
ARCHITECTURE BASED SOFTWARE RELIABILITY

KATERINA GO�SEVA�POPSTOJANOVA and KISHOR TRIVEDI

Department of Electrical and Computer Engineering� Duke University�
Durham� NC ����������� USA

E�mail	 fkaterina� kstg
ee�duke�edu

Abstract� With the growing emphasis on reuse� software development process moves toward
component�based software design� In this paper we present an overview of the architecture�
based approach to reliability estimation of the software composed of components� First� the
common requirements of the architecture�based models are identi�ed� and the classi�cation is
proposed� Then� the key models in each class are described in detail� Also� a critical analysis of
underlying assumptions� limitations and applicability of these models is provided which should
be helpful in determining the directions for future research�

Keywords� Architecture�based software reliability� state�based models� path�based models�
additive models�

�� INTRODUCTION

A number of analytical models have been proposed to address the problem of quantifying the
software reliability� one of the most important metrics of software quality� However� a great deal of
this research e�ort has been focused on modeling the reliability growth during the debugging phase

��� 
��� 
��� These so called black�box models treat the software as a monolithic whole� considering
only its interactions with the external environment� without an attempt to model the internal
structure� Their main common feature is the assumption of some parametric model of the number
of failures over a �nite time interval or of the time between failures� Failure data obtained while
the application is tested are then used to estimate model parameters or to calibrate the model�

With the growing emphasis on reuse� an increasing number of organizations are developing and
using software not just as all�inclusive applications� as in the past� but also as component parts
of larger applications� The existing software reliability growth models are clearly inappropriate
to model such a large component�based software system� Instead� there is a need for white�
box modeling approach to software reliability that takes into account the information about the
architecture of the software made out of components� The motivation for the use of architecture�
based approach for software reliability modeling includes the following	

� developing a technique to analyze the reliability of applications built from reusable and COTS
software components

� understanding how the system reliability depends on the component reliabilities and their
interactions

� studying the sensitivity of the application reliability to reliabilities of components and inter�
faces

� guiding the process of identifying critical components and interfaces�

The aim of this paper is to provide an overview of the architecture�based reliability models of
the sequential software� The rest of the paper is organized as follows� The common requirements

�



of the architecture�based models along with a classi�cation are discussed in Section �� The key
models are classi�ed and described in detail in Sections �� �� and �� The discussion of the main
assumptions underlying the models� their limitations and applicability is presented in Section ��
A concluding remarks are presented in Section ��

�� COMMON REQUIREMENTS AND CLASSIFICATION

The main purpose of the following discussion is to focus attention on the framework within which
the existing architecture�based software reliability models have been developed� Thus� di�erent
approaches for the architecture�based reliability estimation of the software are based on the fol�
lowing common steps�

Module identi�cation� The basic entity in the architecture�based approach is the standard soft�
ware engineering concept of a module� Although there is no universally accepted de�nition of
modularization� a module is conceived as a logically independent component of the system which
performs a particular function� This implies that a module can be designed� implemented� and
tested independently� Module de�nition is a user level task that depends on the factors such as
system being analyzed� possibility of getting the required data� etc� Modules and components will
be used interchangeably in this paper�

Architecture of the software� The software behavior with the respect to the manner in which
di�erent modules of software interact is de�ned through the software architecture� Interaction
occurs only by execution control transfer and� at each instant� control lies in one and only one of
the modules� Software architecture may also include the information about the execution time of
each module�

Control �ow graphs are the classic method of revealing the structure� decision points� and
branches in program code� Software architecture adapts the control �ow graph principles� thus
representing the interaction between modules and possible execution paths� a node i represents
a program module� and a directed edge from node i to node j represents a possible transfer of
control from i to j�

Failure behavior� In the next step� the failure behavior is de�ned and associated with the soft�
ware architecture� Failure can happen during an execution period of any module or during the
control transfer between two modules� The failure behavior of the modules and of the interfaces
between the modules can be speci�ed in terms of their reliabilities or failure rates �constant or
time�dependent��

Combining the architecture with the failure behavior� Depending on the method used to combine
the architecture of the software with the failure behavior the literature contains three essentially
di�erent approaches	 state�based approach� path�based approach� and additive approach� In the
following sections the key models in each of the above classes are described in detail�

�� STATE�BASED MODELS

This class of models uses the program �ow graph to represent the architecture of the system
assuming that the transfer of control between modules has a Markov property� This means that
given the knowledge of the module in control at any given time� the future behavior of the system
is conditionally independent of the past behavior� The architecture of software has been modeled
as a discrete time Markov chain �DTMC�� continuous time Markov chain �CTMC�� or semi Markov

�



process �SMP�� These can be further classi�ed into irreducible and absorbing� where the former
represents an in�nitely running applications� and the letter a terminating one�

As suggested in 
��� state�based models can be classi�ed as either composite or hierarchical�
The composite method combines the architecture of the software with the failure behavior into a
composite model which is then solved to predict reliability of the application� The other possibility
is to take the hierarchical approach� that is� to solve �rst the architectural model and then to super�
impose the failure behavior on the solution of the architectural model in order to predict reliability�

Littlewood model ���
This is one of the earliest� yet a fairly general architecture�based software reliability model�

Architecture� It is assumed that software architecture can be described by an irreducible SMP�
thus generalizing the previous work 
�� which describes software architecture with CTMC� The
program comprises a �nite number of modules and the transfer of control between modules is
described by the probability pij � Prfprogram transits from module i to module jg� The time
spent in each module has a general distribution Fij�t� with a mean sojourn time �ij�

Failure behavior� Individual modules� when they are executing� fail with constant failure rates
�i� The transfer of control between modules �interfaces� are themselves subject to failure� when
module i calls module j there is a probability �ij of a failure�s occurring�

Solution method� The interest is focused on the total number of failures of the integrated
program in time interval ��� t�� denoted by N�t�� which is the sum of the failures in di�erent
modules during their sojourn times� together with the interface failures� It is possible to obtain
the complete description of this failure point process� but since the exact result is very complex�
it is unlikely to be of practical use� The asymptotic Poisson process approximation for N�t� is
obtained under the assumption that failures are very infrequent� Thus� the times between failures
will tend to be much larger than the times between exchanges of control� that is� many exchanges
of control would take place between successive program failures� The failure rate of this Poisson
process is given by X

i

ai�i �
X
i�j

bij�ij

where ai represents the proportion of time spent in module i� and bij is the frequency of transfer of
control between i and j� These terms depend on pij� �i� �ij � �

ij� and the steady state probabilities
of the embedded Markov chain �i�

Cheung model ���
This model considers the software reliability with respect to the module�s utilization and their
reliabilities�

Architecture� It is assumed that the program �ow graph has a single entry and a single exit
node� and that the transfer of control among modules can be described by DTMC with a transition
probability matrix P � 
pij��

Failure behavior� The reliability of a module i is Ri�
Solution method� Two absorbing states C and F are added� representing the correct output

and failure respectively� and the transition probability matrix P is modi�ed appropriately to
�P � The original transition probability pij between the modules i and j is modi�ed into Ri pij �
which represents the probability that the module i produces the correct result and the control is
transferred to module j� From the exit state n� a directed edge to state C is created with transition
probabilityRn to represent the correct execution� The failure of a module i is considered by creating
a directed edge to failure state F with transition probability ���Ri��

The reliability of the program is the probability of reaching the absorbing state C of the DTMC�
Let Q be the matrix obtained from �P by deleting rows and columns corresponding to the absorbing
states C and F � Qk��� n� represents the probability of reaching state n from � through k transi�

�



tions� From initial state � to �nal state n� the number of transitions k may vary from � to in�nity�
It is not di�cult to show that S �

P
�
k��Q

k � �I � Q���� so it follows that the overall system
reliability can be computed as R � S��� n� Rn�

Laprie model ���
This model is a special case of Littlewood model and the result� although obtained in a di�erent
way� agrees with those given in 
���

Architecture� The software system is made up of n components and the transfer of control
between components is described by CTMC� The parameters are the mean execution time of a
component i given by ���i and the probability qij that component j is executed after component
i given that no failure occurred during the execution of component i�

Failure behavior� Each component fails with constant failure rate �i�
Solution method� The model of the system is an n � � state CTMC where the system is up

in the states i� � � i � n �componet i is executed without failure in state i� and the �n � ��th
state �absorbing state� being the down state reached after a failure occurrence� The associated
generator matrix between the up states B is such that bii � ���i � �i� and bij � qij�i� for i �� j�
The matrix B can be seen as the sum of two generator matrices such that the execution process is
governed by B� whose diagonal entries are equal to ��i and its o�diagonal entries to qij�i� and the
failure process is governed by B�� whose diagonal entries are equal to ��i and o�diagonal entries
are zero�

It is assumed that the failure rates are much smaller than the execution rates� that is� the exe�
cution process converges towards steady state before a failure is likely to occur� As a consequence�
the system failure rate becomes �eq �

Pn
i�� �i�i� where the steady state probability vector � � 
�i�

is the solution of �B� � �� This result has a simple physical interpretation having in mind that �i
is the proportion of time spent in state i when no failure occurs�

Kubat model ���
This model considers the case of a software composed of M modules designed for K di�erent tasks�
Each task may require several modules and the same module can be used for di�erent tasks�

Architecture� Transition between modules follow a DTMC such that with probability qi�k� task
k will �rst call module i and with probability pij�k� task k will call module j after executing in
module i� The sojourn time during the visit in module i by task k has the pdf gi�k� t�� Thus� the
architecture model for each task becomes a SMP�

Failure model� The failure intensity of a module i is 	i�
Model solution� The probability that no failure occurs during the execution of task k while in

module i is

Ri�k� �

Z
�

�
e��itgi�k� t� dt�

The expected number of visits in module i by task k� denoted by ai�k�� can be obtained by solving

ai�k� � qi�k� �
MX
j��

aj�k� pji�k��

The probability that there will be no failure when running for task k is given by

R�k� �
MY
i��


Ri�k��
ai�k�

and the system failure rate becomes �s �
PK

k�� rk 
��R�k��� where rk is the arrival rate of task k�

�



Gokhale et�al� model ��	�
The novelty of this work lies in the attempt to determine software architecture and component
reliabilities experimentally by testing the application�

Architecture� The terminating application is described by an absorbing DTMC� The trace data
produced by the coverage analysis tool called ATAC 
��� during the testing is used to determine
the architecture of application and compute the branching probabilities pij between modules� The
expected time spent in a module j per visit� denoted by tj � is computed as a product of the
expected execution time of each block and the number of blocks in the module�

Failure behavior� The failure behavior of each component is described by the enhanced non�
homogeneous Poisson process model using a time�dependent failure intensity �j�t� determined by
block coverage measurements during the testing of the application�

Solution method� The expected number of visits to state j� denoted by Vj� is computed by

Vj � �j��� �
nX
i��

Vi pij

where ���� denotes the initial state probability vector�
The reliability of a module j� given time�dependent failure intensity �j�t� and the total expected

time spent in the module per execution Vjtj� is given by

Rj � e�
R Vjtj

�
�j�t� dt

and the reliability of the overall application becomes R �
Qn
j��Rj�

Ledoux model ��
�
This recent work proposes an extension of the Littlewood model 
�� to include the way failure
processes a�ect the execution and to deal with the delays in recovering an operational state�

Architecture� A software composed of a set of components C is modeled by an irreducible
CTMC with transition rates qij�

Failure behavior� Two types of failures are considered	 primary failure and secondary failure�
The primary failure leads to an execution break� the execution is restarted after some delay� A
secondary failure� as in 
��� does not a�ect the software because the execution is assumed to
be restarted instantaneously when and where failure appears� Thus� for an active component
ci� a primary failure occurs with constant rate �i� while the secondary failures are described as
Poisson process with rate �i� When control is transferred between two components then a primary
�secondary� interface failure occurs with probability �ij �
ij��

Solution method� Following the occurrence of a primary failure recovery state is occupied� and
the delay of the execution break is a random variable with a phase type distribution� Denoting by
R the set of recovery states� the state space becomes C �R and the CTMC is replaced by the pro�
cess that models alternation operational�recovery periods with a generator that de�nes transition
rate from ci to cj with no failure� transition rate from ci to cj with a secondary failure� transition
rate from ci to cj with a primary failure� transition rate from recovery state i to recovery state j�
and transition rate from recovery state i to cj � Based on the model described above the following
measures are derived	 distribution function of the number of failures in a �xed mission� time to
the �rst failure� point availability and failure intensity function�

Gokhale et�al� reliability simulation approach ����
This work demonstrates the �exibility o�ered by discrete event simulation to analyze component

based applications� One of the presented case studies models a terminating application� whereas
the other one deals with a real�time application with feedback control�

�



�� PATH�BASED MODELS

This class of models is based on the same common steps as the state�based models� except that the
approach taken to combine the software architecture with the failure behavior can be described as
a path�based since the system reliability is computed considering the possible execution paths of
the program either experimentally by testing or algorithmically�

Shooman model ����
This is one of the earliest models that considers reliability of modular programs� introducing the
path based approach by using the frequencies with which di�erent paths are run�

Architecture� This model assumes the knowledge of the di�erent paths and the frequencies fi
with which path i is run�

Failure behavior� The failure probability of the path i on each run� denoted by qi� characterizes
the failure behavior�

Method of analysis� The total number of failures nf in N test runs is given by nf � Nf�q� �
Nf�q�� � � ��Nfiqi� where Nfi is the total number of traversals of path i� The system probability
of failure on any test run is given by

q� � lim
N��

nf
N

�
iX

j��

fjqj�

Krishnamurthy and Mathur model ����
This method �rst involves computing the path reliability estimates based on the sequence of
components executed for each test run� and then averaging them over all test runs to obtain an
estimate of the system reliability�

Architecture� Components and their interfaces are identi�ed� and a sequence of components
along di�erent paths is observed using the component traces collected during the testing�

Failure behavior� Each component is characterized by its reliability Rm�
Method of analysis� The component trace of a program P for a given test case t� denoted by

M�P� t�� is the sequence of components m executed when P is executed against t� The reliability
of a path in P traversed when P is executed on test case t � T is given by

Rt �
Y

�m�M�P�t�

Rm

under the assumption that individual components along the path fail independently of each other�
The reliability estimate of a program with respect to a test set T is

R �

P
�t�T Rt

jT j
�

An interesting case occurs when most paths executed have components within loops and these
loops are traversed a su�ciently large number of times� Then if intra�component dependency is
ignored individual path reliabilities are likely to become low� resulting in low system reliability
estimates� In this work intra�component dependency is modeled by �collapsing� multiple occur�
rences of a component on an execution path into k occurrences� where k � � is referred as the
degree of independence� However� it is not clear how one should determine a suitable value of k�

An alternative way to resolve the issue of intra�component dependency is proposed in 
���� The
solution of dependency characterization of a component that is invoked inside a loop m times
with a �xed execution time spent in the component per visit relies on the time dependent failure
intensity of a component�

�



Yacoub
 Cukic and Ammar model ����
This reliability analysis technique is speci�c for component�based software whose analysis is strictly
based on execution scenarios� A scenario is a set of component interactions triggered by speci�c
input stimulus and it is related to the concept of operations and run�types used in operational
pro�les�

Architecture� Using scenarios� a probabilistic model named Component Dependency Graph
�CDG� is constructed� A node ni of CDG models a component execution with an average execution
time ECi� The transition probability PTij is associated with each directed edge that models the
transition from node ni to nj� CDG has two additional nodes� start node and termination node�

Failure behavior� The failure process considers component reliabilities RCi and transition reli�
abilities RTij associated with a node ni and with a transition from node ni to nj� respectively�

Method of analysis� Based on CDG a tree�traversal algorithm is presented to estimate the
reliability of the application as a function of reliabilities of its components and interfaces� The
algorithm expands all branches of the CDG starting from the start node� The breadth expansions
of the tree represent logical �OR� paths and are hence translated as the summation of reliabilities
weighted by the transition probability along each path� The depth of each path represents the
sequential execution of components� the logical �AND�� and is hence translated to multiplication
of reliabilities� The depth expansion of a path terminates when the next node is a terminating
node �a natural end of an application execution� or when the summation of execution time of that
thread sums to the average execution time of a scenario� The latest guaranties that the loops
between two or more components don�t lead to a deadlock�

�� ADDITIVE MODELS

This class of models does not consider explicitly the architecture of the software� Rather� they
are focused on estimating the overall application reliability using the component�s failure data� It
should be noted that these models consider software reliability growth� The models are called addi�
tive since under the assumption that component�s reliability can be modeled by non�homogeneous
Poisson process �NHPP� the system failure intensity can be expressed as the sum of component
failure intensities�

Xie and Wohlin model ����
This model considers a software system composed of n components which may have been devel�
oped in parallel and tested independently� If the component reliabilities are modeled by NHPP
with failure intensity �i�t� then the system failure intensity is �s�t� � ���t� � ���t� � � � � � �n�t��
and the expected cumulative number of system failures by time t is given by

�s�t� �
nX
i��

�i�t� �

Z t

�

nX
i��

�i���d��

When this additive model is used the most immediate problem is that the starting time may not
be the same for all components� that is� some components may be introduced into the system
later� In that case� the time has to be adjusted appropriately to consider di�erent starting points
for di�erent components�

Everett model ����
This approach considers the software made out of components� and addresses the problem of es�
timating individual component�s reliability� Reliability of each component is analyzed using the

�



Extended Execution Time �EET� model whose parameters can be determined directly from prop�
erties of the software and from the information on how test cases and operational usage stresses
each component� Thus� this approach requires to keep track of the cumulative amount of processing
time spent in each component�

When the underlying EET models for the components are NHPP models� the cumulative num�
ber of failures and failure intensity functions for the superposition of such models is just the sum
of the corresponding functions for each component�

�� ASSUMPTIONS	 LIMITATIONS AND APPLICABILITY

The bene�t of the architecture�based approach to software reliability modeling is evident in the
context of software system that is a heterogeneous mixture of newly developed� reused and COTS
components� However� this approach appears to add complexity to the models and to the data
collection as well� Many questions related to the architecture based approach to software reliabil�
ity modeling are still unanswered� and more research in this area is needed� in particular when it
comes to the issues indicated below�

Level of decomposition
There is a trade o� in de�ning the components� Too many small components could lead to a

large state space which may pose di�culties in measurements� parametrization� and of the model�
On the other hand� too few components may cause the distinction of how di�erent components
contribute to the system failures to be lost�

Estimation of individual component reliabilities
Most of the papers on architecture�based reliability estimation assume that component relia�

bilities are available� that is� they ignore the issue of how to determine component reliabilities�
Assessing the reliability of individual components clearly depends on the factors such as whether
or not component code is available� how well the component has been tested� and whether it is a
reused or a new component�

Of course� one might argue that the reliability growth models can be applied to each software
component exploiting component�s failure data� For example� Gokhale et�al� 
��� used the enhanced
NHPP model� proposing a method for determining component�s time dependent failure intensity
based on block coverage measurement during the testing� Everett 
��� identi�ed guidelines for
estimating reliability of the newly developed components by identifying the component�s static
and dynamic properties and characterizing how usage stresses each component�

However� using arguments from 
�� it is clear that it is not always possible to use software relia�
bility growth models for estimating the individual component�s reliability� Several other techniques
have been proposed� Krishnamurthy et�al� 
��� used the method of seeding faults for estimating
component�s reliability� Voas 
��� examined a method to determine the quality of COTS compo�
nents using black box component testing and system�level fault injection methods�

Estimation of interface reliabilities
The interface between two components could be another component� a collection of global vari�

ables� a collection of parameters� a set of �les� or any combination of these� In practice� one needs
to estimate the reliability of each interface� When an interface is a program� any of the methods
mentioned above can be used to estimate its reliability� However� when an interface consists of
items such as global variables� parameters� and �les� it is not clear how to estimate the reliabil�
ity� Some explanation and analysis about the interfaces between components has been performed
by Voas et�al 
���� Also� method for integration testing proposed by Delamaro et�al� 
��� seems
promising for estimating interface reliabilities�

�



Validity of Markov assumption
This assumption is used in all state�space models� However� it remains to justify the embedded

Markov chain assumption which implies that the next module to be executed will depend proba�
bilistically on the present module only and is independent of the past history�

Considering failure dependencies among components and interfaces
Without exception the existing models assume that the failure processes associated across

di�erent components are mutually independent� When considered� the interface failures are also
assumed to be mutually independent and independent of the component failure processes� However�
if the failure behavior of a component is a�ected in any way by the previous component being
executed� or by the interface between them� these assumptions are no longer acceptable� This
dependence can be referred as inter�component dependence 
����

Intra�component dependence can arise� for example� when a component is invoked more than
once in a loop by another component� An attempt to address intra�component dependence was
made in 
��� and 
����

Extracting the architecture
The architecture of an application may not always be readily available� In such cases� it has to

be extracted from the source code or the object code of the application� Next a brief description
of the tools that can be used to extract the architecture of applications is presented�

The GNU pro�ler gprof 
��� for C and C�� programs can be used to obtain a �at pro�le and a
call graph for the program� The �at pro�le shows the time spent in each function and the number
of times the function was visited� The call graph shows for each function which functions called
it� which functions it calls� how many times� and an estimate of the time spent in the subroutines
of each function� From the call graph� the architecture of the application can be speci�ed in terms
of a control �ow graph� Information on the number of times each function calls other functions
can be used to obtain the transition probabilities from one function to another� Some architecture
based models also need information on the time spent in each module which can be obtained from
the �at pro�le�


ATAC 
��� is a coverage testing tool that is part of the Software Visualization and Analy�
sis Toolsuite �
Suds� developed by Telcordia Technologies� It can report various code coverage
measures that help evaluate the quality of a test suite� It also provides a command interface that
can be used to query the log �les produced in the process of obtaining code coverage information�
thus providing information on visit counts at a level as low as a block of code� Information on the
number of times each block calls other blocks can also be obtained� From the knowledge of visit
counts and sequence of transitions� the architecture of the software can be extracted at di�erent
levels of granularity� 
ATAC is especially useful when the coverage information from testing is
used to estimate component reliabilities� as both coverage and architecture information can be
obtained using the same tool 
����

The ATOM toolkit is part of the Compaq Tru�� Unix �formerly Digital Unix� 
��� operating
system� It consists of a programmable instrumentation tool and several packaged tools� Prepack�
aged tools that are useful for extracting the software architecture include those for obtaining a
�at pro�le of an application that shows the execution time for a procedure� counting the number
of times each basic block is executed� number of times each procedure is called� and the number
of instructions executed by each procedure� printing the name of each procedure as it is called�
These tools can be used to specify the architecture of an application by means of a call graph� the
transition probabilities from one component to another� or time spent in each component� ATOM
has the following favorable features� It does not need the source code of the application� but
rather operates on object modules� Therefore� the use of ATOM is independent of any compiler

�



and language� Also� the instrumentation and analysis routines that form the ATOM toolkit can
be user�de�ned which would be useful in obtaining data required to parameterize a wider range of
architecture�based models� However� ATOM is only available as part of the Compaq Tru�� Unix
operating system�


� CONCLUSION

In this paper� we have presented the overview of the architecture�based approach to software
reliability modeling� Based on the methods used to describe the architecture of the software
and to combine it with the failure behavior of the components and interfaces� three classes of
models are identi�ed� The state�based models describe the software architecture as a discrete time
Markov chain� continuous time Markov chain� or semi Markov process� and estimate analytically
the software reliability by combining the architecture with failure behavior� The models from the
path�based class compute the software reliability considering the possible execution paths of the
program either experimentally by testing or algorithmically� Finally� the third modeling approach�
called additive� does not consider the architecture explicitly� Rather� it is focused on estimating
the time dependent failure intensity of the application assuming that component�s reliability can
be modeled by a non�homogeneous Poisson process and using the component�s failure data�

The underlying assumptions of the architecture�based reliability models are discussed in order
to provide an insight into the usefulness and limitations of such models which should be helpful in
determining the directions for the future research� These include the level of decomposition� esti�
mation of the component and interface reliabilities� validity of the Markov assumption� considering
failure dependencies among components and interfaces� and extracting the software architecture�

ACKNOWLEDGMENT

We acknowledge the �nancial support of NSF under the grant EEC�������� �IUCRC TIE grant
between Duke CACC and Purdue SERC�� Thanks are also due to Srinivasan Ramani for his help
with this paper�

References


�� C�V�Ramamoorthy� F�B�Bastani� Software reliability � status and perspectives� IEEE Trans�
on Software Engineering� � ���� ������� �������


�� A�L�Goel� Software reliability models	 assumptions� limitations� and applicability� IEEE
Trans� on Software Engineering� �� ����� ��������� �������


�� W�Farr� Software reliability modeling survey� in Handbook of Software Reliability Engineering�
�Edited by M�R�Lyu�� pp� ������� McGraw�Hill �������


�� S�Gokhale� K�Trivedi� Structure�based software reliability prediction� in Proc� �th Int�l Conf�
Advanced Computing �ADCOMP����� ������� �������


�� B�Littlewood� Software reliability model for modular program structure� IEEE Trans� on
Reliability� 
� ���� ������� �������


�� B�Littlewood� A reliability model for systems with Markov structure� Applied Statistics� 
�
���� ������� �������


�� R�C�Cheung� A user�oriented software reliability model� IEEE Trans� on Software Engineer	
ing� � ���� ������� �������

��




�� J�C�Laprie� Depndability evaluation of software systems in operation� IEEE Trans� on Soft	
ware Engineering� �	 ���� ������� �������


�� P�Kubat� Assessing reliability of modular software� Oper� Research Letters� �� ����� �������


��� S�Gokhale� W�E�Wong� K�Trivedi� J�R�Horgan� An analytical approach to architecture based
software reliability prediction� in Proc� 
rd Int�l Computer Performance � Dependability
Symp� �IPDS����� ����� �������


��� J�R�Horgan and S�London� ATAC	 A data �ow coverage testing tool for C� In Proc� 
nd Symp�
Assessment of Quality Software Development Tools� ���� �������


��� J�Ledoux� Availability modeling of modular software� IEEE Trans� on Reliability� �� ����
������� �������


��� S�Gokhale� M�Lyu� K�Trivedi� Reliability simulation of component based software systems� in
Proc� �th Int�l Symp� Software Reliability Engineering �ISSRE����� ������� �������


��� M�Shooman� Structural models for software reliability prediction� in Proc� 
nd Int�l Conf�
Software Engineering� ������� �������


��� S�Krishnamurthy� A�P�Mathur� On the estimation of reliability of a software system using
reliabilities of its components� in Proc� �th Int�l Symp� Software Reliability Engineering �IS	
SRE���� ������� �������


��� S�Gokhale� K�Trivedi� Dependency characterization in path�based approaches to architecture
based software reliability prediction� in Proc� Symp� Application	Speci�c Systems and Software
Engineering Technology �ASSET����� ����� �������


��� S�M�Yacoub� B�Cukic� H�H�Ammar� Scenario�based reliability analysis of component�based
software� in Proc� ��th Int�l Symp� Software Reliability Engineering �ISSRE����� ����� �������


��� M�Xie� C�Wohlin� An additive reliability model for the analysis of modular software failure
data� in Proc� �th Int�l Symp� Software Reliability Engineering �ISSRE����� ������� �������


��� W�Everett� Software component reliability analysis� in Proc� Symp� Application	Speci�c Sys	
tems and Software Engineering Technology �ASSET����� ������� �������


��� J�M�Voas� Certifying o��the�shelf software components� IEEE Computer� �� ���� ����� �������


��� J�Voas� F�Charron� K�Miller� Robust software interfaces	 Can COTS�based systems be trusted
without them � in Proc� ��th Int�l Conf� Computer Safety� Reliability� and Security �SAFE	
COMP����� ������� �������


��� M�Delamaro� J�Maldonado� A�P�Mathur� Integration testing using interface mutations� in
Proc� �th Int�l Symp� on Software Reliability Engineering �ISSRE����� ������� �������


��� http���www�gnu�org�manual�gprof	
�����html mono�gprof�html


��� http���www�unix�digital�com�faqs�publications�base doc�
DOCUMENTATION�V��F HTML�APS
�ETE�TITLE�HTM

��


