11100011100000011110000001111111000010101
01010101010101010101010100000111110101010

Kelvin Nilsen

ADDING REAL-TIME

CAPABILITIES fo Java

Through extendsive experimentation, developers somebow find the right

combnation of paramelers to maxumize coot, performance, and compliance

with real-time constraints.

>

SUN MICROSYSTEMS INITIALLY DEVELOPED JAVA AS A TOOL TO SUPPORT INTERNAL

development of small embedded systems. Later, they determined the language was

appropriate for development and distribution of Internet applications and released the lan-

guage to the general public. Java is object oriented with syntax derived from C and C+ + [1, 10],
however, Java’s designers chose not to pursue full compatibility with C and C++ because they
preferred to eliminate from these languages certain troublesome features. In particular, Java does
not support enumerated constants; pointer arithmetic; traditional functions, structures and

unions; multiple inheritance; goto statements; operator overloading; and preprocessor directives.

Instead, Java requires all constant identifiers and
functions (methods) to be encapsulated within class
declarations. Java provides standardized support for
multiple threads (lightweight tasks) and automatic
garbage collection of dynamically allocated memory.
Further, Java fully specifies the behavior of every
operator on every type, unlike C and C++ which
leave many behaviors implementation-dependent.
These changes were designed to improve software
scalability, reduce software development and mainte-
nance costs, and to achieve full portability of Java
software. Anecdotal evidence suggests that many for-
mer C and C++ programmers have enthusiastically
welcomed these language improvements.

One distinguishing characteristic of Java is its exe-
cution model. Java programs are first translated into

a fully portable standard bytecode representation.
The bytecode is then available for execution in any
environment that provides support for a Java virtual
machine. A Java virtual machine is simply a system
of software that understands and executes the stan-
dard Java bytecode representation. All major operat-
ing systems now support execution of Java programs,
including Windows 95, NT, and CE, Solaris, HP-
UX, IRIX, AIW, and MacOS. To prevent viruses
from being introduced by a foreign Java bytecode
program, the Java virtual machine includes a Java
bytecode analyzer that verifies the bytecode but does
not contain requests that would compromise the local
system. By convention, this bytecode analyzer is
applied to every Java program before it is executed.
Bytecode analysis is combined with optional run-

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 49

time restrictions on access to the local file system for
even greater security.

Initial Java implementations interpret bytecodes,
but recently released implementations provide the
ability to translate bytecodes to native machine
code on the fly. Sun calls this just-in-time (JIT)
compilation. Another technique for improving Java
performance, known as ahead-of-time translation, is
to translate bytecodes to machine code prior to
deploying an application. JIT and ahead-of-time
translation techniques offer the potential of provid-
ing performance that approximates the execution
speed of C++.

To be precise, Java is more than a programming
language. Java is a commercial product and the Java
name is a trademark of Sun Microsystems. At the
time of this writing, only licensees of Sun’s Java
implementation are allowed to use the Java trade-
mark. Thus the Java name implies much more than a
particular programming language syntax; it implies a
particular vendor’s implementation, a particular exe-
cution model (relying upon a standard, intermediate

According to Sun, the reason (t@vo restri

applications include voice synthesis, air traffic con-
trol, control of robots, telephone switching, and
full-motion multimedia playback. In hard, real-
time systems, there is no tolerance for late (or early)
actions. In such systems, it would be better to not
provide any response at all than to provide a late
response. Coordinating vehicular traffic flow with
red traffic-light signals is a hard, real-time activity.
A car that enters an intersection after the traffic
light has turned red is likely to cause a serious acci-
dent. In a soft, real-time application, a late result is
generally considered to be better than no result at
all. Network packet routers are examples of soft,
real-time systems. Though it is desirable to forward
packets to the appropriate subnetworks under part-
ticular time constraints, it is usually better to delay
transmission of a packet than to ignore it entirely.
Special implementation techniques are required of
programmers who desire to enforce real-time con-
straints. In particular, programmers must determine
the memory and CPU-time requirements of each
real-time task independently, and then must analyze

: __ii'?é"'r@g“z/‘

" . .--H‘h_'/ .
the Java trademark is to adoure 36()6/0/)6 o that thetr C(J(e‘?vbll\/_ ul

reliably in every environment elaiming the Java name.

bytecode representation), and a particular collection
of standard libraries. According to Sun, the reason it
is so restrictive regarding use of the Java trademark is
to assure developers that their code will run reliably
in every environment claiming the Java name.

