Security and Fairness of Deep Learning

Privacy Attacks on Deep Networks |l

Klas Leino
CMU

Spring 2019

Overview

* Review Membership Inference

* Understanding Overfitting

* Bayes-optimal Membership Inference
* Extending to Deep Models

* Homework4

Recall

* Membership Inference

* Black-box Attacks
* Naive
* Shadow Models

Membership Inference

* Uiverse, U, of points, (x,y), of features (x) and labels (y € [C]),
distributed according to distribution, 8~.

* Trainingset, S, of N points drawn from 6~.
* (x,y) drawn from the training set: (x, y) chosen uniformly at random from

the elements of S.
* (x,y) drawn from the general population (or test set): (x,y) drawn directly

from 0*.
* Target model, g, learned by algorithm, A, which takes a training set
and produces a model.

Membership Inference

* Draw a point, (x,y), with 12 probability from the training set, and
with 72 probability from the general population.

* Adversary predicts 1 ((x,y) was a training point) or 0 ((x, y) was not
a training point).

* Advantage: true positive rate — false positive rate, or
equivalently, 2(accuracy — %2).

Membership Inference: Threat Models

* Black-box: adversary has black-box access to g, i.e., given features, x,
the adversarycan obtain y = g(x).
* Adversary doesn’t have access to weights or internal activations.
* Typically, we do assume adversary has access to A.
* We also assume adversary has access to some set of points, S, also drawn
from 8 (but disjoint from S).
* White-box: adversary additionally has access to the internals of g,
e.g., weights and biases.

Membership Inference: Threat Models

* Black-box: adversary has black-box access to g, i.e., given features, x,
the adversarycan obtain y = g(x).
* Adversary doesn’t have access to weights or internal activations.
* Typically, we do assume adversary has access to A.
* We also assume adversary has access to some set of points, S, also drawn
from 67 (but disjoint from S).
* White-box: adversary additionally has access to the internals of g,
e.g., weights and biases.

Example

Non-sensitive Model predicting non-
information of patients sensitive target, e.g.,
with sensitive condition X height of patient
- —)

Bob was in training set
(has condition X)

"d o

Membership
inference
Adversary learns Bob
has condition X

Naive Attack

* If y = y, predict 1, else predict 0. In other words we assume correctly
classified points are training members, and incorrectly classified
points are not.

* Advantage: train accuracy — test accuracy.

 Surprisingly, this attack is quite effective, i.e., compares similarly to
more sophisticated attacks.

What’s Wrong with the Naive Attack?

 High false positive rate (bad precision)
* Doesn’t quantify confidence in inference

Shadow Model Approach [1]

S:' « g"' g (S Ln)
I 1rain shadow model Z Z :
5 @ —a ’ o 2 5) 8
S8 bel “1” \
/ Feed to g Labe Train attack

model
\ out 6"0 0 ,
8 <<ee
oo
a® Label “0”

(do this for each class)

Overview

* Review Membership Inference

* Understanding Overfitting

* Bayes-optimal Membership Inference
* Extending to Deep Models

* Homework4

Can We Extend Shadow Models to White-Box Setting?

* Use internal outputs (activations) at each layer?

* Not clear this would generalize because a shadow model may learn an
entirely different internal representation

* Was shown not to perform better than black-box approach

* Might want a more fundamental understanding of overfitting...

How Does Overfitting Manifest Itself?

* [diosyncraticuse of features

* Some features happen to be useful for classification on training data but not
on general distribution — these are evidence of overfitting

* We would like to use this intuition when designing our attack

notice thedistinctive pink background

Explanation [2] on training instance
of Tony Blair with distinctive pink
background. The model uses the
background to classify the instance
as Tony Blair.

Typical explanations on test instances of Tony Blair

Overview

* Review Membership Inference

* Understanding Overfitting

* Bayes-optimal Membership Inference
* Extending to Deep Models

* Homework4

Key ldea

Membership informationis leaked through the target model’s
idiosyncraticuse of features. Features that are distributed differently in
the training data from how they are distributed in the general
population provide evidence for or against membership.

Next we would like to formalize this intuition...

Example

* Suppose we have two distributions,
6" and 6.

* Graph shows Pr[x|60], i.e., the
probability of getting value x from
either 6" or 6.

« When Pr[x|6*] < Pr[x|0], we are
more likely to have drawn x from 6

than from 0~.
x’ was more likely to have been drawn
from 0 than from 6*

P(x)

Bayes-optimal Membership Inference ldea

* Uiverse, U, of points, (x,y), of features (x) and labels (y € [C]),
distributed according to distribution, 8~.

* Trainingset, S, of N points drawnfrom6~.
e Assume S~9A,Ai.e., the training set is distributed according to some
distribution, 6.
*In expectation,Aé = 0%, but in general the distributions may be different. For
now, we take 8 to be the empirical distribution of S.
* Idea: we want to make a model that predicts whether (x, y) was
more likely to have been drawn from 6 than from 6*.

