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Chapter 6
Distributed Fault-Tolerance

Distribution and fault-tolerance are tightly related. Should a single element of a distributed
system fail, users expect at worst a slight degradation of the service that is offered; distributed
systems must thus at least have some built-in fault-tolerance. On the other hand, most fault-
tolerant systems can, at some level or another, be seen as a distributed system due to their
redundant processing resources. Distributed fault-tolerance is used here to refer to that class of
techniques suitable for ensuring fault-tolerance in an architecture consisting of a set of
processing elements (called nodes or stations) interconnected by a message-passing
communication network (figure 1). The distributed fault-tolerance techniques discussed here are
focussed towards distributed systems in which the communication network consists of one or
more local area networks. In particular, the existence of high-bandwidth broadcast channels
allowing efficient multicast communication is assumed.

Node

Node Communication Network

Fig. 1- Distributed System

The chapter is organized as follows. After discussing some of the related work in this field,
section §6.3 discusses the characteristics of the computational nodes of the considered class of
distributed systems. In particular, this section details the assumed node failure modes and their
impact on the design of distributed fault-tolerance techniques. The assumed models of
distributed computation are sketched out in section 6.4, then section 6.5 considers various
aspects relating to the replication of computation for the purposes of fault-tolerance.
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The two issues of error-processing (preventing errors from affecting service delivery) and
fault treatment (preventing faults from inducing further errors) are dealt with separately. Error-
processing is described in sections 6.5 through to 6.7 which describe three classes of
techniques for coordinating replicated computation, called active, passive and semi-active
replication. Fault treatment is discussed in section 6.8.

Finally, section 6.9 is devoted 0 the definition of group communication facilities that the

underlying communication system should offer to support the various distributed fault-tolerance
techniques.

6.1. Related Work

Fault-tolerance is often implemented in single “stand-alone” machines rather than in the

distributed fashion considered here. Such stand-alone fault-tolerant machines have several
disadvantages:

* much special-purpose hardware must be designed — and re-designed when a
technology update is required; our software-implemented distributed approach
allows the use of standard, off-the-shelf machines;

geographical separation of redundant resources has to be “added on” if disaster
recovery is to be ensured; geographical separation of redundant rescurces is justa
configuration parameter in our distributed approach — the same techniques are used
whether the redundant resources are close to or distant from each other;

.

stand-alone fault-tolerant machines often resort to tight synchronization in order to
ensure that the fault-tolerance mechanisms are as transparent as possible to
application software; such tight synchronization leads to a reduced tolerance of
transient faults that could simultaneously affect all redundant channels at the same
point in computation [Kopetz et al. 1990];

tightly-coupled redundancy does not provide the same tolerance to software-design
faults as a loosely-coupled approach; in particular, restart and recovery mechanisms
‘must also be included to provide tolerance of operating system crashes.

Distributed approaches to fault-tolerance via message-passing replicated computation
similar to those presented here have also been used in a number of other fault-tolerant systems,
many of which are also aimed at supporting real-time applications [Birman 1985, Borg et al.
1983, Cooper 1984, Cristian et al. 1990, Gunningberg 1983, Kopetz and Merker 1985, Mishra
etal. 1989, Shtivastava et al. 1988, Walter et al. 1985, Wensley et al. 1978]. Some of these are
described briefly here and compared to Delta-4

One of the first distributed fault-tolerant architectures was the SIFT multi-computer
machine developed for critical flight-control applications [Melliar-Smith and Schwartz 1982,
Wensley et al. 1978]. The MAFT system is a more recent example of the same type of
architecture [Kieckhafer et al. 1988, Walter et al. 1985]. The SIFT architecture is based on
general-purpose processors or nodes interconnected by a set of broadcast serial busses. Due to
the criticality of the intended application domain (civil aircraft flight control), no restrictive
assumption is made about node failure modes, i.e., nodes may be fail-uncontrolled (see section
§6.2.2). To mask the arbitrary behaviour of such nodes, each node is connected to every other

node by its own private broadcast bus. Single-source data is broadcast to all nodes by means of
a clock-synchronous, phased Byzantine Agreement Protocol [Melliar-Smith and Schwartz
1982]. Such an interconnection structure was feasible in SIFT since the architecture was
designed to accommodate at most eight nodes geographically located in the same equipment
bay. It was required that the Delta-4 architecture be able to accommodate several tens of nodes
spread out over quite considerable distances (i.e., a factory or several large neighbouring

§.1. Related Work

puildings) so such an intercon.nectu
SIFT is based on majority voting of
Tasks are executed according to a st
4 is intended to be an open Zrchxte
cal operating systems and serv
L())mchrgxous frame-based §chedu.h1
node failure is relatively simple in
tasks can be maintained in every n
contain little or no internal state (p
be as large as a complete. databas
create (or clone) new replicas who
replicas on non-faulty nodes and t
replicas are created.
MARS [Kopetz et al. 1988, K
tolerant system for real-time app]
goes beyond that of a single equif
(nodes are designed to be self-che
baseband bus. The local f:lociks of
designed clock synchronization ct
synchronization (less than '1 Ous) .t
of time-division multiplexing. Slf
tasks based on a static (off-line;
application scenario. Hc?wevcr, A
are assumed to be fail-silent; nod
the time domain). Since all.compl
the instants of communication anc
the communication system doe
overflow. Furthermore, duc.to tl
schedule, reliable broadcasnn.g «
mask k transmission errors. Like
XPA architecture, see chapter
overheads of voting. Howe\{er, 1
architecture adopts a dyna.rmg ev
computation and communication
on the system may suddenly v
applications, no d priori worst-C
scheduling philosophy of XPA
Like MARS, the clocks of m.)de
reasons, clocks are synchronizec
The ISIS system [Birman
presents many similarities to De
fault-tolerance in a gcneral-purg
and MARS systems that are ta1
system provides a ﬂexiple fooI—
build a distributed application1
assumes that nodes or proces
provides a single mechanism f
cohort scheme. This scheme 1
technique (see section 6.'7). T
the issue of resolving replica nc
implementation — by the a




6. Distributed Fault-Tolerance

Tom affecting service delivery) and
rs) are dealt with separately. Error-
7 which describe three classes of
«d active, passive and semi-active

P communication facilities that the
€ vanous distributed fault-tolerance

me” machines rather than in the
[t-tolerant machines have several

ned — and re-designed when a
tplemented distributed approach

has to be “added on” if disaster
n of redundant resources is Jjusta
1 — the same techniques are used
ant from each other;

tight synchronization in order to
* s transparent as possible to
leads to a reduced tolerance of
| redundant channels at the same

ime tolerance to software-design
"estart and recovery mechanisms
ing system crashes,

>assing replicated computation
r of other fault-tolerant systems,
tions [Birman 1985, Borg et al.
opetz and Merker 1985, Mishra
 etal. 1978]. Some of these are

was the SIFT multi-computer
liar-Smith and Schwartz 1982,
example of the same type of
SIFT architecture is based on
broadcast serial busses. Due to
t flight control), no restrictive
e fail-uncontrolled (see section
de is connected 1o every other
dcast to all nodes by means of
[Melliar-Smith and Schwartz
T since the architecture was
cated in the same equipment
1modate several tens of nodes
r several large neighbouring

6.1. Related Work o

buildings) so such an interconnection structure is not economically viable. Error processing in
SIFT is based on majority voting of the results of tasks that are replicated across several nodes.
Tasks are executed accordin g to a static frame-based cyclic schedule (calculated off-line). Delta-
4 is intended to be an open architecture designed to accommodate heterogeneous nodes and
local operating systems and serve a wider range of applications; systematic use of such
synchronous frame-based scheduling was thus precluded. Finally, system reconfiguration after
node failure is relatively simple in SIFT. Copies of the data necessary for the execution of all
tasks can be maintained in every node of the system since the elements of computation (tasks)
contain little or no internal state (persistent data). In Delta-4, the elements of computation may
be as large as a complete database system. The reconfiguration mechanism must be able to
create (or clone) new replicas whose internal state is initialized by copying the state of existing
replicas on non-faulty nodes and transferring it across the network to the nodes on which new
replicas are created.

MARS [Kopetz et al. 1988, Kopetz and Merker 1985] is an example of a distributed fault-
tolerant system for real-time applications in which the geographical distance between nodes
goes beyond that of a single equipment bay. The nodes in MARS are assumed to be fail-silent
(nodes are designed to be self-checking, see section 6.2.1) and are interconnected by a serial
baseband bus. The local clocks of each node are closely synchronized by means of a specially-
designed clock synchronization chip [Kopetz and Ochsenreiter 1987] that achieves such a tight
synchronization (less than 10us) that it can be used to control access to the serial bus by means
of time-division multiplexing. Similarly to SIFT and MAFT, MARS uses cyclic scheduling of
tasks based on a static (off-line) schedule taking into account the worst-case or peak-load
application scenario. However, MARS does not need to resort to majority voting since nodes
are assumed to be fail-silent; node failure only results in the absence of messages (detected in
the time domain). Since all computation and communication in MARS are statically scheduled,
the instants of communication and the quantity of transferred data are pre-established; therefore,
the communication system does not have to worry about flow control to prevent buffer
overflow. Furthermore, due to the fail-silent node assumption and the static communication
schedule, reliable broadcasting can be achieved by systematic k+/ repetition of messages to
mask k transmission errors. Like MARS, the real-time variant of the Delta-4 architecture (the
XPA architecture, see chapter 9) also adopts a fail-silent node assumption to avoid the
overheads of voting. However, unlike the static time-triggered approach of MARS, the XPA
architecture adopts a-dynamic event-triggered approach. This allows a more economical use of
computation and communication resources for dynamic applications in which the load imposed
on the system may suddenly vary due to the occurrence of asynchronous events. In many
applications, no a priori worst-case load scenario can be determined; in such cases, the dynamic
scheduling philosophy of XPA allows a best-effort approach to meeting application deadlines.
Like MARS, the clocks of nodes in XPA are globally synchronized; however, for commercial
reasons, clocks are synchronized without resorting to special-purpose hardware.