Even though the design of Java was originally
motivated within Sun by the special needs of embed-
ded systems development and Sun is promoting the
use of Java for embedded systems programming,
Java, as it has been defined and implemented, lacks
important capabilities necessary for the reliable
development of portable real-time applications. This
article summarizes some of these shortcomings and
very briefly describes how these shortcomings are
being addressed in a real-time variant of Java that is
currently being developed and marketed under the
PERC product name. For more information on the
PERC real-time API, see www.newmonics.com.

What Is Real-Time Programming?

Computer programs that must execute within par-
ticular time constraints are said to be real-time pro-
grams or applications. Examples of real-time

50 June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

the collective workload of all the tasks that comprise
the system workload. One common technique for
analyzing system workloads is known as rate monot-
onic analysis. With rate monotonic scheduling,
developers assign task priority in order of decreasing
execution frequency. Tasks that execute most fre-
quently are assigned the highest priority. Mathemat-
ical analysis of the worst-case scenario (in which all
tasks are triggered for execution at the same time)
demonstrates that all of the tasks will complete their
execution prior to their next period of execution as
long as the combined workload represents less than
69% of the CPU's total capacity [4]. Other schedul-
ing techniques, such as earliest-deadline-first, are
capable of supporting higher CPU utilizations [3].
Regardless of the analysis technique used, it is neces-
sary to know the worst-case execution time and the
maximum execution frequency of each task in order
to perform the analysis.

Challenges of Real-Time Development
Developing real-time software is notoriously diffi-
cult and very costly. To exercise full control over

real-time behavior requires extensive machine-
dependent analysis. Because the market for real-
time software has traditionally been much smaller
than the market for non-real-time software, real-
time developers do not enjoy access to the same
high-level application development environments
that are available to developers of more traditional
applications. Much of the analysis required to ana-
lyze and demonstrate compliance with real-time
constraints must therefore be done by hand rather
than by automated tools. Even worse, this analysis
must be repeated each time the application is ported
to a new architecture or to a new release or configu-
ration of the same architecture.

The effort required to demonstrate compliance
with real-time constraints is monumental. It delays
time to market and makes development of real-time
software much more costly than development of tra-
ditional non-real-time software. An additional cost of
real-time methodologies is they require much more
conservative use of time and memory than is typical
of more traditional applications. This is because real-
time developers generally must configure time and
memory for the worst-case requirements of each real-
time activity whereas traditional computer systems
are generally configured for typical or average-case
resource requirements.

Most real-time practitioners consider the use of
formal methodologies to be cost-prohibitive. Rather
than use “recommended” methodologies, developers
make numerous compromises in the fundamental
design and engineering of real-time systems. Unfor-
tunately, there is very little theory to describe the
behavior of such compromised systems. As a result,
implementation of real-time systems is largely per-
formed through a process of “black magic.” Through
human wizardry and experimentation, developers
find the right combination of parameters that mini-
mizes cost while maximizing performance and com-
pliance with real-time constraints. Because these
parameters are determined through arbitrary choices
rather than systematic analysis, resulting systems are
fragile; following even a very small change to an iso-
lated component of the system workload, it is often
necessary to determine new configuration parameters
based on extensive retesting of the complete system.

Many real-time programmers now do their devel-
opment in C and C+ +. However, these languages do
not provide mechanisms to allow programmers to
describe real-time constraints. Consequently, pro-
grammers are required to enforce real-time require-
ments using combinations of compile-time analysis
tools, pre-run-time measurements of application
resource requirements, and run-time interaction

with non-standard, real-time operating system ser-
vices. As a result, the real-time semantics of soft-
ware written in C and C+ + is not represented by the
source code alone. Rather, the real-time semantics is
scattered throughout specification documents,
makefile-driven analyses and source-code transfor-
mations, and, on rare occasions, carefully docu-
mented logs describing the results of testing and
experimentation and justifying the selection of par-
ticular configuration parameters. A consequence of
this separation between functional and real-time
semantics is that maintenance of real-time software
is especially difficult. Once a system is considered to
be working properly, there is great reluctance to add
any new functionality.

