
Privacy	Attacks	on	Deep	Networks	II
Klas	Leino

CMU

Spring	2019

Security	 and	Fairness	 of	Deep	Learning



Overview

• Review	Membership	Inference
• Understanding	Overfitting
• Bayes-optimal	Membership	Inference
• Extending	to	Deep	Models
• Homework	4



Recall

• Membership	Inference
• Black-box	Attacks

• Naïve
• Shadow	Models



Membership	Inference

• Uiverse,	𝑈,	of	points,	(𝑥, 𝑦),	of	features	(𝑥)	and	labels	(𝑦 ∈ [𝐶]),	
distributed	according	to	distribution,	𝜃∗.
• Training	set,	𝑆,	of	𝑁 points	drawn	from	𝜃∗.

• (𝑥, 𝑦) drawn	from	the	training	set:	(𝑥, 𝑦) chosen	uniformly	at	random	from	
the	elements	 of	𝑆.
• (𝑥, 𝑦) drawn	from	the	general	population	(or	test	set):	(𝑥, 𝑦) drawn	directly	
from	𝜃∗.

• Target	model,	𝑔0,	learned	by	algorithm,	𝒜,	which	takes	a	training	set	
and	produces	a	model.



Membership	Inference

• Draw	a	point,	(𝑥, 𝑦),	with	½	probability	from	the	training	set,	and	
with	½ probability	from	the	general	population.
• Adversary	predicts	1 ((𝑥, 𝑦) was	a	training	point)	or	0 ((𝑥, 𝑦) was	not	
a	training	point).
• Advantage:	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 − 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒,	or	
equivalently,		2(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 −½).



Membership	Inference:	Threat	Models

• Black-box:	adversary	has	black-box	access	to	𝑔0,	i.e.,	given	features,	𝑥,	
the	adversary	can	obtain	𝑦0 = 𝑔0(𝑥).
• Adversary	doesn’t	have	access	to	weights	or	internal	activations.
• Typically,	we	do	assume	adversary	has	access	to	𝒜.
• We	also	assume	adversary	has	access	to	some	set	of	points,	𝑆F,	also	drawn	
from	𝜃∗ (but	disjoint	from	𝑆).

• White-box:	adversary	additionally	has	access	to	the	internals	of	𝑔0,	
e.g.,	weights	and	biases.



Membership	Inference:	Threat	Models

• Black-box:	adversary	has	black-box	access	to	𝑔0,	i.e.,	given	features,	𝑥,	
the	adversary	can	obtain	𝑦0 = 𝑔0(𝑥).
• Adversary	doesn’t	have	access	to	weights	or	internal	activations.
• Typically,	we	do	assume	adversary	has	access	to	𝒜.
• We	also	assume	adversary	has	access	to	some	set	of	points,	𝑆F,	also	drawn	
from	𝜃∗ (but	disjoint	from	𝑆).

• White-box:	adversary	additionally	has	access	to	the	internals	of	𝑔0,	
e.g.,	weights	and	biases.



Example

Non-sensitive	
information	of	patients	
with	sensitive	condition	X

Model	predicting	non-
sensitive	 target,	e.g.,	
height	of	patient

Bob	was	in	training	set	
(has	condition	X)

Membership	
inference

Adversary	learns	Bob	
has	condition	X



Naïve	Attack

• If	𝑦0 = 𝑦,	predict	1,	else	predict	0.	In	other	words	we	assume	correctly	
classified	points	are	training	members,	and	incorrectly	classified	
points	are	not.
• Advantage:	𝑡𝑟𝑎𝑖𝑛	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − 𝑡𝑒𝑠𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 .
• Surprisingly,	this	attack	is	quite	effective,	i.e.,	compares	similarly	to	
more	sophisticated	attacks.



What’s	Wrong	with	the	Naïve	Attack?

• High	false	positive	rate	(bad	precision)
• Doesn’t	quantify	confidence	in	inference



Shadow	Model	Approach	[1]

𝑆F

𝑆FHI

𝑆FJKL

Label	“1”

Label	“0”

𝑔M
Train	shadow	model

Feed	to	𝑔M

𝑔M(𝑆FHI)

𝑔M(𝑆FJKL)

𝑚

Train	attack	
model

(do	this	for	each	class)



Overview

• Review	Membership	Inference
• Understanding	Overfitting
• Bayes-optimal	Membership	Inference
• Extending	to	Deep	Models
• Homework	4



Can	We	Extend	Shadow	Models	to	White-Box	Setting?