The ISIS system [Birman and Joseph 1987, Birman 1985, Birman and Joseph 1987)
presents many similarities to Delta-4. Like Delta-4, ISIS is aimed at providing user-transparent
fault-tolerance in a general-purpose distributed computing environment (as opposed to the SIFT
and MARS systems that are tailored to clock-synchronous, real-time applications). The ISIS
system provides a flexible rool-kit of basic primitives that allow an application programmer to
build a distributed application that is made fault-tolerant by replication of code and data. ISIS
assumes that nodes or processes fail only by crashing (i.e., that they are fail-silent) and
provides a single mechanism for fault-tolerance at the process level based on a coordinator-
cohort scheme. This scheme is similar in some respects to Delta-4’s semi-active replication
technique (see section 6.7). The ISIS coordinator-cohort scheme does not, however, address
the issue of resolving replica non-determinism. The tools provided by ISIS could also allow the
implementation — by the application programmer ~ of actively-replicated processes
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(restricted to a fail-silence assumption) and passively-replicated processes (by making
coordinators systematically transfer their state to cohorts when a service request is completed),
In Delta-4, many applications can be designed as if they were to run on a system that never
fails. Since fault-tolerance is managed by built-in system facilities, the issues of replication can
be entirely hidden from the application programmer and only specified at configuration time.
ISIS also provides the basic stare transfer mechanism [Birman and Joseph 1987} necessary to
ensure the cloning of replicas for system reconfiguration during fault treatment. However, since
ISIS assumes fail-silence, the state transfer tool does not provide a facility for error-detection
during state transfer by cross-checking states copied from multiple source replicas. Like Delta-
4, ISIS makes use of special communication facilities supporting muiticast protocols based on a
clock-asynchronous approach rather than the clock-synchronous techniques of SIFT and
MARS. However, the ISIS multicast protocol suite is implemented on top of TCP/IP such that
each multicast results in a number of point-to-point TCP/IP messages. In Delta-4, the basic
atomic multicast protocol is implemented on top, or as extension of, the medium access control
protocol of selected local area networks (see section 6.9 and chapter 10); this allows hardware
broadcasting opportunities to be exploited for increased performance.
A system that resembles Delta-4 quite closely is IBM’s Advanced Automation System
(AAS) for the US Air Traffic Control network [Cristian et al. 1990]. The AAS concept of
“server groups™ is equivalent to that of a “replicated software component” developed here. In
AAS, both active and passive replication techniques are available! but only for the case of
server replicas that fail by responding late, by omitting to respond or by crashing. In our
approach, the case of fail-uncontrolled (active) replicas — ones that can fail in quite arbitrary
fashion — is also accommodated by means of a built-in voting mechanism. The Delta-4 atomic
multicast protocol allows replicated entities to be logically addressed such that messages are
delivered (with low overhead) to all replicas; this results in somewhat simpler management of
active replicas than in AAS. Processors in AAS are organized in distinct processor groups that
can each support replicas of a given set of servers. There is a group service availability manager
(gSAM) for each processor group, with replicas on all processors of that group. The gSAM is
responsible for ensuring that the number of replicas of all servers supported by the processor
group is maintained according to the server group’s replication policy (specifying the minimum
number of required replicas). If a server group can no longer execute according to its replication
policy then, in some cases, it may be moved to another processor group under the control of a
global service availability manager (GSAM). Each processor group supports a group
membership service and a group broadcast service that enables gSAM replicas to maintain a
consistent view of the processor group’s global state. A routed multicast facility is also
provided for communication between server groups residing in the same or different processor
groups. In Delta-4, management is based on the open distributed system concepts of “managed
objects” and “management domains”. The nearest equivalent to the AAS processor group and
gSAM is that of a software component replication domain and its corresponding replication
domain manager or RDM (see sections 6.4.3 and 8.2.3.3.1). However, since nodes in
Delta-4 are not a priori split into groups, replication domains for different software components
may overlap. Indeed, some software components may have a replication domain that spans all
nodes in the system. A global processor membership service is provided over all nodes in a
Delta-4 system and is built into the Delta-4 atomic multicast protocol.

6.2. Node Hardware Characteristics

This section identifies the different failure modes that can be assumed for nodes and sketches
out the communication network topologies that are appropriate for achieving fault-tolerance

1
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(formal definitions of assumed failure modes are given in annexe E). A node consists of at least
a processor, local memory and some sort of communication network interface; refinements of
the internal node architecture are discussed later that enable simplifications of the distributed

fault-tolerance techniques.

6.2.1. Fail-Silent Nodes

A fail-silent node is defined here to be a processing element that, viewed from the
communication network, either operates in conformance with its specification or remains silent
[Powell et al, 1988]. In particular, any message sent by a fail-silent node is a message that is
correct in both value and time.

Some authors describe such nodes as being “fail-stop” (cf. chapter 4); the epithet “fail-
silent” is preferred here since “fail-stop processors” have been previously defined to include not
only the “halt-on-failure” characteristic implied here but also the fact that the other nodes are
informed of the failure {Schlichting and Schneider 1983] or even that they are capable of
accessing the node’s stable storage [Schneider 1984]. Moreover, the term fail-silent makes
explicit the necessary external perception of node activity and does not preclude the possibility
of the node disconnecting itself from the network (i.e., going silent) but remaining active to
carry out, for example, some local testing activity. In the terminology of [Cristian et al. 1985],
a fail-silent node exhibits “crash” failure semantics.

Numerous implementations of fault-tolerance in distributed systems assume a “clean” node
failure mode such as that embodied in the above definition of a fail-silent node. It is, in
particular, an essential assumption in all previous work that we know of that uses transactions
as a structuring concept for achieving fault-tolerance in distributed systems (see section
§6.3.2).

There are several important simplifications that result from the fail-silent node assumption.

First, since fail-silent nodes never send any messages that are incorrect (thus eliminating
any “two-faced” behaviour of a failed node), solutions to the distributed consensus problem are
the simplest possible [Fischer 1983]. In particular, the minimum number of nodes necessary to
achieve consensus in the presence of 1 faulty nodes, is given by n 2t+2 {Lamport et al. 1982]
(the problem is vacuous for n <r+17).

Second, since such a node either sends messages within specified time delays and with
correct values or not at all, the other nodes of the distributed system can detect whether a node
has failed by means of a simple interrogation and time-out mechanism or by timing out on
regularly transmitted “I’m alive” messages (subject to the fact that communication delays are
also bounded [Fischer et al. 1985]).

Third, data and/for code replication techniques for continued operation in the presence of ¢
faulty nodes need only rely on r+7 replicas (see section 6.4).

Fourth, since such an assumption effectively precludes any possibility of the
communication network being saturated by spontaneously-produced “garbage” messages,
faults in the communication network can be dealt with independently from faults in the nodes.
Thus, simple communication architectures using shared multipoint transmission channels can
be envisaged (see figure 2).

However, a 100% guarantee that nodes are indeed fail-silent implies that the nodes are
implemented with perfect, zero-latency self-checking mechanisms, Although many techniques
are available for implementing seif-checking hardware [Wakerly 1978}, it is not easy to buy
off-the-shelf general purpose computers that use these techniques extensively.

Consequently, although one can assume that an off-the-shelf computer is fail-silent, the
coverage of this assumption may not be very high (see annex F), To attain a higher degree of
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dependability, a less stringent assumption with higher coverage can be adopted, e.g., that of
“fail-uncontrolled” nodes.

Node Node Node Node Node Node

Fig. 2 - Interconnection Topology suitable for Fail-Silent Nodes

6.2.2. Fail-Uncontrolled Nodes

A fail-uncontrolled node represents the opposite extreme of the failure mode spectrum, i.e., a
node that may fail in a quite arbitrary fashion. In particular, fail-uncontrolled nodes can:

a) send messages that are late (including completely omitting to send messages);
b) send messages sooner than expected;
¢) send messages with erroneous content;

d) send unspecified or “impromptu” messages [Powell 1991].

Since this worst case assumption (see annexe E, expression 3) is — by essence — true,
the probability of the assumption being satisfied in a real system (the assumption coverage, see
annexe F) can be set equal to 1. The resulting ease with which it is possible to quantify the
dependability achievable with such a worst-case assumption must however be weighed against
several important disadvantages.

First, a fail-uncontrolled node can exhibit quite malicious behaviour2. For example, when
relaying a message received from one processor, it could relay different copies to different
destinations (the so-called “Byzantine” faults). It can be shown that the minimum number of
nodes necessary to achieve consensus in the presence of ¢ faulty nodes exhibiting such two-
faced behaviour is given by n23.¢+ 1 (e.g., 4 nodes for 1 fault) [Lamport et al. 1982].

Second, it is impossible to use a simple interrogation and time-out mechanism o detect
whether a fail-uncontrolled node has failed since a faulty node can reply correctly to an
interrogation yet still send erroneous messages to other nodes. Node failures can only be
revealed by comparing the activity of different nodes (and of course assuming that nodes fail
independently).

Third, since node failure can manifest itself by messages being sent at the wrong time or
with erroneous content, data and/or code replication techniques for continued operation in the
presence of t faulty nodes must be based on at least 2.1+ replicas so that a minority of
erroneous messages can be masked (see §6.4).

Fourth, since a faulty fail-uncontrolled node may generate an arbitrary number of
“impromptu” messages, any (or all) transmission channel(s) to which it is attached may be
saturated by garbage messages that prevent the channel(s) from being used by other nodes.
This is a simple illustration of the fact that, from the viewpoint of error propagation, there is no
built-in “error containment barrier” at the node interface like the one that exists for a fail-silent

2 Any assumption to the contrary would not be the worst case and would need to quantified by an appropriate
less-than-unity assumption coverage.
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node. Furthermore, since the content of erroneous messages may be arbitrary, messages may
be sent with erroneous source address fields that would make it impossible for a receiving node
to know where they came from. A faulty node could thus masquerade as an arbitrary number of
non-faulty nodes and thus foil any attempt at a consensus by the latter. It is therefore necessary
to rely on the node interconnection topology to identify the source of all messages or to use
authenticated messages (which essentially defines a different failure mode assumption that is
less than arbitrary and consequently has an assumption coverage less than 1, [Powell 1991]).
Consequently, the only viable fault-tolerant architectures with such a node failure assumption
are those in which nodes do not all share the same transmission channels ([Lamport et al. 1982,
Melliar-Smith and Schwartz 1982]). Figure 3 gives two possible interconnection topologies
suitable for constructing a fault-tolerant distributed system based on the fail-uncontrolled node
assumption. The first of these shows each node connected to every other riode by a
unidirectional multi-drop bus (this is in fact the architecture of the SIFT multiprocessor
[Melliar-Smith and Schwartz 1982}). The second shows a meshed network in which each node
is connected to each of its neighbours by a unidirectional channel (such an architecture is
implied in [Cristian et al. 1985]). In both cases, the immediate consequence of node failure is
limited to the fault-containment domain constituted by the node itself and its associated
channel(s) (examples are shown in heavy lines on figure 3).

Node Node Node Node Node

Node Node

Fig. 3 - Interconnection Topologies suitable for Fail-Uncontrolied Nodes

The main disadvantages of the architectures for fail-uncontrolled nodes shown on figure 3
are that of high cost and lack of extensibility; the addition of a new node implies the addition of
a new (set of) transmission channel(s). The alternatives are thus (a) to assume fail-silent nodes
or (b) to consider an intermediate solution such as that proposed in the next section.
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6.2.3. Network Attachment Controllers

A compromise between the restrictive fail-silent node assumption and the worst-case fail-
uncontrolled node assumption can be envisaged whereby each node is considered as consisting
of two components (figure 4):

= an off-the-shelf computational component, called a host, that may be fail-
uncontrolled,

* a purpose-built communication component, called a network attachment controller
(NAC), that is assumed to be fail-silent.

computational
component
(Host)

network attachment
controller
{NAC)

Communication Network
Fig. 4 - Node split into Host and NAC Components

Since the network attachment controller is a purpose-built component, the fail-silence
assumption can be substantiated by built-in hardware self-checking techniques.

The intent of such a node architecture is to allow the use of simplified node interconnection
topologies and less elaborate consensus protocols, while at the same time allowing for arbitrary
failures of the off-the-shelf host component. Consider now the host/NAC interface that can be
viewed as two links over which each perceives the other’s behaviour:

* HN: the host to NAC link over which the host sends the NAC the following sorts of
information (which, for the benefit of this description, will be termed “service
items”):

- messages to be sent over the communication network (resulting from
computation on the host);

- handshakes (requests or acknowledgements) for service items sent over the
NH link;
* NH: the NAC to host link over which the NAC sends the host the following sorts of
service items:

- messages received from the communication network (that will affect future
computation on the host);
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- handshakes (requests or acknowledgements) for service items sent over the
HN link.

Whereas the behaviour of fail-silent or fail-uncontrolled nodes was defined in terms of
messages sent over the network, the behaviour of hosts must be defined in terms of service
items on the HN link. For a fail-uncontrolled host, the following possibilities for fauity fail-
uncontrolled host behaviour need to be considered:

a) send messages or handshakes that are late (or completely omitted);
b) send messages or handshakes sooner than expected;
c) send messages or handshakes with erroneous content;

d) send unspecified or “impromptu” messages or handshakes.

