} and {2, 3, 5}. We will define the
other entities as we look at the fault treatment actions that
occur following the activation of a fault in node 5. Here, 1
assume that Pand Q use active replication (they both have
replicated endpoints on any application associations to
which they are connected). The fault treatment actions for
the other replication paradigms are similar.

Fault treatment involves fault diagnosis. fault passivation,
and system reconfiguration. Fault diagnosis localizes the

44 IEEE Micro

fault—the source of detected errors—and decides whether
fault passivation is necessary to prevent the fault from caus-
ing further errors. We call faults judged not to require passi-
vation soft faults; fault that do we call solid faults.*

By the very notion of fail-silence. a fault that results in
node crash is automatically passivated. Because the fault
changes group membership. Delta-4 makes its location
known to all participants of any active AMP group that spans
the failed node. Any such AMP group change event gets
reported (@) to a local system administration component
called a system management application process (SMAP).
There is one SMAP executing on every NAC in the system.
A multipoint association linking all the SMAPs consistently
informs all other SMAPs of the group change.

Delta-4 can tolerate faults that produce a failure other than
a node crash—faults that cause the host to violate the fail-
silence assumption—only it employs active replication. In
this case, replicated endpoint entities executing the IRP
detect discrepancies in the values or timing of replica output
messages. Any detected errors cause the incriminated end-
point replica to be aborted and are reported locally (@) to
the SMAPs of the stations on which the replicas reside. Delta-
4 considers any faults revealed by IRP error detection to be
solid faults. At the first such error, Delta-4 assumes the node
to be faulty and passivates it by removing it from the system
exactly as if it had crashed. However, we could easily extend
the fault treatment strategy to consider soft faults.

After fault diagnosis and fault passivation, we can attempt
system reconfiguration. This procedure entails the allocation
and initialization of new replicas to replace failed ones and
thereby restore the level of redundancy so that further faults
can be tolerated. If new replicas cannot be allocated, Delta-
4 may have to abandon some applications in favor of more
critical ones. Otherwise, system reconfiguration will be
delayed until failed nodes are repaired and re-inserted.

We refer to the allocation and initialization of new replicas
as cloning, which proceeds according to the reconfiguration
policy defined for a given set of nodes, called a replication
domain. A Delta-4 system may have several. potentially over-
lapping, replication domains. An administration system com-
ponent called a replication domain manager (RDM) applies
the reconfiguration policy for a particular domain. Naturally.
RDMs are very critical components, so they should be made
fault-tolerant. The system handles fault tolerance of RDMs in
exactly the same way as fault tolerance of application com-
ponents. The five nodes in Figure 4 make up a single repli-
cation domain, so there is only one (triplicated) RDM.

In Figure 4, one or several SMAPs receive notification that
node 5 has failed. These SMAPs then notify (@) the RDM of
this failure event so the latter can orchestrate the reconfigu-
ration actions defined by its reconfiguration policy. In this
case, we will assume that a new replica of Q must be cloned
on node 1 to replace replica Q_on the failed node 5.

The cloning protocol involves two other system entities
shown in Figure 4. The first of these is the object manage-
ment entity (OME) linked to each capsule at compile time.
An OME extends the user-defined functionality of a capsule
to include management services for initializing and cloning
replicas of the capsule. The second entity is a separate admin-
istration component, called a factory. A logically distinct fac-
tory is installed on every node in the system and takes
responsibility for local instantiation of capsule replicas. The
OME:s of each replicated capsule and the RDM have repli-
cated endpoints on a domain-wide multipoint association
(called the replication domain association in Figure 4). Each
factory also connects to this association through a single (non-
replicated) endpoint.

Active replication
enables systems seeking
high dependability with

off-the-shelf hardware
interconnected by
standard LANs to tolerate

arbitrary failures.

The cloning protocol proceeds as follows:

e The RDM requests (@) the factory on node 1 to create
(@) a local template of Q from a local copy of the pro-
gram file.

* During its initialization phase, the OME of this fledgling
replica (Q) establishes the communication endpoints
necessary for communication with the RDM and con-
firms (®) this to the RDM.

* The RDM instructs (®) the OMEs of Q and Q, to trans-
fer (clone) their process context to the new replica.

* The OMEs of Q, and Q, take a snapshot of their local
context (data, stack. registers. ...) and initiate the trans-
fer (@) of this context to the OME of Q.

e When all the context data have been transferred, the
OME of Q substitutes the current process context with
the recejved context data and continues execution with
that context as a full-fledged replica (after synchroniz-
ing with the OMEs of Q and Q,).

The actual transfer of context data falls subject to the same
IRP error detection (message comparison) as any other com-
munication from replicated components. Consequently, the
system can confine near-coincident faults activated during
cloning (or even tolerate them if it employs sufficient initial
replication). However. any location-specific context data
must be identified and equalized before transfer to avoid the
natural differences in such data being perceived as errors.

With the fault treatment facilities outlined here, the level
of redundancy of replicated capsules can be restored auto-
matically. so long as the system has sufficient nonfailed
resources. We can test off line any nodes that have failed
and been disconnected from the system, repairing them if
necessary and reinserting them into the system. However,
the system views such reinserted nodes as entirely new

February 1994 45

Delta-4

nodes with total amnesia regarding their previous existence.
When a node is (re-)inserted into the system, the replication
policy can allow for a redistribution of replicas to balance
the overall load.

AS THIS PROJECT SUCCESSFULLY DEMONSTRATED,
active replication enables systems seeking high dependabil-
ity with off-the-shelf hardware interconnected by standard
LANSs to tolerate arbitrary failures. Such tolerance does not
come without a price; application programmers must respect
certain rules to achieve deterministic, fault-free execution.
What, however, is the alternative if we want off-the-shelf
hardware to implement highly dependable systems? If the
off-the-shelf hardware in question should only fail in a less
severe fashion—for example, by crashing—we could adopt
the alternative passive or semi-active replication techniques.
However, we should justify any such assumption by an esti-
mation of the accompanying coverage and a demonstration
that this coverage is commensurate with the overall depend-
ability objective.

Estimation of the actual coverage requires that we gather
failure-mode statistics, either in operational life or by fault
injection in prototypes. Note, however, that any upgrade in
hardware technology will usually require a completely new
estimation of the corresponding coverage. Also. note that
the error detection coverage we can achieve with tradition-
al, off-the-shelf computer hardware is often quite low unless
we also employ extensive self-checking techniques. (For
example, consider the coverage figures given earlier in the
Implementing fail-silence box for the early prototype NAC.
which could be considered as such traditional computer
hardware with limited self-checking.)

When looking at active replication, we must also consider
the interface between the actively replicated capsules and the
outside world. Whereas active replication is eminently suit-
able for managing voting on multiple sensors (with multiple
r-way multicasts to ensure interactive consistency). or for dri-
ving voting actuators, it works much less well when replica-
tion must be entirely hidden from the outside world. For
example, consider setting up a connection over a public net-
work to a non-Delta-4 site. In such cases. the necessarily
unique Delta-4 site that manages the external connection
becomes a hard core. Although we can implement applica-
tion-specific procedures to tolerate crashes of such an 1O
site, any failure of a more arbitrary nature could lead to fail-
ure of the complete Delta-4 system. Management of such a
single-sited I/O forces adoption of the fail-silence assump-
tion for the I/O site(s). The attendant lack of coverage will
largely determine overall dependability, even if we make less
severe assumptions for the other sites in the system.

The key to tolerating arbitrary failures without resorting

46 IEEE Micro

to costly interconnection hardware or agreement protocols
is the concept of a fail-silent NAC associated with each off-
the-shelf host computer. The presence of low-level LAN-
controller chips, which could not be duplexed and compared
due to inaccessible, and therefore nonsynchronizable, inter-
nal clock circuitry, limited the error detection coverage of
the NACs. Higher self-checking coverage would therefore
have forced us 1o redesign some quite complex VLSI chips.