Note that development of real-time Java pro-
grams is especially difficult. The developer of a Java
application has no idea how powerful the CPU and
how much memory will be available in the Java vir-
tual machine environment in which the application
is to run. Even worse, developers have no ability to
predict the combination of other real-time activities
that will comprise the total system workload in
which their application will be required to run. And
even if developers knew exactly what other real-time
tasks were to be running in the target execution
environment, they would probably not have the
opportunity to scrutinize their implementations to
analyze how they might interact with the applica-
tion’s code.

Blocking Concerns
In real-time systems, application developers take
responsibility for ensuring the software executes on
schedule. The required analysis includes considera-
tion of both the time required to execute each task’s
code and the time each task may have to wait in
queues for access to shared resources. Analysis of
execution time, discussed previously, is a local con-
cern. Analysis of wait times is a global concern.
Determining how much time a task might have to
wait in a queue depends on how many other tasks
may need to access the same shared resource, the rel-
ative priorities of those other tasks, the amount of
time each of those tasks will need to retain the
shared resource before releasing it, and the times at
which each of the other tasks requires access to the
shared resources. In general, analyzing intertask
timing dependencies is very difficult. And this
analysis is especially difficult in the highly dynamic
Java execution environment.

In summary, real-time developers analyze two
quantities to demonstrate compliance with real-time
constraints: execution time and blocking time. Per-

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 51

forming accurate analyses is quite difficult. Consider
the analogy of a someone attempting to predict how
much time will be required to drive a car across a
small town. The “execution time” is how long it takes
to drive from the starting point to the ending point
assuming there are no delays along the way. If the car
gets a flat tire or experiences mechanical difficulties,
the times required to respond to these problems must
be included in the worst-case execution time. But the
typical execution time ignores these possibilities. The
person’s “blocking time” would be the maximum
amount of time needed to wait for red lights at inter-
sections, for railroad crossings, for traffic jams, and for
coordination with emergency vehicles that are granted
priority access to the public roadways. As with execu-
tion times, the typical blocking time is much shorter
than the worst-case blocking time.

Do Java Developers Need Real-Time?
Currently, most of the Java code being developed is
intended for distribution on the Internet. Because
the Internet itself is overloaded and unpredictable,
users of these Java applications have become accus-
tomed to sluggish, bursty performance. However,
Java applications are already under development
that will require more predictable real-time perfor-
mance. These include real-time character anima-
tion, computer music synthesis, full-motion audio
and video playback, and video conferencing.

Sun is promoting the use of Java as a general-
purpose programming language. They are marketing
a new operating system called JavaOS for use in small
embedded systems. These small systems are to run
only applications written in Java. In such systems,
real-time constraints will need to be enforced in order
to support high-quality mouse tracking and human
interaction, fax processing, voice recording and play-
back, and high-performance network connections.
Future hand-held computers will need to provide
increasing amounts of real-time functionality. They
will likely support pen input, voice understanding
and synthesis, and global positioning. JavaOS sys-
tems may also be employed in more traditional
embedded environments including manufacturing
automation, telephone switching, security systems,
intelligent air conditioner control, and reactive
robots. All of these require varying degrees of com-
pliance with real-time constraints.

Do Real-Time Programmers Need Java?
As discussed, real-time development using current
state-of-the-art technologies is largely “black
magic.” It is also tedious and costly. The resulting
systems are inflexible (imposing excessive con-

52 June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

straints on allowed input data) and fragile (they are
difficult to modify and likely to break if the execu-
tion environment changes). Further, development of
real-time software is inherently nonportable. Pro-
grammers are forced to target particular operating
systems and particular hardware architectures.

Java offers important high-level benefits to devel-
opers of traditional software. It would be desirable for
a real-time dialect of Java to improve upon the state
of the practice in real-time development.

A proposal for a real-time dialect of Java has
already been published on the Internet [S] and this
proposal has been reviewed by hundreds of develop-
ers of both traditional embedded systems and of more
traditional Internet Java applications. So far, enthusi-
astic interest and support have been expressed for
adding real-time capabilities to the Java language.