In the case of handshakes, possibility a) above is of particular importance with regard to
controlling the flow of information being multicasted to several, possibly failed, destinations
(see §6.5.3) since it difficult to distinguish between the two possible causes of a host
handshake being late: (i) the receiving host entity could blocked for a logical reason, which
means that the NAC must request the “network™ (ultimately, the sending nodes) to stop the
flow of information, or (ii) the host could have failed, in which case the sending nodes should
be able to continue the flow of multicasted information,

Possibilities b), ¢) and d) above clearly indicate that, if the NAC is to be able to respect a
fail-silent assumption, protection mechanisms must be built into the NAC to shelter it from
unexpected or incorrectly-valued HN service items. This militates in favour of the NAC playing
a master role in the interactions across the host-NAC interface whereby the host may only
transfer information to the NAC at times, and to locations in the NAC memory, dictated by the
NAC itself.

The NH link of the host-NAC interface presents fewer problems since the non-delivery or
delivery of incorrect NH service items is (will eventually be perceived as) equivalent to the host
itself failing. In practice, however, since the NAC needs to be implemented using self-checking
techniques to substantiate its fail-silent behaviour with respect to the network, a similar fail-
silent behaviour can be assumed for the NH link.

In the remainder of this chapter, the hardware architecture shown in figure 5 will be
assumed. Each node is split into host and NAC components; NACs are always assumed to be
fail-silent, whereas hosts may be either fail-silent or fail-uncontrolled. The local area network
shown in figure 5 may contain redundant communication channels or media (cf. figure 2, see
also chapter 10). Management of these redundant channels is not considered here — it is
assumed that the resulting local area network is (internally) fault-tolerant; in particular, physical
network partitioning is not considered.

6.2.4, Stable Storage

In database applications, there is a need for a mechanism that allows a consistent state of the
database to be stored while some new tentative computation is carried out. If some logical
condition cannot be fulfilled (e.g., due to a bank account being insufficiently funded), such
computation may need to be aborted and the previous state of the database restored. The
intention is to allow computation to be carried out as a series of atomic steps or transactions. By
extension, the mechanism (storage device and atomic update procedures) allowing intermediate
states to be stored is referred to as atomic storage.

This concept has frequently been extended to allow a previous state to be restored if
computation cannot complete due to a fault condition (as opposed to a logical condition).
Intermediate states (or checkpoints) of a node’s computation are stored in a “safe” place so that,
if' an error should be detected during subsequent computation, a previous error-free state can be
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retrieved. As a means for fault-tolerance, the “safe place” in which checkpoints are stored must
in itself be fault-tolerant; in particular, since it should be able to survive power outages, such a
storage mechanism is referred to as stable storage. Stable storage is typically implemented using
magnetic disc technology, although semi-conductor stable memories have also been
implemented [Bandtre et al. 1986, Banitre et al. 1988].

From the viewpoint of fault-tolerance, it is important to distinguish between these two
different motivations for storing the intermediate states of a computation, i.e., a) as a means in
transactional applications to allow tentative computation to be aborted should some logical
condition not be fulfilled, or b) as a means to restore an error-free state after detection of an
error due to a fault. In transactional applications, an atomic storage mechanism is needed even if
the underlying system is completely fault-free. System fault-tolerance may or may not be based
on the implementation of atomic storage as stable storage.

If the nodes in a distributed system possess stable storage, they can be “repaired” (either
manually or automatically) after failure and re-inserted into the network with the assurance that
the stored “stable data” is still in a state that is identical to that before node failure. Note
however, that such a backward error recovery scheme inevitably leads to a time overhead
(which, in the case of manual repair, could be quite long) that can lead to an unacceptable
decrease in service availability. Redundancy of data and code is necessary if computation is to
proceed while failed nodes are being repaired.

Alternatively, if nodes do not possess stable storage, then the design of the system-level
fault tolerance techniques must be based on the assumption that all data stored locally is lost
should the node fail. This means that if the node is re-inserted into the network, it must be
assumed to have suffered total amnesia; the re-inserted node is thus equivalent to a totally new
node. It can only be re-introduced into the system after its local storage has been re-initialized
by copying information across the network from other (non-failed) nodes.

It is worthwhile considering the stable storage abstraction in the context of the two extreme
assumptions made for hosts in sections 6.2.1 and 6.2.2:

a) Fail-silent host with stable storage. Seen from the communication system, such a
node either delivers correctly-valued and timely messages or stops sending
messages until repair is carried out. After repair, information may be retrieved from
stable storage that is identical to that stored there before failure.
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Since the host is fail-silent, an implementation of atomic storage using redundant
non-volatile storage media is a reasonable approximation of stable storage.

b) Fail-uncontrolled host with stable storage. Seen from the communication system,
such a node may deliver incorrectly-valued or untimely messages. However, data
written to stable storage is unaffected by host processor failures; therefore,
information retrieved from stable storage after node repair is identical to some
consistent state before failure.

Since the host may fail in an arbitrary fashion, atomicity of updates and non-
volatility of storage are insufficient to ensure the stable storage abstraction. Further
mechanisms are needed to protect against data corruption due to host processor
failure [Banatre et al. 1988].

In conclusion, although stable storage (together with a transactional model of distributed
computation, see section 6.3.2) can be viewed as one possible basis for fault-tolerance in
distributed systems, replication of code and data is more appropriate for applications that cannot
be structured as transactions or which cannot support the time overheads induced by backward
error recovery. However, the stable storage concept does provide an option for simplified re-
initialization of repaired nodes (see §6.8).

6.3. Models of Distributed Computation

Before presenting the various possible approaches to distributed fault-tolerance by replication in
section §6.4, this section introduces some elementary concepts for expressing what is meant by
a distributed computation.

6.3.1. Software Components

We define a software component to be an elementary run-time unit of distributed computation
and data encapsulation that, in the absence of replication, resides on a single node. The data
encapsulated by a software component is referred to as its szate. Software components are
active logical entities that may communicate with each other by means of messages (only). Even
when several software components co-reside on a single node, they do not explicitly share
common memory. A distributed application can be viewed as any activity coordinated across
multiple software components.

A software component may send messages to other such components thourgh one or more
output poris and receive messages through one or more input ports. For simplicity, a single
output port and a single input port will be assumed unless explicitly stated otherwise.

The concept of a run-time software component is introduced here to avoid usin g the very
overloaded term “object”; it is used here to reason generally about the run-time view of more
specific notions such as single-threaded or multiple-threaded “processes”, Eden “Ejects”
[Almes et al. 1985], CONIC “modules” {Loques and Kramer 1986], the “active objects” of
Emerald [Black et al. 1987], ANSA [ANSA 1989] or Deltase “capsules” (see chapter 7), etc.

Since software components are the basic units into which a computation may be partitioned
and allocated over the nodes of the distributed system, it is also convenient to consider them as
the basic units by which computation can be replicated to tolerate faults. Replication of software
components is discussed in section 6.4.
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6.3.2. Transactions

Transactions were first introduced in the field of data-base systems (see [Bernstein et al. 1987]
for a full bibliography) to ensure that updates to multiple items of data (or the states of multiple
software components) are executed atomically:

- the refusal of an operation on one data item (e.g., a debit from an account is refused
if the account has insufficient funds) may imply that related operations on other data
items need to be cancelled (or “‘un-done™);

- the potentiality for concurrent multiple access to shared items of data requires that
operations on individual data items be scheduled to avoid mutual interference due to
interleaving.

The mechanisms that are necessary to enable operations to be undone due to a purely
logical reason can also be used to implement backward recovery following a failure or a conflict
between operations that was not avoided by the control mechanisms. For this reason, the
transaction concept has been extended beyond the database world and is often used as a basis
for providing fault-tolerance in distributed systems by means of backward error recovery.

It has in fact been shown that the transaction mechanism is a dual of the conversarion
scheme that was introduced as a structuring mechanism for fault-tolerance in concurrent
systems [Mancini and Shrivastava 1989, Randell 1975]. The aim of the conversation scheme is
to control the “domino effect” that may be caused when, after detection of an error,
communicating processes (software components) are rolled back and re-executed from some
previously saved state (a checkpoint or recovery point). The domino effect may occur when the
state of a process A4 is restored (rolled back) to some previous state that existed prior to a
communication between A and some other process B. If A had sent a message to 8 before
initiating roll-back then, when re-executing, it will send another message to B that, in the
general case of non-idempotent messages, will cause B’s state to become incorrect3, Similarly,
if A had received a message from B, then when re-executing, it would require B 1o re-send the
message it had already sent. In either case, B would also have to be rolled back. This could
require a further roll-back of A if A and B had interacted after B’s last checkpoint yet before that
of A.

Conversations provide a means for restricting this domino effect. Once 2 process has
entered a conversation, it is not allowed to communicate with processes not in the same
conversation. If each process takes a checkpoint on entering a conversation then the roll-back of
any process in the conversation causes the roll-back of only those processes in the same
conversation. The mechanisms necessary for controlling the entering and leaving of
conversations by processes are analogous to those used by transactions for locking and
unlocking data items [Mancini and Shrivastava 1989]. .

6.4. Replicated Software Components

Replication of data and/or computation on different nodes is the only means by which a
distributed system may continue to provide non-degraded service in the presence of failed
nodes. Even though stable storage within nodes can be used to allow the system to recover
(eventually) from node failures and can thus be thought of as a means for providing fault-
tolerance, such techniques used alone do not allow distributed system architectures to achieve
better dependability than a non-distributed system. In fact, if a computation is spread over
multiple nodes without any form of replication, distribution can only lead to a decrease in

3 Itis however possible to envisage the tolerance of repeated input messages by using sequence numbers.
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dependability since the computation may only proceed if each and every node involved is
operational.

The basic unit of replication considered here is that of a software component (cf. §6.3.1).
A replicated software component is defined as a software component that possesses a
representation on two or more nodes. Each representation will be referred to as a replica of the
software component (even though the actual representations may in practice be different at a
given instant in time). Unless stated otherwise, the term software component will refer to the
logical entity as a whole (i.e., the group of replicas).

There are two issues to replication of software components:

* inter-replica coordination: how is the activity of the group of replicas coordinated in
order to process errors and give the illusion to other software components that the
group is a single (fault-free) software component?

* group membership management: how is a software component instantiated as a
group of replicas and how is group membership updated as a consequence of
failures and repairs?

For clarity, we shall first concentrate on the replica coordination issue: we shall suppose
that software components have been instantiated as groups and that management of group
memberstip is restricted to that of replicas leaving the group as a consequence of failure. The
creation of groups and the management of replicas joining existing groups will be considered in
section $6.8.

The degree of replication of software components in the system depends primarily on the
degree of criticality of the comnponent but also on how easy (and fast) it is to add new members
to an existing group (to replace failed replicas). In general, it is wise to envisage groups of
varying size, even though the degree of replication may often be limited to 2 or 3 (or even 1,
i.e., no replication, for non-critical components) (see figure 6).

Replicated Unreplicated
software component software component

e /ey Tog| |®a| | O
°d| ool | 0| 20| |6©
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Fig. 6 - Replicated Software Components

Three basic techniques for replicated computation can be identified according to the degree
of replica synchronization:

* active replication is a technique in which all replicas process all input messages
concurrently so that their internal states are closely synchronized — in the absence
of faults, outputs can be taken from any replica,
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* passive replication is a technique in which only one of the replicas (the primary
replica) processes the input messages and provides output messages — in the
absence of faults, the other replicas (the standby replicas) do not process input
messages and do not produce output messages; their internal states are however
regularly updated by means of checkpoints from the primary replica,

* semi-active replication can be viewed as a hybrid of both active and passive
replication; only one of the replicas (the leader replica) processes all input messages
and provides output messages — in the absence of faults, the other replicas (the
Jollower replicas) do not produce output messages; their internal state is updated
either by direct processing of input messages or, where appropriate, by means of
notifications or “mini-checkpoints” from the leader replica.