The Delta-4 approach to distributed fault tolerance relies
heavily on the use of multipoint communication protocols.
Such protocols are extremely useful for simplifying distrib-
uted computation in general, regardless of fault tolerance.
For example. the availability of multipoint associations that
could span all nodes, or all nodes in a particular replication
domain (see Figure +4), significantly simplified the Delta-4
administration system.

We implemented the core group communication proto-
col, AMP. at the lowest possible level, at layer 2 of the OSI
reference model. Consequently. node- or NAC-crash detec-
tion was reliable and usually quite fast. Sometimes. howev-
er. a crash can remain undetected by the rest of the system
if none of the AMP groups that span the crashed node are
active—that is. attempting to exchange messages. Imposing
artificial, minimum frequency AMP traffic spanning all nodes
could easily improve this situation. We could throttle back
this artificial traffic to save bandwidth if real AMP traffic were
sufficiently high to ensure low crash-detection latency.

The low-layer implementation of AMP proved to some-
what impede the distribution and uptake of the Delta-4 group
communication facilities because it made it difficult to port
Delta-4 to an existing networked environment. In contrast,
the Isis'* team first chose to implement multicasting on top
of the widely available user datagram protocol (UDP), which
enabled widespread distribution of the Isis tool kit in the
research community and bevond. Note. however, that the
Isis team is now considering putting its core mechanisms
much closer to the network interface.™™

Distributed fault tolerance techniques such as those devel-
oped in Delta-4 have a difficult time competing with the
performance of hardware-intensive. tightly synchronized
approaches. Still, I firmly believe that the economic and flex-
ibility advantages of software-implemented. distributed fault
tolerance techniques will soon emerge as a major option for
highly dependable systems. especially in distributed work-
station environments. In particular, the advent of microkernel
technology opens new and exciting possibilities for high-
performance. user-transparent. software-implemented fault
tolerance.

[n the Dependable Computing and Fault Tolerance
research group at LAAS-CNRS. we are now tackling a new
challenge: how to design distributed systems that are not
only highly available but also suitable for safety- and secu-
rity-critical applications. We believe that distributed fault

tolerance techniques like those developed in Delta-4—com-
bined with modern microkernel technology—provide us
with some of the answers. [0

Acknowledgments

The Commission of the European Community partially
supported the Delta-4 project through the ESPIRIT program
(Projects 818 and 2252). Many persons contributed to the
Delta-4 project over its six-year lifetime. They are far too
numerous to thank individually, but I would like to express
my gratitude to them all for their professionalism, their enthu-
siasm, and the splendid esprit de corps that reigned within the
project team. Special and very personal thanks must of
course go to David, David, Doug, Gottfried, Marc, Pascal,
Paulo, Peter, and Santosh, as well as all my compatriots in
the Dependable Computing Group at LAAS.

References

1. S. Mullender, ed., Distributed Systems, ACM Press, Addison-
Wesley, New York, 1989.

2. M. Ffischer, “ATheoretician’s View of Fault-Tolerant Distributed
Computing,” in Fault-Tolerant Distributed Computing, B. Simons
and A. Spector, eds., Springer-Verlag, Berlin, 1990, pp. 1-9.

3. D.Powell, ed., Delta-4: A Generic Architecture for Dependable
Distributed Computing, Springer-Verlag, Berlin, 1991.

4. J.-C. Laprie, ed., Dependability: Basic Concepts and Terminology,
Springer-Verlag, Vienna, 1992.

5. J. Gray, "Why Do Computers Stop and What Can Be Done
About It?” Proc. Fifth Symp. Reliability in Distributed Software
and Database Systems, |IEEE Computer Society Press, Los
Alamitos, Calif., 1986, pp. 3-12.

