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Announcement

• Class	participation	update
• Pre-midterm:	 2/5	points	for	presence	 in	class	 instead	 of	1/5
• Post	midterm:	

• 3	points	based	on	in-class	quiz	on	Thur 4/18	covering	adversarial	attacks	(Nicholas	Carlini
lecture	3/19)	+	word	embeddings	(4/9,	4/16).	

• 2/3	of	these	points	 is	extra	credit	to	recover	points	 for	pre-midterm



Goal

Understand	Recurrent	Neural	Networks	(RNNs)	using	Natural	Language	
Processing	(NLP)	tasks	as	motivation



Natural	Language	Processing

Understand	natural	language	(e.g.,	English,	Mandarin,	Hindi)	to	
perform	useful	tasks

Example	tasks
• Sentiment	analysis
• Language	translation

• Google	Translate,	Microsoft	Translator,	…

• Question	answering
• Cortana,	Google	Assistant,	 Siri,	…

Major	successes	of	
deep	learning



Outline	for	this	module

• Word	embedding
• Representing	 words	succinctly	while	preserving	“semantic	 distance”

• Neural	language	modeling	(uses	word	embedding)
• RNN	(basics),	LSTM

• Neural	machine	translation	(uses	neural	language	modeling)
• Sequence-to-sequence	 models,	 attention

• Gender	bias	in	word	embedding
• Explanations	for	and	bias	in	RNNs



Word	Embedding



How	to	represent	words?

First	idea:	one-hot	encoding

Weakness
• Does	not	capture	“similarity”	between	words
(e.g.,	“motel”	and	“hotel”)		



How	to	represent	words?

• Insight:	“You	shall	know	a	word	by	the	company	it	keeps”	- J.	R.	Wirth

• The	context	of	a	word	is	the	set	of	words	that	appear	nearby	(within	a	
fixed	size	window)

• Use	the	contexts	of	a	word	w	to	build	up	its	representation



How	to	represent	words?

• Second	idea:	word	embeddings (or	word	vectors)

• A	dense	vector	for	each	word	such	that	vectors	of	words	that	appear	
in	similar	contexts	are	similar



Popular	word	embedding:	Word2vec

• Papers	from	Mikolov et	al.	(Google)
• Efficient	 Estimation	 of	Word	Representations	 in	Vector	Space
• Distributed	 Representations	 of	Words	and	Phrases	and	their	Compositionality

• Will	focus	on	Word2vec	Skip-gram	model



Word2vec	approach

• Train	neural	network	with	single	hidden	layer	to	perform	a	specific	
task
• Weights	of	the	hidden	layer	give	us	the	word	embeddings



Word2vec	Skip-gram	task

• Given	a	specific	word	in	the	middle	 of	a	sentence	 (the	 input	word),	look	at	the	
words	nearby	and	pick	one	at	random.	

• The	network	is	going	to	tell	us	the	probability	 for	every	word	in	our	vocabulary	of	
being	the	“nearby	word”	that	we	chose.

• “Nearby”	words:	A	typical	window	size	might	be	2,	meaning	2	words	behind	and	
2	words	ahead	(4	in	total).

• Example:	 If	input	word	“Soviet”,	the	output	probabilities	 are	going	to	be	much	
higher	for	words	like	“Union”	and	“Russia”	 than	for	unrelated	words	like	
“watermelon”	 and	“kangaroo”.



Training	samples



Model



Weight	matrix	for	hidden	layer

• Weight	matrix	is	
10,000	 x	300



Weight	matrix:	lookup	table	for	word	vectors

• Each	one-hot	encoding	selects	a	row	of	the	matrix	(its	word	vector)



Output	layer



Note

If	two	words	have	similar	contexts,	then	the	network	is	motivated	to	
learn	similar	word	vectors	for	these	two	words

Examples
• “smart”,	“intelligent”
• “ant”,	“ants”



In	more	detail



Word2Vec	overview



Word2Vec:	toward	objective	function



Word2Vec:	objective	function

• Objective	function	is	negative	log	likelihood

• Minimizing	objective	function	equivalent	to	maximizing	predictive	
accuracy



Word2Vec:	objective	function	



Word2Vec:	prediction	function



Output	layer

Center	 (input)	
word	 representation

Context	 (outside)	
word	 representation



Word2Vec:	train	model	using	SGD	



Gradient	with	respect	to	center	word



Gradient	with	respect	to	center	word



Scalability	is	a	challenge

• With	300	features	and	a	vocab	of	10,000	words,	that’s	3M	weights	in	
the	hidden	layer	and	output	layer	each!

• Two	techniques	in	Mikolov et	al.	Distributed	Representations	of	
Words	and	Phrases	and	their	Compositionality
• Subsampling	 frequent	words
• Negative	sampling



Subsampling	frequent	words

• There	are	two	“problems”	with	common	words	like	“the”:
1. When	looking	at	word	pairs,	(“fox”,	“the”)	doesn’t	tell	us	much	about	the	

meaning	 of	“fox”.	“the”	appears	 in	the	context	of	pretty	much	every	word.
2. We	will	have	many	more	samples	 of	(“the”,	…)	than	we	need	to	learn	a	good	

vector	for	“the”.



Subsampling	frequent	words
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Probability of keeping wordwi

•P(wi)=1 (100% chance of being kept) when z(wi)<=0.0026
•P(wi)=0.5 (50% chance of being kept) when z(wi)=0.00746



Negative	sampling

• Scalability	challenge
• For	each	training	sample,	 update	all	weights	 in	output	 layer
• 3M	weights	 in	our	running	example!

• Negative	sampling
• For	each	training	sample,	 update	only	a	small	number	of	weights	 in	output	
layer	

• Weights	 for	the	correct	output	word	(300	weights)	+	5	randomly	selected	
“negative	words”for whom	the	output	should	be	0	(5x	300	weights)



Negative	sampling

• Negative	samples	are	chosen	according	to	their	empirical	frequency
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Negative	sampling:	objective	function

• Maximize	probability	that	real	words	appear	around	center	word;	and	
• Minimize	probability	that	random	words	appear	around	center	word



Word	embeddings capture	relationships



Additive	compositionality



Outline	for	this	module

• Word	embedding
• Representing	 words	succinctly	while	preserving	“semantic	 distance”

• Neural	language	modeling	(uses	word	embedding)
• RNN	(basics),	LSTM

• Neural	machine	translation	(uses	neural	language	modeling)
• Sequence-to-sequence	 models,	 attention

• Gender	bias	in	word	embedding
• Explanations	for	and	bias	in	RNNs
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