These three different replication techniques will be described in the following sections; the
remainder of this section is devoted to concepts that are common to all replica coordination
techniques.

6.4.1. Replica Determinism and Replica Group Determinism

A replica (of a given software component) is said to be deterministic if, in the absence of faults,
any execution of the replica starting from the same initial state and consuming the same ordered
set of input messages leads to the same ordered set of output messages.

A replica group is deterministic if, in the absence of faults, given the same initial state for
each replica and the same set of input messages, each replica in the group produces the same
ordered set of output messages. If all replicas in a group consume identical input messages in
the same order, then replica determinism is a sufficient condition for replica group determinism.

Replica determinism is difficult to ensure in a truly heterogeneous environment. For each
software component, it is necessary to restrict the locations of replicas to a sub-set of nodes
that, if non-faulty, guarantee that each replica is deterministic. Even in a homogeneous sub-set
of nodes, there remain potential causes for non-determinism, €.g., preemption, use of non-
deterministic language constructs, decisions based on site-specific information, etc. If replicas
are not deterministic, then replica group determinism can only be achieved by negotiation
between replicas [Tully and Shrivastava 1990]. Alternatively, the potentiality for replica non-
determinism can be removed by adopting a restrictive model of computation based on state
machines [Schneider 1990].

If replica determinism cannot be ensured then it is necessary to impose strong assumptions
on allowable replica faiture modes and to restrict the choice of possible mechanisms for error
processing.

6.4.2. Replica Failure Mode Assumptions

If only hardware faults are considered, it can be assumed that the replicas executing on a given
host fail in a way that is defined by the assumed failure behaviour of that host. If a fail-silent
host fails, then all replicas that were executing on that host will appear to have failed silently or
to have “crashed”. Conversely, if a fail-uncontrolled host fails, then any or all replicas that were
being executed can fail arbitrarily, i.e., send early or late, omit to send some messages, send
messages with incorrect content or send extra or “impromptu” messages (see 6.4.2.3 below).
However, it is possible to refine these assumptions and at the same time use a finer failure
granularity than that of a complete host [Cristian 1991]. For instance, an incident in a node’s
local operating system could cause a single replica to crash. Alternatively, if a host becomes
overloaded (due to an inappropriately-dimensioned system configuration, i.e., a configuration
fault), then although the host hardware may be completely fault-free, buffer overflow may
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cause replicas on that node to fail by omitting to respond; such failures are called omission
Jfailures [Cristian et al. 1985]. Similarly, replicas may respond too late; these failures are called
late-timing or performance failures. Of course, if a software component contains a residual
design fault, then all replicas could fail in a quite arbitrary fashion, including both timing and
value failures. Certain replication techniques, although primarily designed to tolerate hardware
faults, are capable of tolerating host configuration faults and software component design faults
if such faults manifest themselves independently on different hosts. Although this may seem
reasonable for host configuration faults, this is less evident in the case of software design faults
since, by definition, all replicas of an incorrect software component will be identically incorrect.
However, it has been observed that some design faults manifest themselves independently in
different replicas due to slight differences in the local environment of the replicas at the time of
their execution. In [Gray 1986], such faults are referred to as “Heisenbugs” since they “go
away when you look at them”.

Consideration of the various ways by which components can fail in the time domain and
the value domain can lead to the definition of a wide spectrum of failure modes with different
severities (e.g., see [Powell 1991]). However, for the particular case of interest here, i.e.,
software component replicas executing in a distributed message-passing environment, just a
few categories of failure modes are sufficient. Replicas that are assumed to suffer only crash
failures, only omission failures or only performance failures can be termed respectively fail-
silent, fail-omissive and fail-tardy replicas. Replicas that fail thus can also be collectively termed
fail-restrained replicas since, by assumption, they only ever send messages that are of correct
value; replicas that can fail arbitrarily are termed fail-uncontrolled replicas.

It is tempting to consider the possible phenomena that could cause a replica to fail only by
omitting to send some messages or by sending some messages too late and then to reason about

“the other possible consequences of those phenomena. For instance, a replica might fail to send

a reply because it “lost” a request message. In this case, the lost request message would
probably also cause the state of the replica to be erroneous — thus leading ultimately to a
failure in the value domain. However, the concept of considering “abstract” failure modes
intermediate between sudden silence and totally uncontrolled behaviour is a useful one because
the mechanisms necessary to tolerate such restrained forms of failure are not much more
complex than those necessary to tolerate total silence; yet, since the corresponding failure mode
assumptions are provably less restrictive than total silence, the resuiting assumption coverage
can only be higher.

Note also that whereas replicas may be assumed to be fail-restrained or fail-uncontrolled
when executing on fail-silent hosts, all replicas executing on fail-uncontrolled hosts must be
assumed to be fail-uncontrolled.

6.4.2.1. Time-Domain Errors. Whether replicas are considered to be fail-restrained or
fail-uncontrolled, detection of timing errors is a fundamental part of error processing. Such
errors are particularly difficult to process in an open distributed environment. One technique
that been proposed to simplify processing of timing errors is to keep local clocks approximately
synchronized [Lamport and Melliar-Smith 1985, Schneider 1986]. However, this is of no
direct use unless the local scheduling of replicas at each node explicitly uses the resulting global
time reference to determine the instants at which messages should be sent or received [Lamport
1984]. This cannot be assumed an open distributed system. Scheduling techniques on
heterogeneous hosts cannot be assumed to be the same, let alone time-dependent. In practice,
the only viable basis for dealing with time-domain errors in an open system is the use of time-
outs.

Nevertheless, the use of time-outs does not avoid the requirement for upper bounds on
replica execution times and communication delays (if such upper bounds did not exist, it is
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impossible to distinguish between a component that has stopped or is infinitely slow [Fischer et
al. 1985]). Since it is particularly difficult to estimate execution times and communication
delays, especially in complex dynamically-evolving systems, one is faced with the inevitable
problem of dimensioning time-outs sufficiently high so as to achieve an acceptable rate of late-
timing failures yet sufficiently low to allow speedy detection.

However, it is important to underline that, although from an error-processing viewpoint,
expiration of a time-out can only be attributed to a replica late-timing failure, this does not
necessarily mean that the sending node as a whole is faulty and will be irrevocably removed
from the system. Properly-designed error-processing protocols will mask such errors but report
them to the administration system’s fault-treatment facility. The latter can first try to alleviate the
incriminated node by moving (some of) its software component replicas to other nodes {load-
balancing) and will only passivate the incriminated node if it diagnoses that the number of such
reported errors has exceeded a given threshold (that could be dynamically adjusted to account
for varying system load).

6.4.2.2. Value-Domain Errors. Value-domain errors only need to be considered when
replicas are assumed to be fail-uncontrolled. The only way to detect value errors is to compare
equivalent output messages from different replicas. This requires of course active replicas that
satisfy the replica group determinism condition (cf. §6.4.1). To mask f value errors, then there
must be at least 2r+/ replicas in the replica group. The comparison itself can be carried out
either on complete messages or, for performance reasons, on hash-coded representations of
messages -— called hereafter, signarures. Note that in the latter case, it must be assumed that
two different messages do not produce the same signatures; there is thus an attendant
assumption coverage to take into account when evaluating the achieved dependability.

6.4.2.3. Impromptu Errors. An impromptu error occurs when a replica spontaneously
produces an unspecified message. Impromptu errors may be detected in either the value domain
or in the time domain. For example, if a time window has been opened in which messages are
expected, then any impromptu message that occurs inside this time interval will appear to be
correct in the time domain. However, the impromptu message will be detected as value-
erroneous if compared with the values of messages from other replicas as in §6.4.2.2 above. If
an impromptu message is received outside any expected-message time window, then the
message will be detected as timing-erroneous. Since impromptu errors affect both the time and
value domains, it is necessary that there be at least 27+ 7 replicas in the replica group to mask ¢
€ITorS.

6.4.3. Replication Domains

A software component replication domain is defined to be the set of nodes on which replicas of
that software component are allowed to reside.

Replicas of a given software component can, of course, only be executed on nodes that
possess the necessary resources. However, there are often other reasons for restricting a
component’s replication domain. For example, it may be further restricted to those nodes that
not only possess the necessary resources but which guarantee replica determinism (cf. §6.4.1).

Another factor affecting the definition of a component’s replication domain could be that the
chosen replication technique relies on a particular replica failure mode assumption. If the
dependability requirements of the application dictate that the coverage of that assumption be
greater than some minimum value, then replicas may have to be confined to nodes with features
that support that assumption. For example, if replicas must be fail-silent with a high degree of
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confidence, then replicas should be restricted to hosts that have been implemented using self-
checking hardware.

Finally, equivalence of execution speed is yet another criterion entering into the definition
of a replication domain. Even though replicas may have identical value domain behaviours
when executed on a given set of nodes, a large dispersion in execution speed would complicate
the detection of timing errors. It should also be noted that inter-replicate synchronization would
anyway force all replicas to proceed, on average, at the speed of the slowest replica.

6.4.4. Replica Coordination Entities

It is desirable to be able to program a software component without taking into account the fact
that it may be instantiated as a group of replicas. The programmer should be able to concentrate
on the logical problem or function that the software component is meant to solve or to provide
without having to deal with the intricacies of replica coordination.

It is therefore useful to separate this replica coordination functionality and let it be provided
by one or more standard system entities. Each software component replica can be thought of as
having one or more local “replica coordination entities” (abbreviated hereafter to rep_entities)
acting on its behalf (figure 7).

Node u Node v Node w

Software component
replicas -

. Replica coordinat
Service messages entities

{rep_entities)

Protocol messages
N—

A

Replica coordination protocol

Fig. 7 - Software Component Replicas and Replica Coordination Entities

Rep_entities are assumed to be fail-restrained even if their corresponding replicas are fail-
uncontrolled; this separation of function allows a considerable simplification of the distributed
error-processing protocols for the fail-uncontrolled case. This means that rep_entities must be
executed on fail-silent hardware — either on the host, if the latter is fail-silent, or on the
associated NAC (cf. figure 5).

Replicas and their corresponding rep_entities exchange two sorts of service messages. data
messages corresponding to the user-programmed data exchange between software components,
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and handshake messages for the purposes of flow-control. Messages exchanged between
rep_entities are called (replica coordination) protocol messages, which may or may not contain
embedded data messages.

6.5. Active Replication

Active replication is a technique whereby a software component is installed on multiple nodes
such that at all times each replica in the group may, in the absence of faults, provide a service
that is equivalent to any of the other replicas in the group. Quasi-instantaneous recovery from
detected errors can be achieved if it can be guaranteed that all correct replicas produce the same
output messages in the same order over the same output ports — this is referred to as the
output consistency condition.

Sufficient conditions for output consistency are:

« input consistency: the sets of input messages delivered to correct replicas are
identical;

« replica group determinism (cf. §6.4.1): when starting from identical initial states and
processing identical sets of input messages, each replica produces identical output
messages in the same order.

The input consistency condition implies that the communication protocol used to transmit
messages to an actively-replicated software component must be some sort of reliable group
communication protocol that ensures unanimity between correct recipients.

The replica group determinism condition is more subtle: it does not necessarily imply that
messages be received and processed by replicas in an identical order — one can imagine
scenarios by which replicas could process messages in different orders yet still remain
consistent and produce output messages in the same order. However, this would require the
semantics of input messages to be taken into account when deciding what would be admissible
orders. To avoid the potential complexity of such an approach, the active replication technique
proposed here requires replica groups to be made deterministic by:

+ ensuring that correct replicas receive the same messages in an identical order, i.., a
total order;

« enforcing replica determinism by structuring software components as state
machines. )
Two different error-processing philosophies may be followed according to the underlying
failure mode assumption:

a) if replicas are fail-restrained, then any output sent by any replica of the group can be
assumed to be of correct value; it is therefore possible to choose any of the outputs
and discard the others,

b) if replicas are fail-uncontrolled, then the set of outputs must be considered as a
whole so that value errors and unexpected outputs may be masked.

In case a), since the output from any fail-restrained replica can only be a correct output, it is
possible to relax the output consistency condition and optimize the use of individual replicas by,
for example, only sending requests that do not modify the state of the component to just one
replica of the group (e.g., the “nearest”). If no response is forthcoming, the request can be re-
submitted to another replica. In database terms, such requests are called read-requests. Of
course, any inputs to the software component that do modify the internal state (i.e., “write”
requests) must be delivered to all replicas. Such “read optimization” (see [Bernstein et al.
1987]) allows a decrease in node workload and in message traffic over the network at the
expense of imposing a read-write serialization mechanism to ensure consistency of the replicas.
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The management of replicas in this way can be carried out in the framework of a transactional
approach to distributed computation. However, we prefer not to consider such an optimization,
since:

* in the general “software component™ paradigm, outputs from a software component
cannot necessarily be paired with a corresponding “read-request” input (e.g., a
software component need not have any inputs but could be programmed to
periodically transmit some internally computed value),

+ similar mechanisms can be used for managing active replicas with both the fail-
restrained and fail-uncontrolled assumptions.

The error processing protocols for fail-restrained and fail-uncontrolled active replicas are
presented in the next two sub-sections. In both cases, two “modes” of operation are described.
Note however that these separations in explanation are for clarity only and that, in practice, a
single parameterized protocol can be used to cover both failure mode assumptions and both
modes of operation.

6.5.1. Fail-Restrained Active Replicas

As mentioned earlier, the philosophy followed here is to treat the group of active replicas as a
logical whole. Any messages sent to the software component must be delivered to all replicas in
the same order so that, if the replica determinism condition is fulfilled then, in the absence of
faults, each replica will produce the same output messages in the same order. The inter-replica
protocol, carried out by the rep_entities, must mask and detect errors that may manifest
themselves when the replicas attempt to send or to receive messages.

Since replicas are assumed to be fail-restrained, any message sent by such a replica is, by
assumption, of correct value. Thus, from the output message viewpoint, the error-processing
activity is reduced to a simple arbitration between the multiple copies of the output messages so
that only one copy is delivered to the intended destination(s). This arbitration activity can be
implemented in two ways:

a) for each output message, an arbitration protocol between the local rep_entities is
executed in order to decide which of them will send the message,

b) all the rep_entities forward every output message; the rep_entities of the
corresponding destinations discard all but one of the messages that they receive.

For long messages, the first approach is obviously less demanding in communication
activity. Each replica forwards all its output messages to its local rep_entity. For each message,
the various rep_entities must mutually decide which of them is to forward the message to its
destination(s). The output message selection protocol is built on top of an underlying
multicasting service that ensures that messages multicasted by any rep_entity are received by all
other rep_entities on non-failed nodes (including the sender) and in the same order. The output
message selection protocol may operate in either a competitive or a cyclic mode.

6.5.1.1. Competitive Propagate Mode. In the competitive mode, when a rep_entity
receives a data message from its replica, it first verifies that the message has not already been
sent by another rep_entity. If not, the rep_entity multicasts a claim protocol message to the
group of rep_entities (including itself). Therefore, if a rep_entity receives its own claim
message before any others, it may forward the data message; if not, the data message is
discarded. As it stands, this simple competitive message selection protocol allows silence,
omission errors and late-timing errors to be masked. However, to initiate fault treatment, such
errors must not only be masked, they must be detected. This is achieved by a time-out
mechanism. If a rep_entity receives a claim protocol message corresponding to a data message
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that it has not yet received from its local replica, a timer is armed. Replica silence, omission
errors and late-timing errors are declared if this timer should expire before the local replica has
produced the corresponding data message.

The competitive mode gives preference to the fastest replica of the group and can allow
other replicas to lag further and further behind. The amount of desynchronization may be
implicitly limited by controlling the flow of information to the replicas (when the input queue to
the slowest replica is full, flow control will limit the rate of delivery of input messages to the
rate at which the slowest replica dequeues input messages). Alternatively, the
desynchronization may be explicitly limited if the rep_entities periodically carry out a
“rendezvous” during which they wait for all claim messages to be received before one of them
forwards the corresponding data message. The rendezvous is again time-limited in order to
detect and recover from replica silence, omission errors and late-timing errors.

In practice, it has been observed that re-synchronization need not be carried out frequendy;
the fastest replica automatically slows down because it must send a claim message whereas the
slower replica(s) will not need to send one if the fastest replica’s claim message has already
been received.

6.5.1.2. Round-Robin Propagate Mode. In the cyclic or round-robin mode, the
rep_entities are configured in a logical ring with an associated token. When a rep_entity
receives a data message from its replica that has not already been sent by another rep_entity
then, if it possesses the token, the message is forwarded to its destination(s) and the token is
transferred to the rep_entity’s successor in the logical ring. Rep_entities not possessing the
token must store messages until they receive the token; then, all messages already sent
(identified by a last_message identifier contained in the token) are discarded. Since the round-
robin mode treats all replicas “fairly”, no further inter-replica synchronization mechanism is
necessary.

To ensure token recovery, the interval between receipt of the local data message and receipt
of the token is monitored. If time-out occurs, then the rep_entity reverts to the competitive
mode by issuing a claim message (the rep_entity also reverts to the competitive mode should it
receive a claim message from a peer rep_entity).

Omission and late-timing errors can be detected by monitoring the time interval between the
receipt of a (multicasted) protocol data message by a peer rep_entity and receipt of the local
service data message if the former should occur before the latter.

6.5.2. Fail-Uncontrolled Active Replicas

When replicas are no longer assumed to be fail-restrained, the error-processing activity must
take account of not only silence, omission errors and late-timing errors but also value errors,
early-timing errors and impromptu errors (cf. §6.4.2.3).

To mask ¢ early-timing errors, 21+ replicas are necessary. Even if ¢ replicas of the group
send a data message to their local rep_entities at approximately the same time, the latter cannot
know immediately whether these messages are the first r messages of a set of 2r+1 or if they are
messages being sent 100 early or indeed impromptu messages. Each rep_entity must therefore
arm a timer and await notification that equivalent messages have been sent within a specified
time interval by at least 1 other replicas.

To process value errors in data messages, the rep_entities must cross-check each data
message sent by the local replica with equivalent data messages sent by remote replicas. This
cross-checking is referred to here as message validation. To mask r value errors, equivalent data
messages from ¢+ replicas must be compared and found to agree before propagating a
validated message to its destination(s); since there can be ¢ messages with erroneous values, a
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total of 2¢+7 messages is necessary (cf. §6.4.2.2) (an alternative approach based on message
propagation-before-validation, is discussed in annexe G)4.

The message validation mechanism is built into the output message selection protocol
executed by rep_entities. As soon as 1+/ messages are found to agree then, since there are only
supposed to be ¢ errors, it can be safely assumed that the consensus message that is propagated
is error-free. It is important to underline that the rep_entity that propagates the validated
message must not alter the message in any way — rep_entities must be fail-restrained so that it
can be assumed that any message that they do send is a correctly-valued message.

To prevent faults in the remaining ¢ replicas from remaining dormant, it is also necessary to
ensure that all replicas are regularly activated and checked either by rotation of the 7+ replicas
whose messages are compared or by systematic cornparison of messages from all 2¢+/ replicas.
The latter approach is simpler to implement and can provide acceptable performance if the last ¢
messages are compared after having propagated the consensus value.

As for the fail-restrained replica case, the message-sending error-processing protocol may
operate in either a competitive or round-robin mode.

6.5.2.1. Competitive Validate-before-Propagate Mode. In the competitive mode,
when a rep_entity dequeues a data message from its replica, it first verifies that this message
has not already been sent by another rep_entity. If not, the rep_entity multicasts a claim
protocol message to the group of rep_entities (including itself); the claim message includes the
signature of the data message received from the local replica. Since the underlying group
communication service ensures ordered delivery of protocol messages to all rep: entities, the
claim messages from the group of rep_entities will be received by all in the same order. Each
rep_entity compares the signatures of the sequence of claim messages until 1+ signatures are
found to be identical; this point in the sequence is termed the validation poine.

The unique rep_entity that reaches its validation point by means of the signature in its own
claim message, forwards the locally-received data message to its destination(s) and indicates to
its peers that this has been done by means of an ack message (the forwarded data message and
the ack message are sent together in a single atomic operation).

Early-timing and late-timing errors (including omission and silence) are detected and
masked by monitoring the time interval between receipt of the local data message and the
validation point or vice versa. An early-timing error is detected if the validation point is not
reached within a specified interval after receipt of the local data message. A late-timing error is
detected if the validation point is first reached by means of messages from the other replicas and
the local data message is not received within the specified time interval.

An impromptu error is detected as a value error if the impromptu message is received
within the time interval (and of course if its signature is different to that of ¢ other signatures) or
as a timing error if no timing window has been opened.

As in the case of fail-restrained replicas, the competitive protocol gives preference to the
fastest replica of the group so resynchronization is necessary. The resynchronization is again
time-limited in order to detect timing errors.

6.5.2.2. Round-Robin Validate-before-Propagate Mode. In the cyclic or round-
robin mode, the group of rep_entities is configured as a logical ring with an associated token.
When a rep_entity receives a local data message that has not already been sent by another
rep_entity then, if it possesses the token, the signature of the local data message is sent to all

4 Note also that it is possible to ensure detection of ¢ value or timing errors with just ¢+ / replicates; a replica
group configured in this way cffectively constitutes a fail-silent software component.
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members of the group and the token is forwarded to the rep_entity’s successor in the ring by
means of a turn protocol message. The token circulates round the ring until it reaches a
rep_entity for which the signature of the local data message is identical to that contained in ¢
previous turn messages. This rep_entity has thus reached its validation point; it forwards the
corresponding data message to its destination(s) and informs its peers that this has been done
by means of an ack message (containing the majority signature). The other replicas reach their
validation point after having received the ack message and a concording local data message.

To ensure token recovery, the interval between receipt of the local data message and receipt
of the token is monitored. If time-out occurs, then the rep_entity reverts to the competitive
mode by issuing a claim message (the rep_entity also reverts to the competitive mode should it
receive a claim message from a peer rep_entity). An early timing error is declared if, after
reverting to the competitive mode, the validation point is not reached within a further specified
interval. Late timing errors are treated in exactly the same way as in the competitive protocol —
by monitoring the time interval between occurrence of the validation point and receipt of the
local data message if the former should occur before the latter.

6.5.3. Message-Reception Error Processing

Any message sent to a group of active replicas must, in the absence of faults, be delivered to all
replicas to ensure that all replicas can produce the same outputs. Therefore, all messages sent to
a software component must be multicasted atomically 1o the corresponding rep_entities who
must then forward these messages to their local replicas.

However, to ensure end-to-end flow control, replicas may refuse to accept data messages
from their rep_entities if their receive buffers are full — replicas thus have to send explicit
handshake messages to their local rep_entities to indicate their willingness to accept the
incoming data message. Replicas must unanimously accept all data messages to ensure that they
remain synchronized. The logic of atomic multicasting with end-to-end flow control would
normally dictate that, if any replica cannot accept an incoming data message, then all replicas
must refuse the message.

Now, seen from the rep_entities, the flow-control handshake messages are just another sort
of service message (cf. figure 7) that a faulty replica could omit to send or send too late. We are
thus faced with contradictory requirements in the two following situations:

a) if a non-faulty replica cannot accept an incoming data message, then the flow of data
messages to all replicas of the group must cease;

b) if areplica fails by omitting or delaying to send handshake messages: data message
flow to the non-faulty replicas should continue. ‘

The solution to this contradiction is to limit the time for which situation (a) can persist
before declaring that the replica in question is faulty.