Where Java Falls Short

In its current form, Java is not appropriate for the
development of real-time software. In order to offer
real-time developers the promise of a portable real-
time execution environment, certain aspects of the
Java language specification that Sun currently
describes as undefined need to be more rigorously
specified. The following is a list of some of the spe-
cific shortcomings of current Java implementations:

Garbage Collection. In a real-time application, it is
important that programmers are assured that mem-
ory will be available for allocation when new objects
need to be allocated. It is also important that back-
ground garbage collection not impose arbitrarily
long delays at unpredictable times. This would
interfere with the developer’s ability to demonstrate
compliance with real-time constraints. Current Java
implementations do not address these issues:

o Conservative scanning. To distinguish live objects
from garbage, most Java implementations use a
partially conservative scanning technique in
which memory words containing values that
represent legal memory addresses are assumed
to represent pointers. Since these words may
actually hold integer or floating-point values,
the use of conservative scanning techniques
may cause the garbage collector to accidentally
treat dead objects as live objects, resulting in
memory leaks.

o Fragmentation. Because most Java implementa-
tions use partially conservative garbage collection
techniques, it is not possible to relocate live
objects in order to defragment the memory heap.
Over time, the cumulative effects of fragmenta-

tion may make it difficult to allocate the

large objects that are necessary to accomplish
real work. This is especially troublesome for
embedded systems that are expected to operate
reliably for weeks at a time.

Scheduling of garbage collection. In Sun’s

Java implementation, garbage collection is
implemented as a low-priority background
thread. If all application threads are I/O bound,
this approach works well in that garbage
collection is performed during times that the
CPU would otherwise be idle. However, if any
application tasks are CPU-bound, the garbage
collector is not scheduled for execution until the
system runs out of memory. The first allocation
request that cannot be satisfied from the existing
free pool triggers a stop-and-wait garbage
collection of the entire system, forcing all other
tasks in the system to suspend until garbage
collection completes.

Lack of system information. By design, the

Java run-time environment does not allow
applications to determine how much memory
they require or how much total memory is
available in the execution environment. This
makes it difficult to determine whether applica-
tions will run reliably.

Failure to budget memory. In Java it is quite com-
mon for multiple independent activities to be
running concurrently in a particular execution
environment, so it is important for the system’s
run-time support to enforce memory budgets on
each application. Otherwise, one application
could allocate and hoard memory that would
more appropriately belong to another. But the
standard Java libraries provide no ability to
request or enforce memory budgets.

Task Scheduling. The traditional Java environment
does not provide any mechanisms to allow program-
mers to specify that tasks should execute at particu-
lar times. Applications can request to sleep for a
specified number of milliseconds before continuing
their execution. However, there is no guarantee the
task will be suspended no longer than the requested
amount of time, and there is no guarantee the task
will have the highest priority at the time it is made
ready for execution.

There is also no way for a given Java task to deter-
mine how many other tasks are running on the sys-
tem, their relative priorities, and the fraction of CPU
time they consume. Thus, there is no way to assure
that a particular task will have sufficient CPU-time
resources to execute within its real-time constraints.

Task Synchronization. Java uses monitors (identi-
fied by the synchronized keyword) to protect critical
sections of code from simultaneous access by multi-
ple tasks. Once a particular task has entered into the
monitor corresponding to a particular object, no
other task can access that object’s monitor code until
the first task has exited the monitor. Note that, in
order to analyze the time required to perform cer-
tain actions, a real-time developer must know how
long each task might have to wait for entry to mon-
itors. The information required to perform this
analysis is not generally available:

o Number and priovity of competing tasks. In the
highly dynamic Java execution environment, the
number and priorities of other tasks sharing
access to a particular object are difficult to deter-
mine, and may vary throughout the execution of
a particular task. It is difficult to determine how
many other tasks might be ahead of a particular
task in the queue awaiting access to a shared
object’s monitor.
Time spent within monitors. Java imposes no restric-
tions on the complexity of code contained within
a synchronized method. The code may comprise
unbounded loops, dynamic method invocations,
and nested entry into other monitors. Newly
loaded class libraries may include synchronized
statements that lock particular objects. Therefore,
it is nearly impossible to determine how much
time each competing task might spend within a
monitor once its access has been granted.
® Priority inversion. Since the specification of Java’s
standard libraries fails to specify precisely the
scheduling model, and fails to specify protocols
for avoiding priority inversion [9], real-time pro-
grammers would not be able to analyze blocking
behaviors even if they did have perfect knowledge
of the implementations of all the tasks that com-
prise the combined system workload.