• Use	internal	outputs	(activations)	at	each	layer?
• Not	clear	this	would	generalize	because	a	shadow	model	may	learn	an	
entirely	different	internal	representation
• Was	shown	not	to	perform	better	than	black-box	approach

• Might	want	a	more	fundamental	understanding	of	overfitting…



How	Does	Overfitting	Manifest	Itself?

• Idiosyncratic	use	of	features
• Some	features	happen	to	be	useful	 for	classification	on	training	data	but	not	
on	general	distribution	– these	are	evidence	of	overfitting

• We	would	like	to	use	this	intuition	when	designing	our	attack



Example

Sample	 of	LFW	 training	instances

Typical	 explanations	 on	test	instances	 of	Tony	Blair

Explanation	 [2]	on	 training	instance	
of	Tony	Blair	with	distinctive	 pink	
background.	 The	model	 uses	 the	
background	 to	classify	 the	instance	
as	Tony	Blair.

notice the distinctive pink background



Overview

• Review	Membership	Inference
• Understanding	Overfitting
• Bayes-optimal	Membership	Inference
• Extending	to	Deep	Models
• Homework	4



Key	Idea

Membership	information	is	leaked	through	the	target	model’s	
idiosyncratic	use	of	features.	Features	that	are	distributed	differently	in	
the	training	data	from	how	they	are	distributed	in	the	general	
population	provide	evidence	for	or	against	membership.

Next	we	would	like	to	formalize	this	intuition…



Example

• Suppose	we	have	two	distributions,	
𝜃∗ and	𝜃O.
• Graph	shows	Pr	[𝑥|𝜃],	i.e.,	the	
probability	of	getting	value	𝑥 from	
either	𝜃∗ or	𝜃O.
• When	Pr 𝑥 𝜃∗ < Pr[𝑥|𝜃O],	we	are	
more	likely	to	have	drawn	𝑥 from	𝜃O
than	from	𝜃∗.

x’ was more likely to have been drawn 
from 𝜃O than from 𝜃∗



Bayes-optimal	Membership	Inference	Idea

• Uiverse,	𝑈,	of	points,	(𝑥, 𝑦),	of	features	(𝑥)	and	labels	(𝑦 ∈ [𝐶]),	
distributed	according	to	distribution,	𝜃∗.
• Training	set,	𝑆,	of	𝑁 points	drawn	from	𝜃∗.

• Assume	𝑆~𝜃V,	i.e.,	the	training	set	is	distributed	according	to	some	
distribution,	𝜃V.
• In	expectation,	𝜃V = 𝜃∗,	but	in	general	the	distributions	may	be	different.	For	
now,	we	take	𝜃V to	be	the	empirical	distribution	of	𝑆.

• Idea:	we	want	to	make	a	model	that	predicts	whether	 𝑥, 𝑦 was	
more	likely	to	have	been	drawn	from	𝜃O than	from	𝜃∗.



Example

• Suppose	we	have	two	distributions,	
𝜃∗ and	𝜃O.
• Graph	shows	Pr	[𝑥|𝜃],	i.e.,	the	
probability	of	getting	value	𝑥 from	
either	𝜃∗ or	𝜃O.
• When	Pr 𝑥 𝜃∗ < Pr[𝑥|𝜃O],	we	are	
more	likely	to	have	drawn	𝑥 from	𝜃O
than	from	𝜃∗.

x’ was more likely to have been drawn 
from 𝜃O than from 𝜃∗

decision boundary

𝜃O𝜃∗



Some	Simplifications

• Assume	data	follows	Gaussian	Naïve	Bayes	assumption:
• 𝜃∗ = 𝒩(𝑥|𝜇Y∗ , Σ∗)where	Σ∗ is	a	diagonal	matrix,	which	we	will	write	as	a	
vector,	𝜎∗\.
• Same	goes	for	𝜃V

• Assume	target	model,	𝑔0,	is	linear	softmaxmodel,	i.e.,

𝑔0 = softmax 𝑊e 𝑥 + 𝑏V .
• We	will	eventually	relax	these	assumptions.

𝒩	 is	the	Gaussian	 function,	 i.e.,	𝒩 𝑥 𝜇, 𝜎\ = h
i \j		

exp − mno p

\ip
.