Whenever a data message is to be forwarded to the local replica, the rep_entity sets a timer
to await the corresponding handshake message and thus limits the time for which a local
transient overflow condition may persist. If time-out occurs then the rep_entity requests its peer
rep_entities to send back their local status. The way in which these replies are interpreted
depends on the replica failure assumption. If replicas are assumed to be fail-restrained, then all
handshake messages sent are correct handshake messages. Therefore, if any remote rep_entity
has received the handshake message, then the message-refusal situation is judged abnormal and
the local replica is declared as failed. If replicas are fail-uncontrolled, then the possibility of an
erroneously-produced handshake message must be envisaged. Therefore, when a message-
refusal condition exists, it must be assumed to be a normal overflow situation until a majority of
remote rep_entities have received their local handshake messages.

6.5. Active Replication
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6.5.4. Error-Reporting

The inter-replica protocol for active replicas masks errors resulting from failures of a certain
number of replicas in a group:

* for fail-restrained replicas: t crash, omission or performance errors can be masked
by a group of r+1 active replicas;
* for fail-uncontrolled replicas: arbitrary errors (value, timing or impromptu errors)
can be masked by a group of 2¢+17 active replicas.
The inter-replica protocol also ensures that any error caused by a replica is detected locally
by its corresponding rep_entity. The latter can then follow two different strategies:

* the rep_entity can abort itself immediately after informing the other members of the
group (by a leave protocol message) and reporting to the fault treatment facility,

* the error can be reported to the fault treatment facility but the rep_entity remains in
the group until it is told to remove itself by the fault treatment facility; this allows
soft faults to be tolerated in the case where the internal state of the software

component is re-initialized after each output message or, equivalently, is non-
existent.

6.5.5. Performance Considerations

A major advantage of the active replication technique is that recovery from a detected replica
error is quasi-instantanous since the all replicas in the set are maintained in close
synchronization. Of course, the price that is paid for this is that the overall processing power
must be increased by ar least the degree of redundancy.

At first sight, the competitive mode has a performance advantage over the round-robin
mode in that it allows message propagation at the earliest possible opportunity (see annexe G).

However, this must be weighed against the higher protocol message traffic that is incurred due
to the systematic sending of claim messages.

6.6. Passive Replication

When replicas are executed only by fail-silent hosts, it is possible to envisage an alternative
replication technique that economises host processor utilization by activating redundant replicas
only when they are needed to ensure recovery. A passively replicated software component
consists of a group of replicas in which one replica, termed the primary replica, processes all
input messages and provides all output messages. Since, in the absence of errors, only one
replica produces output messages, this technique is only suitable for fail-restrained replicas
(i.e., replicas that only fail by crashing, by omitting to send some messages or by sending
messages late).

The other replicas in the group are standby replicas’; each consists of a copy of the code of
the software component together with a copy of some previous state of the component from
which execution can be resumed should the primary replica fail. The internal state of the
standby replicas must be regularly updated by the primary replica: this operation is called
checkpointing. Standby replicas are passive since, in the absence of faults, they carry out no
processing other than house-keeping operations following reception of checkpoints. A
previously-passive back-up replica attemptin g recovery is termed a substitute replica.

_—
5 Whence the aliernative name for passive replication — the primary/standby technigue.




112 ' 6. Distributed Fault-Tolerance

6.6.1. Checkpointing Strategies

Various strategies are possible for the taking of checkpoints. One technique is to implement
transactional checkpoints whereby interactions between groups of software components are
structured as transactions (cf. §6.3.2) and the primary replica of each software component
involved in a transaction checkpoints its state to its back-up replica(s) only when changes to this
state are committed (i.e., if and when the transaction terminates successfully).

In the absence of a transactional model of computation, recovery can be ensured on a
component-by-component basis if checkpointing is organized in such a way as to prevent the
domino effect (cf. §6.3.2). Checkpointing must be carried out in a way such that a substitute
replica re-executing from the last checkpoint does not need to request re-sending of previously
received input messages and avoids sending duplicate output messages.

To avoid having to request re-sending of previously received input messages, either the
back-up replicas must maintain a queue of input messages identical to those received by the
primary replica since the last checkpoint was taken or, each time the primary replica receives a
message, a new checkpoint must be taken. The former approach has the advantage that
checkpointing is less frequent and the communication overhead is thus usually lower, especially
if the input message queues are created concurrently with the normal inter-component message
flow, e.g., by means of a reliable group communication protocol exploiting broadcast channels.

The sending of duplicate output messages can be avoided by means of either systematic or
periodic checkpointing.

Systematic checkpointing involves the creation of checkpoints whenever the primary replica
communicates some of its internal data to the outside world, i.e., whenever a message is sent.
Thus, rollback to the last checkpoint never requires re-sending of an output message.

Periodic checkpointing is a strategy whereby the number of checkpoints is reduced by only
taking them say, every n output messages [Borg et al. 1983]. During recovery, any output
messages generated by the substitute replica are checked against a log of previously sent
messages and only sent over the network if no equivalent message is found.

Correct recovery using periodic checkpointing requires that replicas be deterministic (cf.
§6.4.1) and that messages be received by all replicas in the same order (as for the active replica
strategies) so that the substitute replica produces the same messages as those that were
produced by the primary replica before its failure. In the case of transactional and systematic
checkpointing, this requirement for replica determinism and identical order of input messages is
unnecessary since any execution based on any order of input messages that respects causality is
a valid execution.

Although systematic checkpointing entails more overhead than either periodic or
transactional checkpointing, its capacity to accommodate non-deterministic processing and its
suitability for the implementation of independently fault-tolerant software components (unlike
transactional checkpointing) are very important advantages. It is thus this technique that has
been implemented in Delta-4.

In the systematic checkpointing technique, it is important that the transfer of checkpoints to
the standby replicas and the sending of data messages by the primary replica to their
destination(s) be carried out as a single atomic operation to avoid the domino effect. This could
be done by using an atomic multicast protocol to send a combined data and checkpoint message
to both the standby replicas and the designated data-message destination(s). However, since
checkpoints may be quite large, this would put an unnecessary load on the latter who would
have to unpack the checkpoint only to discard it. An alternative approach is illustrated on figure
8 which shows a passively replicated group of three replicas: the primary replica and two back-
up replicas.
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Fig. 8 - Systematic Checkpointing Technique

In this scheme, there are two rep_entities for each replica: a checkpointing rep_entity and an
I/O rep_entity®, Whenever the primary replica forwards a data message to its I/O rep_entity (1),
it also forwards the message to the local checkpoint rep_entity to indicate that a checkpoint must
be taken (2). The data message and the checkpoint are atomically multicasted together (3) to the
checkpoint rep_entities of the standby replicas. The latter forward the data message to their local
I/O rep_entities and update the internal state of the standby replicas (4). All I/O rep_entities are
thus in possession of the data message produced by the primary replica. They can thus carry
out a message-sending arbitration protocol (5) in exactly the same way as in an active
replication technique for fail-restrained replicas (cf. §6.5.1). If the competitive propagate
protocol is used in a “rendezvous” mode, then it is ensured that all I/O rep_entities will be
synchronized before the data message is sent to its destinations. Since, in the absence of faults,
the primary 1/O rep_entity can enter the arbitration competition before or while the
checkpointing is carried out, its claim message will be sent long before the other I/O rep_entities
are ready to compete. Consequently, the former will win the competition outright and no other
claim messages will be sent. If the primary 1/O rep_entity should fail, the time-limits on the
rendezvous will ensure that the data message is sent by one of the other /O rep_entities.

6.6.2. Taking Checkpoints

A checkpoint consists of a snap-shot of the “internal state” of the primary replica. Access to this
internal state is inevitably specific to host type, local execution support system and the run-time
representation of replicas. It must consist of the data space of the replica together with all
system information specific to the replica: processor registers, stack pointer, status information,
etc. Furthermore, if input messages are multicasted to all /O rep_entities, checkpoints muwt
include information as to which input messages have been processed by the primary replica
since the last checkpoint was taken and should thus be discarded from the back-up input
queues.

6 For the purposes of the explanation, it can be imagined that replicates and rep_entities are separate
processes.
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Some of the internal state of the primary replica concerns local resources that are significant
only in at the site of the primary, e.g., local file descriptors, context identifiers, etc. Such local
descriptors have no meaning on remote sites; the primary checkpointing rep_entity must use
them to build a global context that is included in the transferred checkpoint. This global context
must then be used by the remote checkpointing rep_entities to establish equivalent local
resources if recovery is required.

Files can be managed in two different ways. First, files could be considered as being part
of the internal state of a replica group. In this case, the content of the files opened by the
primary replica must be included within the checkpoint, together with global descriptors for
global-local context mapping as mentioned above. Alternatively, the use of a separate, fault-
tolerant global file system may be enforced on application programmer’s (see section 8.2.4.2).

A UNIX interpretation of the checkpointing mechanism is given in [Speirs and Barrett
1989].

6.6.3. Error Detection and Recovery

The passive replica fault-tolerance technique is primarily used only for the tolerance of
hardware faults (of fail-silent hosts). With this assumption, a fault causes the failure (by
silence) of all entities executing on the faulty host. Therefore, error detection can be reduced to
the detection of silence of any entity executing on a given host. A set of system entities can
implement a node group membership protocol based on the exchange of “heartbeat” or “I'm
alive” messages. Alternatively, an equivalent node group membership service can be offered as
a facility of the communication system (see section 6.9.2). With such a node group
membership service, each checkpoint rep_entity of a passive replica group can be informed of
the failure of any of the hosts supporting a replica of the group. If the host supporting the

" primary replica fails then a substitute replica must be selected to carry out recovery from the last
checkpoint. This selection may be carried out by a dynamic “election” (for instance, by a
competitive protocol such as that used for active replica groups, cf. §6.5.1) or be based on a
pre-established ordering between the back-ups. In the latter case, the pre-established ordering
must be updated whenever any of the hosts supporting a member of the group fails.

A reduction in failure granularity from that of a complete host down to individual replicas
can only be achieved if the failure of an isolated primary replica can be detected. The very
principle of passive replication precludes the mutual observation techniques used for replica-
level error-detection in active replica groups. Detection of primary replica crash, omission or
performance failures could be achieved by several techniques:

a) by monitoring the time interval between a service request and the corresponding
reply (a client-server model of computation is necessary for this to be possible) —
the monitoring can be carried out either by (a representative of) the client issuing the
request or by the I/O rep_entity of the primary server who forwards the client’s
request to the primary server replica’;

b) by requiring an “I’m alive” response to a periodic local interrogation from the
primary’s checkpoint rep_entity (this enables the detection of crashes only);

c) by relying on facilities built into the local operating system (e.g., process
termination signals, interrogation of the table of active processes, etc.) (this enables
the detection of crashes only).

7 Note that by the very principle of passive replication, the time needed for carrying out roll-back recovery
implies that a performance failure of the primary server replica can only be tolerated if such a failure is
defined with respect to a replica response delay set to less than half the maximum response delay (or
deadline) permissible for the server as a whole.
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The recovery action itself is initiated by the checkpoint rep_entity of the selected substitute
back-up replica. The required replica data and stack areas are allocated and initialized from the
information contained in the checkpoint. Similarly, the processor registers and stack pointer are
updated from the stored values and the substitute replica starts execution at that point in the
software component code at which the checkpoint was taken.