Run-Time Analysis. Since the time and memory
requirements of Java programs are not known until
the Java bytecodes have been loaded into the envi-
ronment in which they are to execute, mechanisms
must be provided within the execution environment
to analyze these resource requirements. For instance,
Java’s standard libraries fail to provide a protocol
whereby newly loaded tasks would be able to deter-
mine how much CPU time they require to execute
reliably on the host platform; they also lack mecha-
nisms to enable applications to determine how
much memory is required to represent particular
objects in the local execution environment. More-

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 53

over, Java’s standard libraries provide no mechanism
to enable applications to determine the total system
memory capacity, or to determine how much CPU-
time and memory are required by the other tasks
that are concurrently executing on the host
machine.

Although not as fundamental as the problems
already mentioned, another challenge faced by
developers who are attempting to use Java for the
implementation of embedded real-time systems is
that design trade-offs made in most current Java
implementations have been biased by priorities
and mindsets that are inconsistent with their
needs. The economies of embedded real-time

developers differ significantly from those of tradi-
tional desktop application developers. For exam-

ple,

current Java implementations are not

required to execute particular code segments, to ana-
lyze the memory required to represent particular
objects, and to abstract access to persistent objects
represented by flash or battery-backed RAM. Real-
time applications are structured as activities, each of
which is comprised of one or more real-time tasks. A
typical execution environment would have multiple
real-time activities executing at any given time. For
example, one activity might be displaying a full-
motion television-like news feed while another takes
responsibility for tracking the user’s pen motions
and a third maintains a video conference connection.
Each real-time activity is accompanied by config-
ure() and negotiate() methods.

Preparatory to execution of a new real-time
activity, the activity is “introduced” to the local
real-time executive. The real-time executive, in

space-efficient. Many use a 32-bit word to repre-
sent a Java byte [2]. And the choice to use partially
conservative garbage collection was biased by a
working environment in which memory is abun-
dant and high-speed disk drives make virtual
memory readily available. Another example of the
tension between desktop and embedded real-time
developers is the use of dynamic compilation. In
order to achieve high performance, Sun suggests
selected code segments be translated from Java
bytecodes to native machine language. Selecting
which segments to translate is based on recent exe-
cution history. Routines that prove themselves to
be “hot spots” are translated on the fly. The inter-
ruptions required to perform translation, which
occur at unpredictable times, complicate analysis
of task execution times.

Adding Real-Time Capabilities
A complete description of the proposed real-time
extensions is impractical here—what follows is only
a high-level overview of the PERC real-time API,
the implementation of which is currently in
progress. For more complete descriptions, refer to
my earlier work [5, 6].

The real-time API includes mechanisms to enable
programmers to analyze and measure the times

54 June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

turn, invokes the activity’s configure() method. The
responsibility of this method is to determine the
activity’s resource needs in the local execution envi-
ronment. This consists of measuring each task’s
CPU-time requirements and computing the com-
bined memory needs of all the tasks comprising the
real-time activity. The configure() method returns
to the real-time executive a representation of the
activity’s minimum and desired resource
allocations.

Once the configure() method has returned, the
real-time executive endeavors to satisfy the activi-
ty’s resource requests. The real-time executive pro-
poses a resource budget to the real-time activity by
invoking the activity’s negotiate() method. Since
the real-time executive may propose to budget less
resources than were requested by the activity, the
activity has the option of rejecting the proposed
budget. If the proposed budget is rejected, the real-
time executive may decide not to allow the new
activity to be added to the system workload. Alter-
natively, the real-time executive may reclaim
resources previously allocated to other activities by
renegotiating their resource budgets and then pro-
pose a revised budget to the new activity by once
again invoking its negotiate() method.

