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What are Real-Time Systems?

Real-time computing systems are systems in which the correctness 
of a certain computation depends not just on how it is done but on when
it’s done. In order for tasks to get done at exactly the right time, real-time
systems must allow you to predict and control when tasks occur. 

Such systems play a critical role in an industrialized nation’s techno-
logical infrastructure. Modern telecommunication systems, automated
factories, defense systems, power plants, aircraft, airports, spacecraft,
medical instrumentation, supervisory control and data acquisition 
systems, people movers, railroad switching, and other vital systems
cannot operate without them. 

A real-time system must demonstrate the following features:

• Predictably fast response to urgent events.

• High degree of schedulability: The timing requirements of the
system must be satisfied at high degrees of resource usage. 

• Stability under transient overload: When the system is over-
loaded by events and it is impossible to meet all the deadlines,
the deadlines of selected critical tasks must still be guaranteed.

The key criteria for real-time systems differ from those for non-real-
time systems. The following chart shows what behavior each type 
of system emphasizes in several important arenas.
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Responsiveness Fast average response Ensured worst-case latency:
latency is the worst-case
response time to events.

Capacity High throughput Schedulability: the ability 
of system tasks to meet all
deadlines.

Overload Fairness Stability: under overload 
conditions, the system can
meet its important deadlines
even if other deadlines cannot
be met.

Non-Real-Time Systems Real-Time Systems
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Real-Time System Application Domains

Potential uses for real-time systems include but are not limited to:

• Telecommunication systems

• Automotive control

• Multimedia servers and workstations

• Signal processing systems

• Radar systems

• Consumer electronics

• Process control

• Automated manufacturing systems

• Supervisory control and data acquisition (SCADA) systems

• Electrical utilities

• Semiconductor fabrication systems

• Defense systems

• Avionics

• Air traffic control

• Autonomous navigation systems

• Vehicle control systems

• Transportation and traffic control systems

• Satellite systems

• Nuclear power control systems



A Taxonomy of Real-Time 
Software Architectures

Virtually all real-time applications use elements from at least one of five
architectural patterns:

• Cyclic executives (also called “timelines” or frame-based 
systems) (page 10)

• Event-driven systems with both periodic and aperiodic 
activities (page 12)

• Pipelined systems (page 13)

• Client-server systems (page 15)

• State machine systems (page 16)
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Cyclic Executives

A cyclic executive consists of continuously repeated task sequences,
known as major frames. Each major frame consists of a number of
small slices of time, known as minor frames; tasks are scheduled into
specific minor frames.

• A timeline uses a timer to trigger a task every minor cycle 
(or frame).

• A non-repeating set of minor cycles makes up a major cycle.

• The operations are implemented as procedures, and are 
placed in a pre-defined list covering every minor cycle.

• When a minor cycle begins, the timer task calls each 
procedure in the list.

• Concurrency is not used; long operations must be manually 
broken to fit frames.

Below is a sample cyclic executive; it consists of minor frames and
major frames. Major frames repeat continuously. Within a minor frame,
one or more functions execute. Suppose that a minor frame is 10 ms
long. Consider 4 functions that must execute at a rate of 50 Hz, 25
Hz, 12.5 Hz, and 6.25 Hz respectively (corresponding to a period of
20 ms, 40 ms, 80 ms, and 160 ms respectively). A cyclic executive
can execute them as follows. Note that one minor frame lies idle in the
major frame and can lend itself to future expansion.
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Major Frame

Minor Frames

repeats 
continuously

Major Frame

Function 1 (once every
2 minor frames)

Function 4 (once every
16 minor frames)

Function 2 (once every
4 minor frames)

Function 3 (once every
8 minor frames)



Software Architecture for Cyclic Executives 

Please refer to the above key with the software architectures presented
in subsequent sections as well.
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Function 1

Function Call(s)

Device I/O

Device I/O

Function 2

Cyclic
Executive

Active
Thread

Function 3

Function 4

Timer Interrupt
(e.g., 50 Hz, 20

ms timer)

Key:

Invocation/Access

Shared Resource Access
(via critical section)

Trigger/Directional Access

Unidirectional Message
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Event-Driven Systems

An event-driven design uses real-time I/O completion or timer events to
trigger schedulable tasks. Many real-time Linux systems follow this model.

Tasks can be prioritized in the following ways:

• Priorities should be determined by time constraints (e.g., rate-
monotonic or deadline-monotonic priority assignment policies).

• Task priority can also depend on semantic importance (but 
this approach will cause schedulability problems).

The resulting concurrency requires synchronization (e.g., mutex, 
semaphores, etc.).

• For predictable response, synchronization mechanisms must 
avoid (i.e. remain free of) unbounded priority inversion.

• To preserve predictable response, aperiodic events must 
preserve utilization bounds.

All of the rate-monotonic analysis techniques discussed in this hand-
book apply to event-driven systems without any modifications.

Task 1

R1

R2

Device I/O

Device I/O

Task 2

Output
Manager 2

Output
Manager 1

Task 3

Task 4

Periodic
timer(s)
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Pipelined Systems

Pipelined systems use inter-task messages (preferably prioritized) in
addition to I/O completion and timers to trigger tasks.

Control flow for an event proceeds throughout the system from source
to destinations.

Thus, these systems can be described as a set of pipelines of task
invocations.

Task priorities play only a minor role:

• If the pipeline is unidirectional, setting increasing task 
priorities will minimize message queue buildup.

• If the pipeline is bi-directional, it is generally best to set 
priorities so that they are equal along the pipeline.

Data Collect

Device I/O

Device I/O
Collate

Output
Manager 2

Output
Manager 1

Process

Filter Correlate

Periodic
timer(s)
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Scheduling and Analyzing a Pipelined System

The complexity of pipelined systems makes them relatively difficult to
analyze. Engineers must modify rate-monotonic analysis (RMA) tech-
niques to account for the message-driven nature of pipelined systems
as well as for precedence constraints.

Model each task as if it were a number of separate tasks, one for
every message type that it handles. Since a thread cannot handle one
message until it has finished taking appropriate actions on the previ-
ous one, these threads are non-preemptible. Although these non-pre-
emptible threads may not really be synchronized, they should be treat-
ed as synchronized for analysis purposes. Programmers should use a
FIFO synchronization protocol to calculate blocking terms for each
separate thread.

The real-time engineer’s next challenge is to take into account the
sequence in which pipelined threads must proceed. To find out
whether a series of threads on a pipelined system can meet its timing
constraints, model each task as if it shared a logical resource with all
others in the pipe, with FIFO synchronization. If it is then schedulable,
at least one order will exist in which a sequence of tasks can meet
their deadlines. Therefore, those tasks can always make it through in
any order, including the “correct” one. The wise engineer will keep
pipelined systems relatively simple to ensure that they meet deadlines
in all cases.

Note: In some circumstances, complex pipelines whose precedence
graphs include cycles may not lend themselves to analysis at all. In
this case, the only option is a simulation.



Client-Server Systems

Client-server systems use inter-task messages in addition to I/O 
completion and timers to trigger tasks.

Sending tasks, or clients, block until they receive a response from
receiving tasks, or servers.

Control for an event remains at a single system node while data flow 
is distributed

Thus, error processing, checkpointing, and debugging are significantly
easier for client-server systems than for pipelined systems.

As with pipelined architectures, task priorities play only a minor role.

• Ideally, server tasks inherit priorities from clients. This is often 
impractical, so priorities for different tasks are frequently set 
the same, using prioritized messages to avoid bottlenecks.

For analysis purposes, client-server systems are similar to pipelined
systems.

A Taxonomy of Real-Time Software Architectures •  15

Data Collect

Device I/O

Device I/O

Output
Manager 2

Output
Manager 1

Attribute
Query Data Server

Filter

Periodic
timer(s)
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State Machine Systems

In a state machine architecture, the system is broken down into a set
of concurrent extended finite state machines. Each such finite state
machine is typically used to model the behavior of a reactive or active
object. In a state machine, the object resides at any time in one of a
finite number of states, waiting for an event. The arrival of an event 
triggers a transition, which may involve a change of state and execution
of some actions associated with the transition. While an extended state
machine can be used to model arbitrary behaviors, it is particularly suit-
ed to modeling many discrete state-dependent behaviors. 

State machines generally follow “run-to-completion" semantics, in
which the machine cannot accept an event for processing until it has
finished with the previous event. The implementation of a system of
concurrent state machines often requires mapping them to a set of
concurrently executing tasks. To ensure run-to-completion semantics,
a state machine is typically controlled entirely within a single thread
that executes an event-loop of receiving (and processing) events.

The timing analysis of a state machine architecture system design
depends on the task priorities, the mapping of the state machines to
tasks, and the scheduling of events within the event-handling loops of the
tasks. One way to make such a system analyzable is to ensure that each
task handles either a single timing constraint or a set of similar constraints
— this allows task priorities to be assigned based on their timing con-
straints. Another, albeit more complex, way to make the system analyz-
able is to view tasks as schedulable resources, using priorities for events
and dynamically changing task priorities based on pending events.
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Comparing Real-Time Architectures

Each of the five real-time architectures has its own set of benefits and
drawbacks. The chart below compares and contrasts the architectural
patterns.

Event-Driven Priority-driven (well- Not as capable of handling
suited to RMA) distributed environments as
Relatively simple some other designs
Good for systems that
are statically analyzable
(not dynamically 
changing load)

Cyclic Executive Simple Fragile; if you add or change
Deterministic any procedures, the system is
Repeatable likely to break.
Easy to understand Very complex to maintain
Most common approach Only good for small, simple
Best for safety-critical systems which don’t need
systems dynamic capabilities

Pipelined Readily used in Complex to analyze
distributed environments Less predictable than some
(fully message-based) other designs

Benefits Drawbacks

Client-Server Works well with real-time Complex to analyze
CORBA and other object- Uses substantial resources
oriented standards because of extra message traffic
Simplifies debugging
because of bi-directional
feedback
Good for object-oriented,
distributed paradigms

State Machine Works well with real-time Complex to analyze
CORBA and other object-
oriented standards



Deadlines and Timing Analysis

Understanding the timing requirements of an application is important
in any application, but it becomes even more crucial when designing
real-time systems. One of the first steps to understanding your sys-
tem’s timing requirements is to determine which requirements cannot
be missed and which can.

A hard deadline is a deadline that absolutely must be met for the sys-
tem to function successfully. Failure to meet a hard real-time deadline
could lead to loss of resources or even of life.

All other deadlines fall into the category of soft deadlines. If the system
misses one of these deadlines, it does not necessarily fail. Most real-
time systems contain many soft deadlines and a few hard deadlines.

In order to make the most of scarce processor resources, system
designers must determine which deadlines are hard, and schedule
processor time so that, no matter what happens with soft deadlines,
hard deadlines will always be met.
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Where Do Timing Requirements Originate?

Timing constraints originate from two types of sources: explicit 
and implicit. With top-level, or explicit, requirements, the precise 
constraints the system needs to meet flow organically from its design.
Derived, or implicit, requirements, on the other hand, offer more 
flexibility. With derived requirements, all the system needs to do is to
demonstrate a certain characteristic, and the system designer has to
determine how quickly events must take place in order to give the 
system this characteristic. Generally speaking, explicit requirements
tend to correlate with hard deadlines.

Some examples of explicit requirements include:
• Assemble two units every second in a manufacturing plant.

• Satisfy end-to-end display update timing constraint of 2 seconds 
in an air traffic control system.

Some examples of implicit requirements include:

• Precision: e.g., track aircraft position to within 10 meters.

• Dependability: e.g., recover from message loss within 500 ms.

• User-interface requirements, e.g.,

- Respond to key presses within 200 milliseconds.

- Maintain a 30-frames-per-second video frame rate.

In many real-time systems, most requirements are implicit rather than
explicit. In other words, a typical system may have only a few require-
ments that are set in stone.
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Why Do Timing Analysis?

Timing analysis provides a framework for scheduling events so the
mandatory hardware resources are always available when they are
needed, in order to make sure that critical tasks meet their timing
requirements. Timing analysis provides a number of substantial bene-
fits for your system.

Timing Risk Elimination: Using timing analysis, risks of timing con-
flicts can be eliminated from your real-time system – while the logic
cannot be guaranteed within your system, timing analysis can guaran-
tee that your system timing constraints will be satisfied.

Dramatic Reduction in Integration and Testing Time: Your sav-
ings on integration and testing time alone will more than compensate
you for applying analytical techniques. These benefits stem from the
application of Rate-Monotonic Analysis (RMA), a scientifically proven
framework for building analyzable and predictable real-time systems.

Robust Systems Interaction: Your real-time systems are complex
and may comprise two or more processors with interconnecting back-
plane buses and/or network links. These processors work asynchro-
nously with each other. What you want is the assurance that, given all
possible working conditions, your system will do the right thing at the
right time. The use of a scientifically proven methodology offers this
guarantee.

Enhanced System Reliability: The RMA framework and the analy-
ses and simulation that you can perform enhance your system reliabili-
ty. Since sub-systems and components will behave as expected, there
need be no confusion as to whether an inordinately delayed message
will cause the failure of a component.