Derivation

• Let	𝑋 and	𝑌 be	random	variables	that	represent	randomly	drawn	
features	and	labels	from	either	the	training	set	(with	50%	probability)	
or	the	general	population	(with	50%	probability).
• Let	𝑇 be	the	event	that	(𝑋, 𝑌) ∈ 𝑆.
• Want	to	discover	𝑚Y(𝑥),	an	attack	model	that	predicts	the	
probability	that	(𝑥, 𝑦) ∈ 𝑆.	I.e.,	

𝑚Y = Pr 𝑇	 𝑋 = 𝑥, 𝑌 = 𝑦]



Derivation
we can apply Bayes’ ru le to this

1/2

we can apply the ru le of total probability 
here, partitioning on whether or not 
(x ,y) was in the training set



Derivation

this also becomes 1

we can divide the top and bottom by the 
numerator, so the numerator becomes 1

this is a fraction of t wo probabilit ies, which are both 
in the range [0,1], thus it is non-negative so we can 
use the identity 𝑣 = exp	(log 𝑣 ) for 𝑣 > 0

we can multiply the log by -1 and flip the fraction, to 
get an equivalent expression in the form of a sigmoid 
function.

sigmoid function



Derivation using the Naïve Bayes assumption, we can 
write each of these probabilit ies as a product 
of the probabilit ies of observing each 
individual feature

then we can use the fact that the log of a 
product is the sum of the logs

here we have also applied the log to the 
Gaussian function



Derivation
Notice that if we expand the po lynomial, we get a term 
(call it 𝑣w

Y) multiplied by 𝑥w\, plus a term (call it 𝑤w
Y) 

multiplied by 𝑥w, plus a constant (call it 𝑏w
Y ). Thus we can 

think of this sum as a dot product.

this is a quadratic model 
(quadratic decision boundary)



One	More	Simplification

• We	notice	that	in	the	previous	equation	gives	us	a	quadratic	decision	
boundary
• In	expectation,	𝜎0 = 𝜎∗.	If	we	assume	𝜎0 = 𝜎∗ = 𝜎,	then	𝑣Y becomes	
zero,	and	we	get	a	linear	model,	with



Something’s	Missing

• This	analysis	tells	us	that	the	optimal	membership	predictor	in	this	
case	is	a	linear	model	with	weights	𝑤Y = oyznoz∗

ip
,	and	intercepts,	

𝑏{ = ∑ oz∗
pnoyzp

\ipw .	However,	we	still	have	a	problem…
• We	don’t	know	the	actual	parameters	of	𝜃V!
• Data	may	not	be	well-modeled	by	a	Gaussian	distribution	anyway.
• Idea:	we	would	like	to	express	𝑤Y and	𝑏{ in	a	way	that	doesn’t	depend	on	the	
parameters	of	the	distribution.



Getting	Around	Not	Knowing	𝜃O and	𝜃∗

• We	will	make	use	of	the	fact	that	softmax regression	on	Gaussian	
Naïve	Bayes	data	converges	to	the	Bayes-optimal	classifier,	which	has	
weights	and	intercepts,	𝑊 = o

ip
and	𝑏 = ∑ no}

p

\ipw .

• Thus,	if	𝑔0 has	converged,	𝑊e:,Y =
oyz
ip
,	and	𝑏VY = ∑ noyz}

p

\ipw .
• We	will	also	use	𝑆F as	a	proxy for	𝜃∗,	i.e.,	we	assume	that	𝜃� ≈ 𝜃∗.

• Similarly,	if	we	train	a	proxy	model,	𝑔M,	to	convergence	on	𝑆F,	𝑊�:,Y ≈
oz∗

ip
,	

and	𝑏�Y ≈ ∑ no∗z}
p

\ipw .

• Finally,	we	conclude	that	𝑤Y = 𝑊e:,Y − 𝑊�:,Y and	𝑏Y = 𝑏VY − 𝑏�Y.
doesn’t depend on the distribution parameters!



Linear	Bayesian	Membership	Inference



Optimizations

• We	can	train	multiple	proxy	models	on	various	subsets	of	the	proxy	
data	(𝑆F)	and	average	their	weights	to	get	a	better	approximation	of	
the	true	distribution.