Rather than rely entirely on the use of synchro-

nized code segments, for which blocking times are
difficult to analyze in the highly dynamic Java execu-
tion environment, PERC provides an additional syn-
chronization mechanism known as an atomic
statement. The body of an atomic statement is exe-
cuted either to completion or not at all. To the pro-
grammer, an atomic statement resembles the
disabling of interrupts. However, the implementa-
tion may differ. In particular, a hard, real-time imple-
mentation of PERC might verify that sufficient CPU
time remains in the current time slice to complete
execution of the atomic statement before allowing
control to enter into the atomic statement’s body.
Without this check, the inability to interrupt the
atomic statement might push all other tasks in the
system off schedule.

PERC requires the body of an atomic statement be
execution-time analyzable. The PERC standard
defines a subset of Java for which it is possible,
through automated on-the-fly analysis, to determine
worst-case execution times. For single-processor
implementations, the use of an atomic statement for
real-time synchronization scales to larger, more com-
plex software systems much more easily than the use
of synchronized statements because there is no need
to analyze blocking times. If a particular task has
been granted CPU time to execute, then it also has
access to whatever atomic statements may lie along
its execution path.

A second syntax introduced for the purpose of
enabling programmers to describe real-time require-
ments is a timed statement. The control clause of a
timed statement represents an upper boundary on
the amount of CPU time the body of the timed state-
ment is allowed to execute. If the body of the timed
statement is still executing at the end of its allotted
time, the body is aborted by raising a timeout
exception.

The following code fragment demonstrates exam-
ples of both control structure extensions. In this code,
the application refines approximation x as many
times as it can within a 10ms time budget. The vari-
able 7 counts the number of times x’s value is refined.
The significance of the atomic control structure in
this code is to make sure that the body of the timed
statement is not aborted between the assignment to x
and the increment to 7.

x
1]

conput eAppr oxi mati on();
i =0;
imed (10 ns) {

—

for (53) {
z = refineApproxi nation(x);
atomc {
X = z;
i ++;

)

A thorough discussion of the special techniques
required for a real-time implementation of the Java
execution environment would fill a large book. Here
we summarize the general principles on which the
budgeting of time and memory is based.

Rate-Monotonic Scheduling. Rate-monotonic
analysis2 allows developers of real-time systems to
determine whether a collection of real-time tasks
will execute within deadlines. The general model is
to represent the workload of each task in terms of its
worst-case execution time and its maximum execu-
tion frequency. Priorities are set for each task so that
the task with the highest execution frequency has
the highest priority. Other priorities are assigned in
order of decreasing execution frequency. Let C; rep-
resent the computation time of task 7. And let T;
represent the minimum period of execution for task
i. For example, if task I is responsible for drawing
frame updates at 20 frames per second and each
frame update requires 10ms of CPU time, then C, is
10ms and T, is (1/20) s = 50 ms. Note that this task
utilizes 1/5 = 20% of the system’s total CPU time.
The total utilization U, , ; of a system of # real-
time tasks is given by:

n
T

Utotal =y 1"

As derived in Liu [4], the utilization bound UB(n)
for this collection of 7 real-time tasks is given by:

UB(n)=n (2""-1)

For large #, UB(n) is approximated by ln 2, which
is roughly 69%. As long as U, , < UB(n), each of the
tasks will complete execution prior to the next period
in which the task is required to execute [4].

This analysis assumes no tasks block awaiting
access to shared data monitors. More sophisticated
analyses are available to treat those cases [4]. An
important consideration in any system that does on-
the-fly schedulability analysis is minimization of the

IThe atomic statement is not to be confused with database transactions. There is no
notion of roll-back or checkpointing implied.

2Rate-monotonic is sufficient, but not a necessary technique for scheduling and
schedulability analysis.

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 55

analysis overhead. Note that the arithmetic required
to answer the question of whether a particular work-
load can be successfully scheduled is quite straight-
forward and is linear in the number of tasks.

Real-Time Garbage Collection. The goals of real-
time garbage collection are to ensure memory is
available for allocation at the times the application
needs to allocate without interfering with any task’s
compliance with real-time constraints. A real-time
garbage collector must work incrementally, divid-
ing its total effort into many small bursts of work.
These bursts of work must be scheduled using the
real-time scheduler so as to make sure that the real-
time garbage collector makes timely forward
progress while at the same time making sure the
garbage collector’s CPU-time utilization does not
intrude upon times set aside for execution of appli-
cation software.

In order to make sure garbage collection makes ade-
quate forward progress, the total effort required to per-
form complete garbage collection must be understood.
Suppose, for example, that the total available memory
is M bytes and that complete garbage collection is
known to require S seconds of CPU time. Suppose fur-
ther that the combined memory requirements of the
system’s real-time activities is U total bytes, and that
the combined allocation throughput is V total bytes of
allocation per second. Finally, let R represent the frac-
tion of the CPU time that is dedicated to garbage col-
lection. Note that the real time required to complete
incremental garbage collection is S/R.

Consider the state of memory immediately follow-
ing completion of garbage collection. In the worst
steady-state case, there are a total of U bytes of live
memory and V (§/R) bytes of dead memory currently
occupying the heap. If we start the next garbage col-
lection pass as soon as the first has completed, an addi-
tional V (§/R) bytes of memory will be allocated while
this garbage collection pass is executing. Thus, the
size of the space required to support this workload, M,
measured in bytes, must be greater than or equal to
U+2V(S/R). Based on the combined total memory
requirement and maximum allocation rates described
previously, the minimum fraction of CPU time that
must be spent in garbage collection is given by:

R>2VS
M-U

Note that R is proportional to the maximum rate
at which memory is allocated multiplied by the total
time required to perform a stop-and-wait garbage

56

June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

collection pass. R is inversely proportional to the dif-
ference between the total amount of available mem-
ory and the maximum amount of live memory.

Space does not permit a more detailed description
of how various garbage collection strategies compare
in terms of the symbolic parameters M (as a fraction
of the total amount of memory set aside for dynamic
memory allocation) and §. For more thorough discus-
sions of real-time garbage collection techniques, see
(7, 8].

Summary

Current Java implementations do not provide the
mechanisms required for reliable execution of real-
time applications. Minor additions to the standard
Java libraries and small extensions to the language
itself make possible the cost-effective implementa-
tion of real-time systems using a variant of the Java
language. The capabilities to be offered to real-time
developers by a real-time variant of Java represent
significant improvements over the current state of
the practice. ©

REFERENCES

1. Arnold, K. and Gosling, J. The Java™ Programming Language. The
Java™ Series, ed. L. Friendly. Addison-Wesley, Reading, Mass., 1996.

2. Arnold, K. and Gosling, J. Native Methods, in The Java™ Programming
Language, L. Friendly, Ed. Addison-Wesley, Reading, Mass., 1996.

3. Cheng, S.-C. and Stankovic, J.A. Scheduling algorithms for hard real-
time systems—A brief survey, in Tutorial on Hard Real-Time Systems,
J.A. Stankovic and K. Ramamritham, Eds., Computer Society Press of
IEEE, Washington, D.C., 1987, p. 618.

4. Liu, C.L. and Layland, J.W. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM 20, 1 (1973), 44-61.

5. Nilsen, K. Real-Time Java (v. 1.1). Iowa State University, Ames, Iowa,
1996; www.newmonics.com).

6. Nilsen, K. Issues in the design and implementation of real-time Java.
Java Developer’s J. 1,1 (1996), 44-57.

7. Nilsen, K. Progress in hardware-assisted real-time garbage collection.
In Lecture Notes in Computer Science 986. Springer-Verlag, Kinross, Scot-
land, 1995.

8. Nilsen, K. Reliable real-time garbage collection of C++. Comput. Syst.
7, 4 (1994), 467-504.

9. Sha, L., Rajkumar, R. and Lehoczky, J.P. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Trans. Computers
39, 9(1990), 1175-1185.

Sun Microsystems Inc., The Java Language Environment: A White Paper.
Sun Microsystems, Inc., Mountain View, Calif., 1995.

10.

KELVIN NILSEN (kdn@newmonics.com) is the founder of
NewMonics in Ames, IW, a company that focuses on supporting
the PERC a real-time variant of the Java language.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0600 $5.00