A Priori Testing: You can design and test your system even before it
is built, thereby significantly reducing the cost and risk of using the
wrong type or number of components.

RMA is much easier with an analysis tool such as TimeWiz.
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Benefits of Timing Analysis and Simulation

Timing analysis and simulation can bring your system the following benefits:

• Capture system requirements to use in competitive proposals, 
which you can then pass as requirements document to your 
design and development team.

• Visually represent both hardware and software configurations.

• Guarantee predictable behavior.

• Clearly understand worst-case timing behavior.

• Demonstrate competitive average-case timing behavior.

• Perform what-if analyses.

• Avoid costly mistakes.

• Identify better or cheaper configurations with what-if-analyses 
and automatic binding of software components to hardware 
components.

• Ensure that sufficient resources remain for future system expansion.

• Obtain certification by capturing and analyzing your system for
the benefit of regulatory and certification bodies. 



Real-Time Scheduling Policies

Real-time engineers use a number of different schemes for scheduling
events. Some popular real-time scheduling policies include:

Fixed Priority Preemptive Scheduling: Every task has a fixed priori-
ty that does not change unless the application specifically changes it.
A higher-priority task preempts a lower-priority task. Most real-time
operating systems support this scheme.

Dynamic-Priority Preemptive Scheduling: The priority of a task
can change from instance to instance or within the execution of an
instance, in order to meet a specific response time objective. A higher-
priority task preempts a lower-priority task. Very few commercial real-
time operating systems support such policies.

Rate-Monotonic Scheduling: An optimal fixed-priority preemptive
scheduling policy in which, the higher the frequency (inverse of the
period) of a periodic task, the higher its priority. This policy assumes
that the deadline of a periodic task is the same as its period. It can be
implemented in any operating system supporting fixed-priority pre-
emptive scheduling or generalized to aperiodic tasks.

Deadline-Monotonic Scheduling: A generalization of the rate-monot-
onic scheduling policy in which the deadline of a task is a fixed point in
time relative to the beginning of the period. The shorter this (fixed) dead-
line, the higher the priority. When the deadline time equals the period,
this policy is identical to the rate-monotonic scheduling policy.

Earliest-Deadline-First Scheduling: A dynamic-priority preemptive
scheduling policy. The deadline of a task instance is the absolute point
in time by which the instance must complete. The deadline is comput-
ed when the instance is created. The scheduler picks the task with the
earliest deadline to run first. A task with an earlier deadline preempts a
task with a later deadline. This policy minimizes the maximum lateness
of any set of tasks relative to all other scheduling policies.

Least Slack Scheduling: A dynamic-priority non-preemptive sched-
uling policy. The slack of a task instance is its absolute deadline minus
the remaining worst-case execution time for the task instance to com-
plete. The scheduler picks the task with the shortest slack to run first.
This policy maximizes the minimum lateness of any set of tasks.
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Analyzing Periodic Tasks

1. Consider a set of n periodic tasks, each with a period Ti and a
worst-case execution time Ci.

2. Assign a fixed higher priority to a task with a shorter period; i.e.,
higher rates get higher priorities (rate-monotonic priority assignment).

3. All of these tasks are guaranteed to complete before the end of
their periods if: 

where the bound is:
• 1.0 for harmonic task sets. 

- A task set is said to be harmonic if the periods of all its tasks
are either integral multiples or sub-multiples of one another.

• 0.88 on the average for random Ci’s and Ti’s.
• n(21/n - 1). 
• 1.0 for n=1, 0.69 = ln 2 for large n.

The bound varies between 0.88 and 0.98 for most realistic,
practical task sets. 

Ui=Ci/Ti is called the utilization of task i.

Benefits of rate monotonic analysis include simplicity, efficiency, wide
support, and practicality.

Many activities in real-time, embedded, and multimedia systems are
periodic, including:

• audio sampling in hardware
• audio sample processing
• video capture and processing
• feedback control (sensing and processing)
• navigation
• temperature and speed monitoring
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C1

T1

C2

T2

Cn

Tn

+ +  . . .  + < bound



Why is the Rate Monotonic Scheduling Bound Less
Than 100%?

Consider two periodic tasks: τ1 = {C1 = 41, T1 = 100} and τ2 = {C2 =
59, T2 = 141}. Let both tasks start together and let rate-monotonic
scheduling be used. The first instance of task τ1 arrives at time 0 and
the second at time 100. The first instance of task τ2 arrives at time 0
and the second at time 141. The first instance of task τ2 must com-
plete within time 100 and the first instance of τ2 must complete within
time 141. 

A timeline tracing these tasks would be complete from time 0 to time
141. If C1 or C2 is increased by even a very tiny amount, the first
instance of τ2 will miss its deadline at time 141. The total utilization of
this task set is 41/100 + 59/141 = 0.41 + 0.4184 = 0.8184. In other
words, for a two-task set, deadlines can be missed at about 82%. With
more tasks, this number can drop to 69%, but no lower. But these
thresholds represent pathological cases. For example, notice that the
utilization of the two tasks is (almost) equal, C1 = T2 – T1, and that T2/T1

= 1.414 = sqrt(2). Similarly, the 69% bound is obtained for a large num-
ber of tasks with U1 = U2 = … = Un, Ci = Ti+1 – Ti, and Ti+1/Ti = 21/n.

However, in practice, rate-monotonic scheduling can almost always
yield at least 88% schedulable utilization. For harmonic task sets, the
schedulable utilization is 100%. As a result, task sets with even a few
harmonic periods tend to have very high schedulable utilization.
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Dealing With Context Switch Overhead

It takes a finite amount of time for the operating system to switch from
one running thread to a different running thread. This is referred to as
“context switching overhead.”

The worst-case impact of context switching overhead can be com-
pletely accounted for by considering that there are, at most, two
scheduling actions per task instance, with one context switch when
the instance begins to execute and another when it completes. Thus,
the utilization of each task now becomes:

Ui = Ci/Ti + (2*CS)/Ti

where:

CS = worst-case round-trip context switch time from one task 
to another.

One can now pose the question “How long should a context switch take?”

The objective of a real-time system builder must be to keep 2*CS a
small fraction of T1, the smallest period of all tasks in the system.
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Computing Completion Times Efficiently

The following applies to periodic tasks that are scheduled using any
fixed-priority preemptive scheduling policy.

Theorem: Consider a set of independent, periodic tasks. If each task
meets its first deadline under the worst-case task phasing, all dead-
lines of all tasks will always be met.

The worst-case scenario occurs when all tasks arrive simultaneously.