6.6.4. Performance Considerations

Passive replication has a few potential performance advantages over active replication. First,
since hosts supporting passive replicas do not carry out redundant computation (other than that
necessary for house-keeping by rep_entities), the computation load is lower than the active
replication case; replicas that are active on a host will not be severely penalized by the fact that
the host is also supporting passive replicas. Furthermore, when systematic or transactional
checkpointing is used — thus permitting input messages to be multicasted to all replicas
without ensuring identical orders of reception — the primary rep_entity can submit an input
message to the primary replica as soon as it is received, i.e., without having to wait until it is
sure that the other rep_entities have received the same message. In the absence of faults, the
speed of response to an input message can thus be faster than in the case of active replication.

However, it is important to bear in mind that these potential performance advantages must
be weighed against two separate time overheads:

* a permanent communication and processing overhead to provide back-ups with
checkpoints for backward error recovery;

* atemporary processing overhead due to rollback and re-execution from a previous
checkpoint, when a fault occurs.

The permanent checkpointing overhead could be prohibitively high for software
components with large internal states. However, several optimizations are possible to at least
decrease the communication contribution to this overhead (to be weighed against an increase in
the processing contribution):

a) As mentioned earlier, the frequency of checkpointing can be decreased if
multicasting is used to ensure that all input messages are delivered to both the
primary and all back-up I/O rep_ecntities.

b) Data compression algorithms can be applied to checkpoints before transmission to
avoid sending “unused” parts of a replica’s data space. Similarly, unused areas of
stacks and dynamically-allocated data spaces can be excluded from the checkpoint.
If a replica consists of multiple processes, then only the data spaces of those
processes that have been scheduled since the last checkpoint need to be included.

¢) With appropriate support from system hardware and/or operating system, it would
be possible to identify and include in the checkpoint only those memory “pages” that
have been modified since the last checkpoint. Alternatively, the primary checkpoint
rep_entity could keep a copy of the last checkpoint and, after taking a new
checkpoint, only transmit the changes that are identified by comparison with the
copy.

Despite these possible optimizations, the overheads due to checkpointing and rollback will
usually outweigh the potential performance advantages outlined at the beginning of this section.
Even in the fault-free case, it is to be expected that passive replication will provide a lower
performance than that of active replication.
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6.7. Semi-Active Replication

The previous section has pointed out that active replication has significant performance
advantages over passive replication since (a) the communication overheads due to
checkpointing are avoided and (b) the time to ensure recovery is lower since redundant
computations are executed in parallel. However, passive replication (using transactional or
systematic checkpointing) has the important advantage of not requiring replicas to be
deterministic. The technique discussed in this section attempts to make the best of both worlds
in order to provide speedy recovery despite potential non-determinism [Barrett et al. 1990).

As its name implies, the semi-active replication technique is in effect a hybrid between
active and passive replication. One of the replicas of the group is termed “leader” and the others
“followers™8. In the absence of errors, only the leader replica produces output messages (like
the primary replica of a passively-replicated group). Since, in the absence of errors, only one
replica produces output messages, this technique is only suitable for fail-restrained replicas?.

On the contrary to the passive replication technique, the other replicas (the followers) are
not completely inactive (whence the term “semi-active”); they receive the same inputs as the
leader and autonomously execute all deterministic computation and update their local state
accordingly. The leader is responsible for taking all non-deterministic decisions and informing
the followers of these decisions by means of norification messages or “mini-checkpoints”
(figure 9).

As will be seen later, the semi-active replication technique does not require messages to be
delivered to all replicas in identical orders.

Leader replica Follower replicas
N

»”

Warranaes

Input messages Input messages
Y/ delivered according to delivered according to
precedence follower
Follower 1 instructions
rep_entity
Notifications
Y Y
A J

Replica coordination protocol

Fig. 9 - Leader-Follower Technique

The non-determinism that the leader-follower technique aims to resolve can stem from:

8 Whence the alternative name for passive replication — the leader{follower technique.
A combination of active and semi-active replication is considered in section §7.6 that, in certain
applications, allows fail-uncontrolled replicas to be accommodated.
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a) purposely-introduced preemption in order to improve performance;

b) arequirement to use off-the-shelf software that was not specifically designed with
active replication in mind and so cannot be assumed to be deterministic.
In both cases, the rep_entities associated with the group of replicas must carry out a
protocol that forces follower replicas to take the same decisions as the leader replica.

6.7.1. Non-Determinism due to Purposely-Introduced Pre-emption

Preemption allows computations of higher priority or precedence (see chapter 5) to displace
lower-precedence computation. Preemption may be introduced at two levels:

- in the handling of message queues: messages of high precedence may be allowed to
overtake messages of lower precedence;

- in the interruption of processes: a high-precedence event within a software
component may be allowed to interrupt a lower-precedence process.

6.7.1.1. Message Preemption. Consider a sequence of two input messages multicasted to
the rep_entities of the leader replica and the follower replicas. Suppose that the first message to
be delivered is of lower precedence (message “LO”) than the second one (message “HI”). To
ensure replica group determinacy, the requirement is that all replicas should process the
messages in the same order (cf. §6.5). However, in the absence of inter-replica coordination,
some replicas could already have started processing message LO before message HI arrives and
would therefore process H/ after LO. Those replicas that have not already started to process
message LO would find message H/ at the head of their input queues and would thus end up by
processing HI before LO. The replica group would therefore not process messages in the same
order and replica group determinacy would not be ensured.

The leader-follower solution to this situation is to allow only the leader replica to process
messages as and when they arrive. Each time that the leader accepts a message M from its
rep_eatity, the latter informs the follower rep_entities by means of a norification of the form (cf.
figure 9):

*+ “Present message M to your local replica”

Since the leader rep_entity enforces the order of processing of input messages onto the
follower rep_entities, messages sent to a semi-actively replicated component need not be
multicasted with assurance of identical order — the order adopted by the leader will be
enforced on the followers.

An alternative solution would be for messages to the group to be sent only to the leader
rep_entity and for the latter to forward these to the follower rep_entities as and when the leader
replica consumes themn. However, since the notification messages will generally be much
shorter than input messages, the performance advantages of concurrent multicasting of input
messages would be lost.

6.7.1.2. Process Preemption. Consider now the case of process interruption. It may be
required that a low-precedence process be interrupted by the arrival of a high precedence
message or signal. Clearly, such preemption must be synchronized across all replicas if replica
group determinacy is to be ensured (see, for example [Frison and Wensley 1982, Sheridan
1978}). The leader-follower technique enables such synchronization to be achieved by forcing
the follower computations to be preempted at the same point as the leader’s computation.

The technique makes use of the concept of a preemption point that is a predefined point in
the computation of a software component at which it may be preempted. Each time the leader
reaches a preemption point, the leader rep_entity increments a counter. When a message M
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arrives at the leader rep_entity, a check is made to determine whether M requires the leader to be
preempted. If so, the preemption point P at which this will take place is selected (the current
counter value plus 1 represents the next preemption point). The leader rep_entity informs the
follower rep_entities by means of a notification of the form:
» “Present message M to your local replica at preemption point P”
Since the preemption point code inserted in the software component must be executed more

often than the maximum allowable preemption delay, it is essential that the normal, non-
preempting path through this code be efficient.

6.7.2. Non-Determinism in Off-the-Shelf Software

The use of off-the-shelf application software is often a commercial necessity. However, it is not
always easy to provide transparent fault-tolerance in the underlying hardware. The only totally
transparent way of doing so is to build a tightly-synchronized fault-tolerant machine constructed
to provide an interface to the application that is identical to that of the (non fault-tolerant)
machine for which the application software was written. This approach to fault-tolerance is
diametrically opposite to ours and as such, several advantages of our approach would be lost
(cf. section §6.1).

The problem with off-the-shelf software in our approach is that it will probably not have
been designed with fault-tolerance in mind — in particular, such software may use non-
deterministic language constructs or host-specific information that would violate replica
determinism. Two cases need to be considered, the case of “white-box” off-the-shelf software
whose source code is easily available and “black-box” software whose internal structure is
unknown.

6.7.2.1. White-Box Software. A white-box application is one whose source code is
easily available and can thus be inspected to implement mechanisms to intercept non-
deterministic decisions. An example would be an Ada application using non-deterministic
constructs such as Interrupt, Delay or the Clock function!0,

To implement the required system call interception mechanisms, the rep_entities must be
placed “between” each replica and its local executive. When the leader rep_entity intercepts a
system call C, it informs the follower rep_entities (who will intercept the same call) of the
corresponding system reply R by means of a notification of the form:

*  “When you intercept call C, substitute the reply R”

A similar mechanism could be used if the leader reads some non-replicated peripheral and
also to ensure that preemption occurs at the same point in all replicas.

The number and frequency of such leader-follower notifications therefore depend on the
White Box. Exceptionally, it may be unacceptably high and the White Box could then only be
supported after some source-code modification to reduce the frequency of non-deterministic
actions.

6.7.2.2. Black-Box Software. A black-box application is one whose internal structure is
totally unknown, although a description of its external interfaces is normally available. Black
boxes can be used if the rep_entities act as “front ends™ to interface each replica to the rest of the
system.

A typical example is that of a commercial database system such as Oracle.

10 Note that we do not assume that host clocks are necessarily synchronized to some common reference.
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Passive replication of an Oracle database would be unsuitable because of the difficulty of
checkpointing its multiple processes, shared memory and disc data.

Active replication would be more suitable but since we do not know how Oracle replicas
would process concurrent inputs, the risk of non-determinism eliminates this choice. Even if
inputs are presented to Oracle replicas in the same order, we cannot be sure that they will be
processed in the same order due to scheduling decisions carried out within the black box. This
is particularly important for concurrent lock requests. One solution would be for rep_entities to
present inputs to replicas only after having received the reply for the previous input. However,
this sequentialization would lead to rather poor performance.

Semi-active replication allows more concurrency but the leader and follower rep_entities
must be more complex. The leader rep_entity needs to be able to interpret incoming requests
and local responses and instruct the follower rep_entities according to their semantics, e. g:

*  “Pass lock(item) to your local replica since leader has granted this lock”
*+  “Discard lock(item) since leader says item is already locked”

+ “Discard read(item) since leader has already replied”

*+  “Takeover the leader role since my replica has crashed”

The important point to grasp is that such protocols cannot be generic but specific to a
particular black box. Another black box would require different programming of the
Tep_entities and a different set of notifications.

6.7.3. Error-Detection and Recovery

The semi-active replication technique, like passive replication, is primarily intended for the
tolerance of hardware faults (of fail-silent hosts) — error detection can thus be reduced to the
detection of silence of any entity executing on a given host and the requirements for a node
group membership facility are the same as those already discussed in section §6.6.3 for passive
replication.

A reduction in failure granularity from that of a complete host down to individual replicas
can also be considered in the same way as for the passive replication technique. Alternatively,
since follower replicas are in fact active, the set of replicas can be managed so as to detect
excessive desynchronization between the leader and the follower replica(s).

The recovery action is simpler than in the passive replication case since — by its very
principle — the semi-active replication technique ensures that the internal state of follower
replicas is almost consistent with that of the leader replica. When the leader replica (or it’s host)
is detected as having failed, a follower replica is selected to take on the role of leader and brings
itself up to date by processing the messages present in its input queue. The selection of a new

leader may be carried out either by a dynamic election or be based on a pre-established ordering
between follower replicas.

6.7.4. Performance Considerations

The whole purpose of the semi-active replication technique is to be able to reap the performance
advantages of the active replication technique and the ability to accommodate potentially non-
deterministic processing like in the passive replication technique.

In the presence of faults, the semi-active replication technique will ensure a recovery delay
that is limited to the maximum allowable skew between leader and follower replicas.