Overview

• Review	Membership	Inference
• Understanding	Overfitting
• Bayes-optimal	Membership	Inference
• Extending	to	Deep	Models
• Homework	4



How	Would	We	Apply	this	to	an	Arbitrary	
Layer	of	a	Network?
• Recall	internal	influence	[2].

• One	axiom	of	Internal	Influence	was	linear	agreement:	for	linear	models,	the	
influence	of	a	feature	is	its	weight	in	the	linear	model.
• Idea:	use	influence	 instead	of	weight	for	attacking	internal	 layers.



Local	Linear	Approximations

• Intuitively	the	gradient	gives	a	local	linear	approximation	of	a	
function.
• For	slice, 𝑔, ℎ ,	of	a	deep	network,	𝑓,	we	can	locally	approximate	𝑔
using	internal	influence.
• Recall,	internal	influence	is	given	by

Recall,	a	slice, 𝑔, ℎ ,	of	a	deep	network,	 𝑓, satisfies	 𝑓 = 𝑔 ∘ ℎ .distribution of interest 
over internal po ints



Local	Linear	Approximations

• When	we	set	the	distribution	of	interest	to	𝑃��
� ,	a	uniform	distribution	

over	the	linear	interpolation	from	𝑧� to	𝑧 (essentially,	this	recovers	
Aumann-Shapley	for	point,	𝑧,	and	baseline	𝑧�),	internal	influence	has	
a	property	called	efficiency	(sometimes	called	completeness).	
Completeness	states

• Thus,	when	we	set	the	baseline	to	0,	𝑔(𝑧) is	approximated	by
𝑔̅(𝑧) = 𝑊�𝑧 + 𝑏�where	𝑊� = χ(𝑔 ∘ ℎ, 𝑃��) and	𝑏� = 𝑔(0).



Deep	Bayesian	Membership	Inference



Illustration

𝑆F ℎV(𝑆F) 𝑔M
Train	proxy	modelFeed	to	ℎV

𝑚Y

𝑔0

Use	influence	 towards	
class	𝑦 to	get	local	linear	

approximation

(do	this	for	each	class)

Use	influence	 towards	
class	𝑦 to	get	local	linear	

approximation

Subtract	
influences	 to	get	
weights	to	attack	

model

𝜒̃Y
𝑔M 0 Y

𝜒̂Y
𝑔0 0 Y

influence towards class y 
of the inputs of 𝑔M 



Combining	Attacks	on	Multiple	Layers

• AND	or	OR	of	predictions	at	each	layer.
• Majority	vote	on	predictions	at	each	layer.
• Learn	a	network	to	combine	the	outputs.
• Work	out	a	creative	solution	for	the	homework!



Overview

• Review	Membership	Inference
• Understanding	Overfitting
• Bayes-optimal	Membership	Inference
• Extending	to	Deep	Models
• Homework	4



Homework	4	(part	II)

• You	will	implement	shadow	models	and	the	deep	Bayesian	attack	for	
arbitrary	layers.
• Influence	measure	will	be	provided

• For	final	part	(extra	credit)	combine	attacks	on	multiple	layers	to	
attack	LeNet model	trained	on	LFW.
• Main	function	tests	accuracy	of	the	attack.



Shadow	Attack	Starter	Code

Implement:
def build_attack_model(

target_model, 
shadow_data, 
shadow_labels, 
num_shadow_models=10)

def evaluate_membership(attack_model, y_pred, y)

You	should	make	use	of:
split = DataSplit(labels, seed)
split.in_idx, split.out_idx



Deep	Bayesian	Attack	Starter	Code

Implement:
def build_attack_model(

target_model, 
shadow_data, 
shadow_labels, 
attack_layer,
num_shadow_models=10)

def evaluate_membership(attack_model, y_pred, y)



Deep	Bayesian	Attack	Starter	Code

You	should	make	use	of:
split = DataSplit(labels, seed)
split.in_idx # Use in_idx for proxy models!

attack_model = AttackModelInfo(W, b)

infl_measure = InfluenceMeasure(model, c, layer)
influence = infl_measure(Z)

g = TopOfModel(model, layer)
y_hat = g(Z)



References

[1] Shokri	et	al.	Membership	Inference	Attacks	on	Deep	Learning	
Models.	2016

[2] Leino	et	al.	Influence-directed	Explanations	for	Deep	Convolutional	
Networks.	2018