Completion Time (CT) Test: Sort the set of periodic tasks in
descending order such that priority(task i) > priority(task i+1). Suppose
that the worst-case computation time, period, and deadline of task i
are represented by Ci, Ti, and Di, with Di ≤ Ti. 

Let Wi be the worst-case completion time of any instance of task i. Wi

may be computed by the fixed-point formula: 

Wi(0) = 0

Wi(n+1) = Ci + Σ Wi(n) / Tj Cj

Task i is schedulable if its completion time Wi is at or before its dead-
line Di (i.e. Wi ≤ Di).



Analyzing Task Synchronization

Real-time tasks typically share resources and services for which they
must be prepared to wait if they are not available immediately. These
resources and services may include:

• Logical resources such as buffers and data.

• Physical resources such as printers and devices.

• Services such as window managers, naming and directory 
services, transaction services, filesystem services, etc.

Tasks are said to be in a critical section while they are holding a
shared resource. This can cause unbounded priority inversion.

Solution: Use any of the priority inheritance protocols:

A priority inheritance protocol bounds and minimizes priority inversion.

where:

Bi = maximum priority inversion encountered by any instance of task i.

Bn=0.
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Priority Inversion

Priority inversion is said to occur when a task is forced to wait for a
lower-priority task to execute.

Consider three tasks Taskhigh, Taskmedium, and Tasklow, listed in descend-
ing order of priorities. Taskhigh and Tasklow share a logical resource pro-
tected by a critical section.

Let Taskhigh, Taskmedium, and Tasklow arrive at times t1, t2, and t3 respectively.

The graph below illustrates what happens to the execution patterns of
each of the three tasks:

Taskhigh

Taskmedium

Tasklow

Key:

t1 t2 t3
time

Normal 
execution

Execution in
critical section

Priority 
inversion
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Unbounded Priority Inversion

Unbounded priority inversion can happen when there are multiple 
medium-priority tasks and these tasks are also periodic. As a result,
each of these medium-priority tasks can preempt the lowest-priority
task holding the critical section. In addition, the medium-priority tasks
can recur due to their periodicity, preempting the lower-priority task.

Taskhigh

Task1medium

Task2medium

Taskmmedium

Tasklow

Key:

t1 t2 t3
time

unbounded priority inversion

Normal 
execution

Execution in
critical section

Priority 
inversion
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Real-Time Synchronization Protocols

Real-time synchronization protocols help bound and minimize priority
inversion. Different varieties of real-time synchronization protocols
include:

• Basic Priority Inheritance Protocol

• Priority Ceiling Protocol

• Critical Section Execution at Priority Ceiling (sometimes called
Priority Ceiling Protocol Emulation or Highest Locker Protocol)

• Non-Preemption Protocol: disable preemption within a critical
section

Comparison of Synchronization Protocols
1 A maximum of min(m, n) critical sections, where n is the number of

lower priority tasks and m is the number of distinct locks obtained
by them. This assumes that deadlocks are avoided by using other
schemes such as “total ordering” of the sequence of locks.

2 Tasks must not suspend within a critical section (e.g., for I/O operations).

Basic Priority Inheritance Multiple1 No

Priority Ceiling Protocol 1 Yes

Critical Section Execution 1 Yes2

at Priority Ceiling

Non-Preemption Protocol 1 (but potentially Yes2

very large)

Maximum Number
of Critical
Sections Waited
For Per Period

Deadlock
Prevention



The Priority Inheritance Protocol

A task runs at its original priority unless it is blocking one or more high-
er-priority tasks. In that case, it runs at the priority of the highest-priority
task that it blocks.

Note that when a lower-priority task inherits the priority of a higher-priority
task, intermediate-priority tasks encounter priority inversion. The higher-
priority task also continues to encounter priority inversion in that it must
still wait for the lower-priority task to exit its critical section. The following
diagram provides an example of priority inheritance in action:
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The Priority Inheritance Protocol (cont.)

The Mutual Deadlock Problem
Mutual deadlocks can occur with the basic priority inheritance protocol.

• Task 1 wants to lock L1 and then L2 in nested fashion.

• Task 2 tries to lock L2 and then L1 in nested fashion.

Task 2 locks L2 first, before getting preempted by task 1, which then
locks L1. Now, tasks 1 and 2 will be mutually deadlocked. This sce-
nario can happen with any sequence of 2 or more tasks.

With the basic priority inheritance protocol, one must use a scheme
such as “Total Ordering” while attempting to obtain locks. Such a
scheme entails numbering each resource uniquely and accessing
these resources using a convention such as: “Nested locks may be
obtained only in ascending order of resource numbering.” 

Not using nested locks is the easiest way to achieve total ordering.
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The Priority Ceiling Protocol

Each shared resource has a priority ceiling that is defined as the priority
of the highest-priority task that can ever access that shared resource.

The protocol is defined as follows.

• A task runs at its original (sometimes called its base) priority 
when it is outside a critical section.

• A task can lock a shared resource only if its priority is strictly
higher than the priority ceilings of all shared resources currently
locked by other tasks. Otherwise, the task must block, and the
task which has locked the shared resource with the highest pri-
ority ceiling inherits the priority of task t.

An interesting consequence of the above protocol is that a task may
block trying to lock a shared resource, even though the resource is
not locked.

The priority ceiling protocol has the interesting and very useful 
property that no task can be blocked for longer than the duration 
of the longest critical section of any lower-priority task.



Example of The Priority Ceiling Protocol

Consider tasks Taskhigh, Taskmedium, and Tasklow in descending order of
priority. Taskmedium accesses Lock 2 and Tasklow accesses Lock 1.
Taskhigh accesses Lock 1, releases it, then accesses Lock 2. Locks 1
and 2 both have the same priority ceiling, which equals the priority of
Task 1.

At time t1, Tasklow can successfully enter Critical Section 1 since there
are no other tasks in a critical section. At time t2, Taskmedium tries to
enter Critical Section 2. But since Tasklow is already in a critical section
locking a shared resource with a priority ceiling equal to the priority of
Taskhigh, Taskmedium must block and Tasklow starts running at the priority
of Taskmedium. Later, at time t3, when Taskhigh tries to enter Critical
Section 1, it has to block as well and Tasklow starts executing at the
higher priority of Taskhigh. When Tasklow exits its critical section, it
resumes its original lower priority. Taskhigh can now enter both Critical
Sections 1 and 2. Note that Taskhigh’s priority inversion is bounded by
one critical section (that of Taskmedium or that of Tasklow but not both).
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Priority Ceiling Protocol Emulation

The priority ceiling of a shared resource is defined, as before, to be the
priority of the highest-priority task that can ever access that resource.

A task executes at a priority equal to (or higher than) the priority ceiling
of a shared resource as soon as it enters a critical section associated
with that resource.

Applying the Priority Ceiling Protocol Emulation to the Priority Ceiling
Protocol example results in the following sequence:
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Poll

Event

Sporadic
Server

Deferrable
Server

Key: Event occurs Task execution Time intervals

Aperiodic Tasks

Tasks in real-time and embedded systems are not always periodic. Tasks
that may be aperiodic include operator requests, emergency message
arrivals, threshold crossing notifications, keyboard presses, mouse move-
ments, detection of incoming objects, and dynamic software compilation.

There are three basic ways of dealing with aperiodic tasks:

•  Polling: The system periodically checks to see if an aperiodic event
has occurred, then processes it if it has.

•  Event-interrupt driven: When an aperiodic events occurs, the
system stops what it is doing and processes it.

•  Aperiodic server: The server deposits “tickets,” which are replen-
ished at expiration of a replenishment period after use. When an
aperiodic event occurs, it checks the server to see if any tickets are
available. If there are, the system immediately processes the event,
then schedules the creation of another ticket based on its ticket
creation policies. An aperiodic server imposes predictability on ape-
riodic tasks, and therefore makes them suitable for analysis with
techniques such as RMA. There are two types of aperiodic servers,
deferrable and sporadic, each with different ticket creation policies. 

The timeline below illustrates each of these policies in action.
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Aperiodic Servers

There are two main types of aperiodic servers, the deferrable server
and the sporadic server. Of these, the sporadic server has higher
schedulable utilization and lends itself more easily to analysis.
However, it can be more complex to implement.

In a deferrable server, tickets are replenished at regular intervals,
completely independent of ticket usage. If an aperiodic task arrives,
the system will process it immediately if it has enough tickets, and 
wait until the tickets are replenished if it does not.

While the deferrable server is simpler to implement, it deviates
adversely from the Rate-Monotonic Strict Periodic Execution Model
which leads to serious schedulability problems. A system can have 
at most one deferrable server, which must be at the highest priority 
in the system.

In a sporadic server, the replenishment time depends strictly on 
ticket usage time. When a ticket is used, the system sets a timer that
replaces any used tickets when it goes off.

For example, imagine a system with a timer that goes off n milliseconds
after a ticket is used. If this system uses one server ticket at time t, and
two more server tickets at time t’, then the first ticket can be replenished
n milliseconds after time t, and the other two can be replenished n
milliseconds after time t’.

As illustrated by the above example, the sporadic server may have to
track multiple ticket usages and their times. Its implementation there-
fore can be more complex. Simple but more conservative implementa-
tions are possible, however.

One benefit of a sporadic server is that a system can have multiple
sporadic servers on a single node for different categories of aperiodic
events with different base numbers of tickets and different timer inter-
vals. This is because, in the worst case, the sporadic server behaves
like a strict rate-monotonic periodic task.



Dealing With A Limited Number of Priority
Levels

The original definition of rate-monotonic scheduling algorithms
assumed that each task with a different time constraint could be
assigned a unique priority. For example, if there were 32 periodic
tasks, each with a different time constraint, 32 distinct priority levels
would be needed to use rate-monotonic or deadline-monotonic priori-
ty assignment.

However, a good approximation of rate-monotonic or deadline-monot-
onic priority assignments can be used when a sufficient number of pri-
ority levels is not available due to limitations from the underlying run-
time system or operating system.

Priority Mapping Scheme

Determine the longest and shortest periods that your system needs to
support. Draw the time-spectrum between these two periods on a
logarithmic scale, and divide the spectrum equally into n segments,
where n is the number of distinct priority levels available.

We, therefore, have t1/t0 = t2/t1 = … = tn/tn-1 = r, where t0 and tn are the
shortest and longest time constraints, respectively, to be supported.
Suppose we use rate-monotonic scheduling and the period of a task
is Ti. This task is assigned the priority j such that tj-1 < Ti ≤ tj. Use the
relative time constraint instead of the task period Ti in the above con-
text if deadline-monotonic scheduling is used.
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Example Scenario for Dealing With A Limited
Number of Priority Levels

Suppose that the underlying real-time OS (such as Windows NT) sup-
ports only 8 priority levels. Let the smallest period of a real-time task
be 10 ms and the longest period be 2.5 seconds. The following priori-
ty-mapping scheme can then be used.

In this example, we assume above that priority level 7 is higher than
priority level 6. Some real-time operating systems have the opposite
convention, in which a lower value indicates a higher priority level.

This way of assigning priorities with a limited number of priority levels
is not optimal, but generally produces a good mapping. For a specific
task set, priority assignments with much better schedulability can fre-
quently be obtained manually. This scheme is essentially an analyzable
heuristic that works well in a broad range of cases.
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Dealing with a Limited Number of Priority Levels (cont.)

Suppose that the shortest period to be supported for a system is 1 ms
and the longest period is 100 seconds. We have: tn/t0 = 100/10-3 = 105.
The loss in schedulability due to the above lumping of tasks with different
periods (deadlines) into the same priority level is shown below as the
number of priority bits available is varied; e.g., having 4 priority bits
means that 16 priority levels are supported.

In general, having 256 distinct priority levels is practically equivalent to
having a distinct priority level for each time constraint with a negligible
loss of 0.0014 (about one tenth of one-percent). Having 5 priority bits
(32 priority levels) is a good compromise for hardware support, where
additional priority bits can be too expensive. In software, however,
where the additional expenses are minimal, 8 bits (256 priority levels)
are recommended.
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Dealing with Jitter

Jitter is the size of the variation in the arrival or departure times of a
periodic action. Jitter normally causes no problems as long as the
actions all stay within the correct period, but certain systems might
require that jitter be minimized as much as possible.

Real-time programmers commonly handle tasks with tight jitter
requirements in one of two ways:

•  If only one or two actions have tight jitter requirements, set those 
actions to be top priority. Note: This method only works with a very 
small number of actions.

•  If jitter must be minimized for a larger number of tasks, split each 
task into two, one which computes the output but does not pass it 
on, and one which passes the output on. Set the second task’s 
priority to be very high and its period to be the same as that of the 
first task. An action scheduled with this approach will always run 
one cycle behind schedule, but will have very tight jitter.

Most real-time systems use some combination of these two methods.