In the absence of faults, the semi-active replication technique may provide a better
performance than either the active or passive replication techniques. First, the relaxation of the
constraint on input message order (identical order between replicas is not required) means that,
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like in the passive replication case, the leader rep_entity can submit an input message to the
leader replica as soon as it is received, i.e., without having to wait until it is sure that the other
rep_entities have received the same message. Second, the overheads due to the transmission of
notification messages can be expected to be much smaller than those due to checkpoints in the
passive replication technique. In fact, since it is expected that notification messages will be
much shorter than normal input messages then, due to the aforementioned advantage of
immediate processing of input messages by the leader replica, the semi-active replication
technique should be of better fault-free performance than the active replication technique.

6.8. Group Management and Fault Treatment

The installation and the management of groups are the responsibility of system administration
(see sections 8.2 and 9.5). There are three sorts of groups to be managed:

+ the group of fault-free nodes or stations in the system,
* groups of software component replicas,

* groups of software components (each of which may or may not be replicated).

Membership of the node group can be managed as a function of an underlying multicast
protocol (cf. §6.9.2). When a message is multicasted, explicit acknowledgements from the
designated destinations enable the presence of nodes to be established. Multiple retransmissions
can be considered to resolve the ambiguity between lack of acknowledgement due to node
failure or due to a transmission error (see chapter 10). Nodes may leave the node group either
in an orderly fashion (by issuing an explicit disconnect command) or suddenly — due to local
error detection by fail-silent hardware. Nodes must enter the node group by means of an
explicit join procedure that enables their presence to be detected consistently by all other nodes
in the group.

Membership of replica groups must first be established when a group of replicas in brought
into being for the first time. The number of replicas of a particular component is determined by
a replication policy that takes into account whether hosts are assumed to be fail-silent or fail-
uncontrolled and the cardinality of the specified replication domain of that component.
Memberships of replica groups are managed by “replication domain managers” that, like any
other software component, may also be replicated. The recursion stops with a “replication
superdomain manager” whose member replicas are installed at system (re-) boot time (see
sections 8.2 and 9.5).

Logically-distinct software components (i.e., not replicas) may also be gathered together
for some cooperative interaction (e.g., a group of servers providing a “similar” service or a
group of transaction managers). Groups such as these provide useful communication
abstractions that can simplify distributed application programs. The multipoint associations of
the Delta-4 MCS communication system provide such a group abstraction (see section
§8.1.3.3). Note that the notions of replica groups and software component groups are
orthogonal — each member of a software component group may or may not be replicated.

The replica coordination techniques discussed in sections 6.5 to 6.7 were concerned with
the processing of errors so as to hide replica failures from the rest of the system. From the
group management viewpoint, the detection of errors may or may not result in the immediate
withdrawal of a replica or a node from its corresponding group. Locally-detected errors (i.e.,
by a fail-silent host or by a NAC) lead to the immediate removal of the node from the set of
working nodes (cf. §6.6.3). Similarly, the consequence of a replica failure is (usually) the
removal of a replica from its group (cf. §6.5.4). Note that failures of multiple replicas (of
different software components) residing on the same host would suggest that the fault lies in the
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host hardware or in its configuration. In this case, a system-level diagnosis function should
conclude by a declaration of host failure.

The set of functions necessary for system-level diagnosis and coordination of the actions
necessary to remove and re-create group members is referred to here as JSault treatment. More
specifically, fault treatment consists of:

« fault diagnosis,

+ fault passivation,

* system reconfiguration, and
* system maintenance.

Fault diagnosis is necessary to (a) localize the fault (at host level or replica level) and (b) to
decide whether the fault is solid or soft (cf. chapter 4). If fault diagnosis should conclude that a
solid fault has occurred, then fault passivation must be carried out.

Fault passivation is necessary if it is judged that the faulty entity could cause further errors.
Fault passivation is carried out automatically and autonomously in the case of hardware-
detected errors that result in silence of a host or a NAC. However, in the case of replica failures
whose cause is later diagnosed to be a solid host fault, an explicit fault passivation action must
be carried out.

System reconfiguration can be envisaged if there are sufficient redundant resources. It
entails re-allocation and re-initialization of the software component replicas that have failed in
order to restore the level of redundancy required for the error-processing protocols to function
correctly despite further faults!l. If re-allocation is not possible, then some software
components may either have to be abandoned in favour of more critical ones. Alternatively,
fault-tolerant operation is degraded to fail-safe operation to ensure safety and/or integrity of the
distributed application(s). In the absence of sufficient resources, system reconfiguration will
have to be deferred until a node recovers (following maintenance).

Re-allocation of software component replicas is achieved by means of a cloning operation
that creates a new replica on a specified node. Three sub-operations can be identified:

a) creation of a remplate of the software component at the new location; this can
sometimes be done in advance of an actual cloning request in accordance with some
application-specific contingency plans,

b) creation of a copy of the component’s persistent data or “state” at the new location

(this is equivalent in effect to the checkpointing operation necessary for passive
replication, cf. §6.6),

¢) activation of the new replica whilst ensuring group-consistency; this involves the
automatic management of the dynamic, configuration-dependent associations
between replicated components.

Note that in the case of nodes possessing stable storage (cf. section 6.2.4), node-recovery
can allow sub-operation a) above to be carried out completely locally (from a locally-stored
template). Similarly, sub-operation b) above may be replaced by an operation recovering some
previously-stored consistent state of the replica if the distributed computation is carried out
according to a transactional model (cf. section 6.3.2).

11 Note that in the event of a fault diagnosed as a soft fault, the re-allocation and re-initialization of replicas can
be carried out on the same node as where they resided before failure.
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6.9. Communications Support

The previous sections dealt with techniques based on “‘macroscopic” replication of software
components and software-oriented error processing and fault treatment, in a distributed
environment. In Delta-4, these techniques rely on basic services such as inter-replica
coordination and group membership management, as explained in section 6.4. In the sections
that followed, it became apparent that providing these services places some demands on the
communications support system, depending on the particular replication technique.

The implementation of distributed fault-tolerance in Delta-4 benefits from the availability of
high-quality communication services, such as the ones materialized by protocols designated as
reliable broadcast or multicast [Birman and Joseph 1987, Chang and Maxemchuck 1984,
Cristian et al. 1985]. Furthermore, since openness and versatility are desired, the reliable
communication service is designed to operate over widely-used local area networks.

This section surveys the properties of a communications system that are desirable to
support fault-tolerance based on groups of replicas of components residing in different nodes of
the system. The group communication service will be discussed in more detail in chapter 10.

6.9.1. Support for Replication

The replication techniques presented earlier in this chapter have different inter-replica interaction
requirements. These requirements are satisfied by appropriate properties of the communication
service. :

Active replication has a determinism requirement that obliges messages to replicas to be
delivered to all of them and in the same order: this is called unanimity and total order (see
section 10.1). A service providing these properties is called atomic.

Passive and semi-active replication rely on a privileged participant, which is the
representative of the replica set. The presence of such a representative allows the unanimity and
total order requirements to be relaxed. This can be achieved by using auxiliary protocols at a
higher level that take advantage of semantic knowledge. However, in the techniques exploited
in Delta-4, at least unanimity may be advantageously preserved, given that: follower replicas
have to execute the same commands as the leader replica, checkpointing to standby replicas
affects all equally, and changes in the replica set (re-insertion, takeover, etc.) should be
perceived consistently. This is especially important when there are more than two replicas in a
set. A service providing unanimity alone (and at most ordering messages from individual
senders in the order sent, i.e., FIFO) is called reliable.

Protocols that order messages according to a cause-effect relationship are called causal
protocols. For the sake of generality, the communications service should provide causal order,
since it is the genuine ordering of events in a distributed system (see section 10.1). However,
the cost of causally ordering messages may be avoided in certain settings (see section 9.5.1
for a detailed discussion). In short, this happens when it is shown that there is not a causal
relation between senders in different nodes, either because of a restricted concurrency of the
computation model, or because the semantics of the application is known not to require such an
order. Simpler, non-ordered or FIFO protocols can then be used.

6.9.2. Support for Groups

A modified form of broadcast, where messages only arrive at a subset of the possible system
destinations, is called multicast. It is the basis for group communication, and is an efficient way
of disseminating information.
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Multicasting efficiency can be easily increased, if logical addressing is used. This allows
delivery of messages addressed to “whom-it-may-concern”, i.e., with transparency (to the
sender) of the number and location of recipients. In Delta-4, system-level logical designation is
mapped into communication-level logical addressing.

The group paradigm in Delta-4 allows independent sets of replicas to be supported
simultaneously, whether they use the same or different replication techniques. Such sets of
replicas could be, for example, several independent fault-tolerant applications in the same
system, or several groups working in parallel for the same fault-tolerant application, such as
groups of replicated clients, accessing the same group of replicated servers. Several group
communication services are provided, to adequately support the different techniques.

Inside a group, it is important for participants to observe the changes in its composition in a
manner consistent with their semantics. Group composition must be known, for example, to
check whether the actual members gather the necessary functionalities to execute a distributed
application, to activate recovery procedures, to reestablish the level of redundancy, etc. In
consequence, the most general service of group managerment, is to provide a consistent group
view to participants, i.e., each change in group composition is indicated, in a total order, to all
participants in that group. This may be used to facilitate the implementation of high-level group
management procedures, like group membership, group replication and group cooperation
management,

As a rule, any replication technique may take advantage of logical group communication
facilities, enhanced with group housekeeping, like the consistent group view property. These
simplify implementation of error detection and recovery and error masking protocols. This
observation will be confirmed in chapters 8 and 9. '

The group communication service of Delta-4, called xAMp, is discussed with detail in
chapter 10.

6.10. Conclusion

In this chapter, after having discussed the failure assumptions that can be made for the different
elements of a distributed system, we have outlined a simple hardware architecture — based on
fail-silent network attachment controllers — that can accommodate the worst-case failures of
fail-uncontrolled computers. Three basic software component replication strategies have been
discussed — table | summarises the relative merits of each.

Table 1 - Comparison of Replication Techniques

Replication Recovery Non-determinism | Accommodates fail-
technique overhead uncontrolled
behaviour
Active Lowest Forbidden Yes
Passive Highest Allowed No
Semi-active Low Resolved Nol2

In the Delta-4 Open System Architecture (OSA, see chapter 8), the active replication
technique is implemented within the MCS communication system. The inter-replica protocol is

12 An extension of the semi-active replication technique 10 accommodate fail-unconiroiled behaviour is
presently being investigaied (sce section  7.6).
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situated within the MCS session-layer and the replication coordination entities of section 6.5
are in effect protocol entities executed on the fail-silent NAC hardware (see section 8.1.4.3).
Since it is implemented within the communication system of OSA, active replication is therefore
possible in OSA independently of the host computational support environment. The passive
replication technique is also available in OSA when the Delta-4 Application Support
Environment is used (see chapter 7). The checkpoint rep_entities (cf. figure 8, section 6.6) are
implemented as part of the object envelopes of replicated Deltase capsules and use is again made
of the MCS session-layer inter-replica protocol whose protocol entities now play the role of the
I/O rep_entities of figure 8. Semi-active replication is used in OSA in order to implement a
dependable database system (see section 7.6); the leader/follower rep_entity functionality (cf.
figure 9, section 6.7) is split between a Deltase transformer and the MCS inter-replica
protocol.

The Delta-4 Extra-Performance Architecture (XPA, see chapter 9) is intended to
accommodate only fail-silent hosts. The semi-active replication technique was pioneered in this
architecture since, as explained in section 6.7, two of the primary objectives of semi-active
replication are to allow high performance and to resolve non-determinism due to preemption.
The leader/follower rep_entities are implemented as part of the XPA group managers (see
section 9.6.1.3).

The present implementations of passive and semi-active replication assume a failure
granularity equal to that of a complete host — reduction of the failure granularity down to the
level of individual replicas (cf. section 6.4.2) is under consideration.
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