Exa m p | e decision boundary

* Suppose we have two distributions,
6" and 6.

* Graph shows Pr[x|60], i.e., the
probability of getting value x from
either 6" or 6.

« When Pr[x|0*] < Pr[x|6], we are
more likely to have drawn x from 6

than from 0~.
x’ was more likely to have been drawn
from 0 than from 6*

Plx)

Some Simplifications

* Assume data follows Gaussian Naive Bayes assumption:

* 0" = N (x|uy, Z%) where X* is a diagonal matrix, which we will write as a
vector, ™ ".
* Same goes for 6

* Assume target model, g, is linear softmax model, i.e.,
g = softmax(Wx + 15).

* We will eventually relax these assumptions.

_ 2
N is the Gaussian function, i.e., N (x|u, 02) = m/;_n exp (_ (x-w)

202

Derivation

* Let X and Y berandomvariablesthat representrandomly drawn
features and labels from either the training set (with 50% probability)

or the general population (with 50% probability).

* Let T bethe eventthat (X,Y) € S.

* Want to discover mY (x), an attack model that predicts the
probabilitythat (x,y) € S. l.e.,

mY =Pr[T |[X =x,Y = y]

Derivation

m' (x) = Pr [T | X=xY= \] M we can apply Bayes’ rule to this

_ 1/2
B Pl’ [X = | T1Y — ‘] PT[TW
 PrX=x|Y =y
\ we can apply therule of total probability
here, partitioning onwhether or not
(x,y)was inthetraining set
- PriX =x|T,Y =y ¥
_/1/ X=x|T.Y =y|+Pr[X =x|-T,Y =y])

wecan divide the top and bottom by the
nuwmerator, so the numerator hecomes 1

Derivation

Pr(X =x|T.Y =y ¥
KPrX =x|TY =y|+Pr[X =x|~TY =y])

\ this also becomes 1

— 1 ' thisis a fraction of two probabilities, w hich are both
[+ PrX —-l'l—T-} =y PRS-y | therange [0,1], thus it is non-negative so we can
PriX =x[T.¥=y| usetheidentity v = exp(log(v)) forv > 0

_ ! [10g PIX =x|T.Y =]
X7 ¥ =7 = 4 lo
1 +exp (lng Pr-% ‘l T} ‘) gPr[X =x|-T,Y =y

wecan mu!’riply thelog by. -1 e.md flip fhefrac’rion, 1‘.0 sigmoid function
get an equivalent expressionin the form of a sigmoid

function.

De rivat | on using the Naive Bayes assumption wecan

write each of theseprobabilities asa product

, of the probabilities of observing each
Pr(X =x|T,Y =]) ~' individval feature

=51
é(OgPr[X =x|-T,Y =y

thenwecanuse the fact that thelogofa

"} | i My ﬁ“
= 4| log —
(H N(xj | uy;.0 ‘,1)) D aa— produet is the sum of thelogs

\ herewe have also applied thelog to the

Gavssian funetion

Notice that if we expand the polynowmial, we get a ferm
(call it vjy) multiplied by x7, plus a term (call it wjy)

woltiplied by x; plusa constant (callit b7'). Thus we can
think of this sum as a dot produet.

Derivation

yvT_2 v T v
=4v x4+ w Tx+b)
(+ T) M thisis a quadratic model
where (quadratic decision boundary)

- *

1 1 [y Hyj

v, = — — W - —

I 26%r 267 6T ot
“GJ “Gi GJ GJ

+ ¥ - &

s [Tt G

A Yy vy J

b E (?ij SA2 +log _6";
PN =

One More Simplification

* We notice that in the previous equation gives us a quadraticdecision
boundary

* |n expectation, & = o*. If weassume & = ¢* = g, then vY becomes
zero,and we get a linear model, with

~ * ¥#2 a2
H,u."' - 4“_'” o JJ}.‘ h}-- o E _,U-,'.:I,- - ;J',ll'.

} ¥
(8 : 20-
J | G.}

Something’s Missing

* This analysis tells us that the optimal membership predictor in this

. . . . [y =y :
case is a linear model with weights wY = yaz Y and intercepts,
Wy~ :
pY = Zj 3’202 Y However, we still have a problem...

« We don’t know the actual parameters of 8!
e Data may not be well-modeled by a Gaussian distribution anyway.

* |dea: we would like to express w¥ and bY in a way that doesn’t depend on the
parameters of the distribution.

Getting Around Not Knowing @ and 8*

* We will make use of the fact that softmax regression on Gaussian
Naive Bayes data converges to the Bayes-optimal classifier, which has

. . 1]
weights and intercepts, W = %and b = Zjﬁ.
~ ~2
. PP 7 My ~ oy Hyj
Thus, if § has converged, W.,, = 2 and by, =).; -

* We will also use S as a proxy for 8%, i.e., we assumethat 6 = 0~.

* Similarly, if we train a proxy model, g, to convergence on S, Vl7y ~
%2
ro Yy Hyj
and by ~ Z]F
* Finally, we conclude that wY = Vl7y — W.,, and b” = b, — b,

o2’

doesn’t depend on the distribution parameters!

Linear Bayesian Membership Inference

Algorithm 1: The Linear bayes MI Attack

def createAttackModel (g, S):

g < trainProxy(S)

wY «— W, — g W, Vy € [C]
b> < 8.b.,—g§.b. Vy € [C]

return A(x,y) : .4 (wyTx +b)

def predictMembership (m, x, y):
| return 1 if m”(x) > L else 0

Optimizations

* We can train multiple proxy models on various subsets of the proxy

data (S) and average their weights to get a better approximation of
the true distribution.

Overview

* Review Membership Inference

* Understanding Overfitting

* Bayes-optimal Membership Inference
* Extending to Deep Models

* Homework4

How Would We Apply this to an Arbitrary
Layer of a Network?

* Recall internalinfluence [2].

* One axiom of Internal Influence was linear agreement: for linear models, the
influence of a feature is its weight in the linear model.

* Idea: use influence instead of weight for attacking internal layers.

Local Linear Approximations

* Intuitively the gradient gives a local linear approximation of a
function.

* Forslice, (g, h), of a deep network, f, we can locally approximate g
using internalinfluence.

* Recall, internal influence is given by

Xi(goh,P) = o P'(z)dz

distribution ofinterest Recall, a slice, (g, h), of a deep network, f, satisfies f = g o h.

over internal points

Local Linear Approximations

* When we set the distribution of mterest to P , a uniformdistribution
over the linear interpolation from z° to z (essentlally, this recovers
Aumann-Shapley for point, z, and baseline z°), internal influence has
a property called efficiency (sometimes called completeness).
Completeness states

ij(goh,P’)(zj —2)) =g(z) —g(2")

* Thus, when we set the baselineto 0, g(z) is approximated by
g(z) = Wz+ bwhereW =x(g o h,P#)and b = g(0).

Deep Bayesian Membership Inference

Algorithm 3: The Deep bayes MI Attack

def createAttackModel (§Oiz, S):
§' « [(h(x),y) for (x,y) €8]
§ « trainProxy(S’)

b < £(0),—g(0), Vye|C]
return A(x, y) : 5 (w>' (h(x))" R

def predictMembership (m, x, y):
- return 1 if m” (x) > % else 0

influence towards classy

| | | ' t of theinputsof g
Use influence towards
S: class y to get local linear
(G ~ approximation ~
A(S) g memton gy
Feed to h Train proxy model =o=—£. _ g(O) |
s = QS0 & y _ my
o - s Vi .
a~o o PR Subtract "o 0
nd——8 influences to get »OS<7P
. IS0
Use influence towards Weights to attack :
class y to get local linear model e 8
~ approximation ~y
. - . ' }
ZZ N g (O)y
8O0
LN

(do this for each class)

Combining Attacks on Multiple Layers

* AND or OR of predictions at each layer.

* Majority vote on predictions at each layer.

* Learn a network to combine the outputs.

* Work out a creative solution for the homework!

Overview

* Review Membership Inference

* Understanding Overfitting

* Bayes-optimal Membership Inference
* Extending to Deep Models

* Homework4

Homework 4 (part 1)

* You will implement shadow models and the deep Bayesian attack for
arbitrary layers.
* Influence measure will be provided

 For final part (extra credit) combine attacks on multiple layers to
attack LeNet model trained on LFW.

* Main function tests accuracy of the attack.

Shadow Attack Starter Code

Implement:

def build attack model(
target model,
shadow_data,
shadow labels,
num_shadow _models=10)

def evaluate membership(attack model, y pred, y)

You should make use of:

split = DataSplit(labels, seed)
split.in_idx, split.out idx

Deep Bayesian Attack Starter Code

Implement:

def build attack model(
target model,
shadow_data,
shadow labels,
attack_ layer,
num_shadow _models=10)

def evaluate membership(attack model, y pred, y)

Deep Bayesian Attack Starter Code

You should make use of:

split = DataSplit(labels, seed)
split.in_idx # Use in idx for proxy models!

attack model = AttackModelInfo(W, b)

infl measure = InfluenceMeasure(model, c, layer)
influence = infl measure(Z)

g = TopOfModel(model, layer)
y hat = g(2)

References

[1] Shokriet al. Membership Inference Attacks on Deep Learning
Models. 2016

[2] Leino et al. Influence-directed Explanations for Deep Convolutional
Networks. 2018