Other Capabilities of Real-Time System
Analysis

•  End-to-end timing analysis

•  Network link and backplane bus analysis

•  CANbus analysis

•  Network switch analysis

•  Jitter analysis

•  Automatic binding of software to hardware components

•  Computation of slack capacity in system for future growth

•  RT-CORBA & Real-Time DCOM analysis

•  Quality of Service (QoS) management

-  QoS-based Resource Allocation Model that can deal application
QoS attributes such as frame size and frame rate, along with 
timeliness, cryptographic security, and dependability.

Please contact TimeSys Corporation (www.timesys.com) for addi-
tional information.
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Recommendations for Real-Time System
Builders

1. Adopt a proven methodology like RMA, which is:

• Used by GPS satellites, submarines, shipboard control, air 
traffic control, medical instrumentation, multimedia cards, 
communications satellites, consumer electronics, etc.

• Supported at least in part by commercial OS vendors (Windows 
95/NT, AIX, Solaris, OS/2, HP/UX) and virtually all real-time OS 
vendors (TimeSys Linux, LynxOS, QNX, pSoS, VxWorks, etc.)

• Supported by standards including Real-Time CORBA, POSIX, 
Ada 83 and Ada95, and Sun’s Java Specification for Real-Time.

• Adopted by NASA (Space Station) and by the European Space 
Agency.

2. Apply tools that support the methodology

• Example: For RMA, use TimeWiz and TimeTrace from TimeSys 
Corporation (www.timesys.com).

• TimeSys offers a suite of complementary products, including 
a Linux distribution with full RTOS capability, to serve your 
real-time system needs.

3. Utilize the experience and knowledge of real-time system experts
on such subjects as:

• How to use OS primitives correctly (e.g., with priority inheritance 
enabled on message queues and mutexes).

• How to use middleware services.

• How to structure applications with object-orientation.
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Object-Oriented Techniques in Real-Time
Systems

Problems with direct application of traditional object-oriented method-
ologies to real-time systems include:

• Existing OO methodologies generally push performance issues 
into the integration and test phase
- Result: unbounded integration and test-phase, much higher 

risk and cost.
• Most response-time problems are hidden until late in integration.
• Inheritance and polymorphism should be limited where 

predictability is critical.

When applying object-oriented techniques to real-time systems, keep
the following recommendations in mind:

• Identify concurrency early (perhaps a single thread per object).
• Choose threads early – at architecture definition time.
• Choose threads that do not encapsulate multiple timing constraints.
• Define scheduling techniques before finishing architecture.
• If timing constraints are critical, plan for analytical model (e.g., 

RMA) in addition to discrete event simulation.

There are important practical considerations for real-time OO systems:

• The usual OO systems underlying OS and infrastructure (e.g., 
CORBA ORBs, X-Windows) implementations often contain 
intrinsic priority inversions.

Inheritance and polymorphism are extremely valuable, but can make
response time predictability difficult.

• Software architecture must always consider performance.
• For real-time systems, specific architectures have important 

real-time properties.
• Object-oriented design/programming is usable for real-time 

systems, but the architecture must consider performance at the 
highest level.
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CORBA

CORBA stands for Common Object Request Broker Architecture, 
and has been standardized by the Object Management Group (OMG)
using an open process. CORBA is an interoperable client/server mid-
dleware specification that specifies an extensive set of services that
are used to produce “made-to-order” components.

Some of the more than 20 standard services are Naming, Event,
Transaction, Event, and Query. CORBA also specifies a neutral
Interface Definition Language (IDL), by which all inter-object 
communication is managed.

A CORBA-based system contains four main components:

• Object Request Broker (ORB)

• CORBA Services

• CORBA Facilities

• Application Objects

Interface
Repository

Implementation
Repository

Client

Dynamic
Invocation
Interface

Dynamic
Skeleton
Interface

ORB
Interface

Static
Skeletons

Object
Adapter

Client
IDL

Stubs

Object
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The Real-Time CORBA 1.0 Standard

The Real-Time CORBA 1.0 specification supports fixed-priority sched-
uling. It directly supports the construction of pipelined and client-server-
based distributed real-time systems. Pipelined real-time systems are
supported by the use of asynchronous one-way messages between a
“client” (a message sender) and a “server” (a message receiver). 

Real-time operating systems differ in the number of priority levels 
they support and the convention that determines whether lower values
represent higher priority levels or vice versa. As a result, RT-CORBA
1.0 provides a mapping scheme that allows applications to use a
homogeneous, portable, and cross-compatible scheme to assign and
manipulate priorities. 

Secondly, RT-CORBA supports a flexible framework to assign the
appropriate priority at which a server must process a client message. 
In a pipelined system, the “server” may use its own native priority, or
inherit the priority of its client (or the highest priority of any waiting
client). In a client-server-based system, a remote client request may 
be processed at a higher priority than any other normal application-pro-
cessing activity on the server node. This permits the use of the “distrib-
uted priority ceiling protocol” and is necessary to minimize the large-
duration priority inversion that can otherwise occur. Finally, RT-CORBA
provides facilities for pooling and re-using threads and memory.



Real-Time Java

The Real-Time Specification for Java (RTSJ), completed in 2001 under
Sun Microsystems’ Java Community Process, meets the need for a
truly platform-independent real-time programming language. The RTSJ
adds to standard Java the following features:

• Real-time threads. These threads offer more carefully defined 
scheduling attributes than standard Java threads.

• Tools and mechanisms that let developers write code that does 
not need garbage collection.

• Asynchronous event handlers, and a mechanism that associates
asynchronous events with happenings outside the JVM.

• Asynchronous transfer of control, which provides a carefully 
controlled way for one thread to throw an exception into 
another thread.

• Mechanisms that let the programmer control where objects will be
allocated in memory and access memory at particular addresses.

TimeSys developed the reference implementation for the RTSJ, which
is available at www.timesys.com. Further RTSJ information is avail-
able at www.rtj.org.
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TimeSys Solutions for Real-Time System
Developers

TimeSys Linux: TimeSys engineers have developed the first truly
real-time version of Linux. TimeSys Linux offers a complete real-time
system with the reliability and stability that are hallmarks of Linux.
Available in multiple packages, TimeSys Linux can be provided alone,
or in combination with TimeTrace™, described below, to capture your
application’s timing data.

Real-Time Java: TimeSys is in the process of developing a Java vir-
tual machine based on the Real-Time Specification for Java. This
product, the first to extend Java’s capabilities into the real-time arena,
allows real-time system designers to benefit from Java’s platform inde-
pendence and object orientation.

Timing Analysis and Simulation: TimeWiz® is a sophisticated sys-
tem modeling, analysis, and simulation environment developed and
marketed by TimeSys Corporation for real-time systems. The software
runs on Windows NT/2000/98/XP. 

Application Development: TimeStorm™ is a full-featured integrated
development environment that lets you create TimeSys Linux applica-
tions on a remote platform. TimeWiz runs on Windows NT/2000/98/XP
and allows you to download applications to a wide range of systems
running TimeSys Linux.

Architectural Audit: This highly recommended service consists of a
comprehensive technical evaluation of your system architecture,
including hardware and software by TimeSys experts and Application
Engineers. A detailed written report will be produced at the end of this
evaluation clearly documenting the conclusions of the audit and rec-
ommendations (if any) to ensure that system timing constraints will be
satisfied. Both system bottlenecks and resources of low risk will be
identified, enabling the customer to focus on critical areas.

Timing Data Collection: TimeTrace™ provides the critical instrumen-
tation needed to see inside your real-time system, collecting all the
necessary timing data essential to the successful application of RMA
and average-case simulation studies.  
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TimeSys Linux™: A Real-Time OS with All the
Benefits of Linux

TimeSys Linux is the first Linux-based operating system to offer full
real-time capabilities. The TimeSys Linux consists of a set of compo-
nents that, when combined, provide a highly innovative approach to
meeting timing constraints. These components include:

•  TimeSys Linux GPL, a complete Linux kernel, downloadable for
free from www.timesys.com, with unique TimeSys modifications
to make it easily the lowest-latency Linux kernel anywhere. It is fully
preemptible, contains a new priority-based scheduler with support
for 2048 priority levels, and makes all interrupt handling and
extended interrupt handling fully schedulable and prioritizable. This
core is licensed under the GPL, and includes all source code.

•  TimeSys Linux/Real-Time, a set of real-time modules that trans-
forms TimeSys Linux into a fully-featured real-time OS. It changes
all Linux mutexes so that they support priority inheritance and prior-
ity ceiling protocol emulation. In addition, it provides clock resolu-
tion at the highest level supported by the hardware itself and allows
the kernel to declare and control high-resolution periodic tasks.

•  TimeSys Linux/CPU, which allows threads or groups of threads to
get guaranteed access to the CPU to support timely response, no
matter what the load on the system.

•  TimeSys Linux/NET, which allows guaranteed access to incoming
and outgoing packets on a network interface.

The list of CPU types and boards supported by TimeSys Linux is 
constantly growing. See www.timesys.com for an updated list.
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TimeSys Linux Support for Reservations

TimeSys Linux offers full support for reservations, allowing you more
control in scheduling system tasks. With reservations, you can 
guarantee the availability of a certain amount of a certain resource,
such as a CPU or a network interface.

A reservation includes the following parameters:

•  T for its period

•  C for its uninterrupted computation time (CPU), or number of bytes (Net)

•  D for its relative deadline

Each reservation can also be hard or soft, depending on whether tasks
attached to the reservation are allowed to use the reserved resource
when the reservation becomes depleted within each reserved period.

•  Hard reserves deny tasks the use of reserved resources after C is
completed for each period.

•  Soft reserves grant usage of reserved resources to attached tasks
after completion of C in a period, but these tasks must compete
with all other tasks in the system.
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TimeWiz®: An Integrated Design and Simulation
Environment for Real-Time Systems

TimeWiz® is a TimeSys Corporation product specifically designed for
the construction of simple or complex real-time systems with pre-
dictable timing behavior. It lets you:

• Represent your hardware and software configurations.

• Analyze the worst-case timing behavior of your system.

• Simulate its average-case timing behavior.

• Model processors and networks for end-to-end performance.

• Chart your system parameters and generate integrated system
reports.
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TimeStorm™: An Integrated Development
Environment for TimeSys Linux

TimeStorm™ is a gcc-based integrated development environment 
(IDE) that allows you to create, compile, and debug TimeSys Linux
applications on a Windows system using cross-compilers for your 
target board and architecture. With TimeStorm, you can:

• Write and edit code with a powerful editor that features search-
and replace functionality as well as language-specific syntax
highlighting.

• Debug your applications with gdb. 

• Navigate your project easily with control trees that let you view
every file or every class, method, and variable in your project.

• Export applications to a variety of embedded systems running
TimeSys Linux.

TimeStorm runs on Windows NT/2000/98/XP.
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TimeTrace®: A Real-Time Profiling Environment

TimeTrace® is a productivity enhancement tool from TimeSys
Corporation that lets you profile your real-time OS target in real-time.
With TimeTrace, you can:

• Capture execution sequence on targets efficiently.

• Display target execution sequences visually to create a “software
oscilloscope.”

• Feed TimeTrace data into TimeWiz as execution time and period
parameters for worst-case analysis and/or average-case simulation.

TimeTrace runs on Windows NT/2000/98/XP.

54 •  TimeSys Corporation



Glossary of Terms and Concepts

The following definitions apply to terms used throughout this manual,
and are derived from the “Handbook of Real-Time Systems.” A clear
understanding of these terms is very useful for any designer or devel-
oper of real-time systems.

Action The smallest decomposition of a response; a
segment of a response that cannot change
system resource allocation. In TimeWiz, an
action must be bound to a (physical) RESOURCE

before it is analyzed. An action can also use
zero, one, or more logical resources.

Aperiodic event An event sequence whose arrival pattern is
not periodic.

Average-case The average response time of a response’s
response time jobs within a given interval. In TimeWiz, this is

obtained through simulation. It is possible that
there is a wide discrepancy between the aver-
age- and worst-case response times for a par-
ticular task. In many real-time systems (partic-
ularly for hard real-time tasks), the worst-case
response time must be within a well-specified
interval.

Blocking The act of a lower-priority task delaying the
execution of a higher-priority task; more com-
monly known as priority inversion. Such priori-
ty inversion takes more complex forms in dis-
tributed and shared memory implementations.

Blocking time The delay effect (also called the “duration of
priority inversion”) caused to events with high-
er-priority responses by events with lower-pri-
ority responses.

Bursty arrivals An arrival pattern in which events may occur
arbitrarily close to a previous event, but over
an extended period of time the number of
events is restricted by a specific event density;
that is, there is a bound on the number of
events per time interval. Bursty arrivals are
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modeled in TimeWiz using their minimum
interarrival time and their resource consump-
tion in that interval.

Critical section Period during which a real-time task is holding
onto a shared resource.

Data-sharing A policy specific to a (physical) resource that
policy determines how logical resources bound to

the (physical) resource can be accessed.
Some schemes do not provide any protection
against priority inversion, while others provide
varying degrees of protection. TimeWiz sup-
ports multiple data-sharing policies including
FIFO (no protection against priority inversion),
PRIORITY INHERITANCE PROTOCOL, PRIORITY CEILING

PROTOCOL, HIGHEST LOCKER PRIORITY PROTOCOL,
and KERNELIZED MONITOR (non-preemptive exe-
cution) policies.