6. D. Powell, "Failure Mode Assumptions and Assumption
Coverage,” Proc. 22nd Int’l Symp. Fault-Tolerant Computing,
CS Press, 1992, pp. 386-395.

7. F. Cristian et al.,, “Atomic Broadcast: From Simple Message
Diffusion to Byzantine Agreement,” Proc. 15th Int‘l Symp. Fault-
Tolerant Computing, CS Press, 1985, pp. 200-206

8. K.Kanoun and D. Powell, “Dependability Evaluation of Bus and
Ring Communication Topologies for the Delta-4 Distributed
Fault-Tolerant Architecture,” Proc. 10th Symp. Reliable
Distributed Systems, CS Press, 1991, pp. 130-141

9. P. Verissimo, L. Rodrigues, and M. Baptista, “AMP: A Highly
Parallel Atomic Multicast Protocol,” ACM Computer Comm.
Rev., Vol. 19, No. 4, Sept. 1989, pp. 83-93

10. F. B. Schneider, “Implementing Fault Tolerant Services Using
the State Machine Approach: A Tutorial,” ACM Computing
Surveys, Vol. 22, No. 4, Dec. 1990, pp. 229-319.

11. M. Chéréque et al., “Active Replication in Delta-4.” Proc. 22nd
Int’l Conf. Fault-Tolerant Computing Systems, CS Press, 1992,
pp. 28-37.

12. P.M. Melliar-Smith and R.L. Schwartz, “Formal Specification and

Mechanical Verification of SIFT: A Fault Tolerance Flight Control
System,” IEEE Trans. Computers, Vol. C-31, No. 7, July 1982,
pp. 616-630.

13. E.C. Cooper, “Replicated Procedure Call,” ACM OS Rev., Vol.
20, No. 1, 1984, pp. 44-56.

14. K.P. Birman and T.A. Joseph, “Exploiting Replication in
Distributed Systems, " in Distributed Systems, S. Mullender, ed.,
ACM Press, New York, 1989, pp. 319-367.

15. F. Cristian, B. Dancey, and J. Dehn, “Fault Tolerance in the
Advanced Automation System,” Proc. 20th Int'l Symp. Fault-
Tolerant Computing, CS Press, 1990, pp. 6-17.

16. N.A. Speirs and P.A. Barrett, "Using Passive Replicates in Delta-
4 to Provide Dependable Distributed Computing,” Proc. 19th
Int’l Symp. Fault-Tolerant Computing Systems, CS Press, 1989,
pp. 184-190.

17. P.A. Barrettetal., “The Delta-4 Extra Performance Architecture
(XPA)," Proc. 20th Int'l Symp. Fault-Tolerant Computing
Systems, CS Press, 1990, pp. 481-488.

18. R. van Renesse et al.,, "Reliable Multicast Between Micro-
kernels,” Proc. Workshop on Microkernels and Other Kernel
Architectures, Usenix Assoc., 1992, pp. 269-283

David Powell, scientific director of the
Delta-4 project, is a member of the
Dependable Computing and Fault
Tolerance Research Group at LAAS-CNRS,
Toulouse. France. His current research
interests include distributed algorithms for
software-implemented fault tolerance,
stochastic Petri-net modeling for dependability evaluation,
and the use of fault injection for estimating fault tolerance
coverage.

Powell received a BSc¢ from Southampton University,
England. before joining LAAS-CNRS. He obtained his
Speciality and State Doctorates. respectively, from Paul
Sabatier University, Toulouse, and the National Polytechnic
Institute. Toulouse. He is a member of the Association
Francgaise des Sciences et Technologies de L'information et
des Systémes (AFCET) and IEEE.

Direct any questions concerning this article to the author
at LAAS-CNRS. 7 Avenue du Colonel Roche, 31077 Toulouse,
France: david.powell@laas.fr.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card
Medium 166

Low 165 High 167

February 1994 47