Deadline- A fixed-priority algorithm in which the highest
monotonic priority is assigned to the task with the earliest
scheduling relative delay constraint (deadline) from each
algorithm instance of its arrival. The priorities of the

remaining tasks are assigned monotonically (or
consistently) in order of their deadlines.

This algorithm and the earliest-deadline
scheduling algorithm are not the same. In this
algorithm, all instances of the same task have
the same priority. In the earliest-deadline
scheduling algorithm, each instance of the
same task has a different priority, equal to the
absolute deadline (time) by which it must be
completed. The rate-monotonic scheduling
algorithm and the deadline-monotonic algo-
rithm are one and the same when the relative
deadline requirement and periods are equal
(which happens often).

Deterministic A system in which it is possible to determine
system exactly what is or will be executing on the

processor during system execution.
Deterministic systems result from the use of
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certain scheduling policies for groups of
processes.

Dynamic-priority An allocation policy that uses priorities to
scheduling decide how to assign a resource. Priorities
policy change from instance to instance of the same

task (and can also vary during the lifetime of
the same instance of a task). The earliest-
deadline scheduling algorithm is an example of
a dynamic-priority scheduling policy.

Earliest-deadline A dynamic-priority assignment policy in which
scheduling the highest priority is assigned to the task with

the most imminent deadline. 

Event A change in state arising from a stimulus within
the system or external to the system; or one
spurred by the passage of time. An event is
typically caused by an interrupt on an input port
or a timer expiry. See also TRACE and TRIGGER.

Execution time Amount of time that a response will consume
on a CPU.

Fixed-priority An allocation policy that uses priorities to
scheduling policy decide how to assign a resource. The priority

(normally) remains fixed from instance to
instance of the same task. Rate-monotonic
and deadline-monotonic scheduling policies
are fixed-priority scheduling policies.

Hardware-priority An allocation policy in which the priority of a
scheduling policy request for the backplane is determined by a

hardware register on each card that plugs into
the backplane. Presumably, the hardware pri-
ority value reflects the importance of the
device that is connected to the adapter.

Highest-locker A DATA-SHARING POLICY in which an action using
priority a logical resource is executed at the highest

priority of all actions that use the logical
resource (i.e. at the PRIORITY CEILING of the
resource). This protocol provides a good level
of control over priority inversion.
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Input jitter The deviation in the size of the interval
between the arrival times of a periodic action.

Kernelized A DATA-SHARING POLICY in which an action using
monitor a logical resource is executed in non-preemp-

tive fashion (i.e. at kernel priority).  This proto-
col provides a good level of control over priori-
ty inversion except when one or more actions
using a logical resource has a long execution
time (relative to the timing constraints of other
higher-priority tasks).

Logical resource A system entity that is normally shared across
multiple tasks. A logical resource must be
bound to a physical resource like a processor,
and is modeled in TimeWiz as an action with a
mutual exclusion requirement. Also, see DATA-
SHARING POLICY.

Output jitter The deviation in the size of the interval
between the completion times of a periodic
action.

Period The interarrival interval for a periodic event
sequence. Also, see INPUT JITTER.

Periodic event An event sequence with constant interarrival
intervals. Described in terms of the period (the
interarrival interval) and a phase value.

Preemption The act of a higher-priority process taking con-
trol of the processor from a lower-priority task.

Priority ceiling This is associated with each logical resource
and corresponds to the priority of the highest-
priority action that uses the logical resource.

Priority ceiling A data-sharing policy in which an action using 
protocol a logical resource can start only if its priority is

higher than the PRIORITY CEILINGS of all logical
resources locked by other responses. This
protocol provides a good level of control over
priority inversion.



Priority A DATA-SHARING POLICY in which an action using
inheritance a logical resource executes at the highest of
protocol its own priority or the highest priority of any

action waiting to use this resource. This proto-
col provides an acceptable level of control
over priority inversion.

Priority inversion This is said to occur when a higher-priority
action is forced to wait for the execution of a
lower-priority action. This is typically caused by
the use of logical resources, which must be
accessed mutually exclusively by different
actions. Uncontrolled priority inversion can
lead to timing constraints being violated at rel-
atively low levels of RESOURCE UTILIZATION. Also
see BLOCKING and BLOCKING TIME.

Rate-monotonic Algorithm in which highest priority is assigned
scheduling to the task with the highest rate (in other
algorithm words, with the shortest period) and the priori-

ties of the remaining tasks are assigned monot-
onically (or consistently) in order of their rates.

Rate-monotonic A special case of fixed-priority scheduling that
scheduling uses the rate of a periodic task as the basis

for assigning priorities to periodic tasks. Tasks
with higher rates are assigned higher priorities.

Real-time system A system that controls an environment by
receiving data, processing it, and taking action
or returning results quickly enough to affect
the functioning of the environment at that time.

A system in which the definition of system cor-
rectness includes at least one requirement to
respond to an event with a time limitation.

Resource A physical entity such as a processor, a back-
plane bus, a network link, or a network router
which can be used by one or more actions. A
resource may have a resource allocation policy
(such as rate-monotonic scheduling) and a
data-sharing policy.
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Response A time-ordered sequence of events arising from
the same stimulus. In TimeWiz, an event can
trigger one or more actions to be executed.

Responses Multiple time-ordered sequences of events,
each arising from a distinct event. Event
sequences that result in responses on the
same resource often cause resource con-
tention that must be managed through a
resource allocation policy.

Task A schedulable unit of processing composed 
of one or more actions. Synonymous with
process.

Tracer A stimulus. Synonymous with a single instance
of an EVENT within TimeWiz, and is used to
represent an end-to-end data flow sequence
spanning multiple physical resources. An end-
to-end timing constraint is normally associated
with a tracer event. TimeWiz computes both
worst-case and average-case response times
to a tracer using analysis and simulation
respectively. Also see TRIGGER.

Trigger A stimulus with an arrival pattern. Mostly syn-
onymous with the term “EVENT” within TimeWiz
but is used to name an event whose response
consists of a chain of actions executing on, at
most, a single resource. 

In TimeWiz, a trigger is bound to a (physical)
resource when one or more actions in its cor-
responding response are bound to a (physical)
resource. Also see TRACER.

Utilization The ratio of a response's usage to its period,
usually expressed as a percentage. For a CPU
resource, this is execution time divided by
period.

Worst-case The maximum possible response time of a
response time response’s jobs (instances). Also see OUTPUT

JITTER.
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