Stochastic Gradient Descent
 Anupam Datta
 CMU

Spring 2019

Image Classification

Linear model

- Score function
- Maps raw data to class scores
- Loss function
- Measures how well predicted classes agree with ground truth labels
- Multiclass Support Vector Machine loss (SVM loss)
- Softmax classifier (cross-entropy loss)
- Learning
- Find parameters of score function that minimize loss function
- Multiclass Support Vector Machine loss (SVM loss)

Recall: Linear model with SVM loss

- Score function
- Maps raw data to class scores

$$
f\left(x_{i}, W\right)=W x_{i}
$$

- Loss function
- Measures how well predicted classes agree with ground truth labels

$$
L=\frac{1}{N} \sum_{i} \sum_{j \neq y_{i}}\left[\max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+\Delta\right)\right]+\lambda \sum_{k} \sum_{l} W_{k, l}^{2}
$$

SVM loss: equivalent formulation

- Loss function
- Measures how well predicted classes agree with ground truth labels

$$
L=\frac{1}{N} \sum_{i} \sum_{j \neq y_{i}}\left[\max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+\Delta\right)\right]+\lambda \sum_{k} \sum_{l} W_{k, l}^{2}
$$

Are Δ and λ independent parameters?

$$
\text { Set } \Delta=1
$$

Today

- Learning model parameters with Stochastic Gradient Descent that minimize loss
- Later
- Different score functions: deep networks
- Same loss functions and learning algorithm

Outline

- Visualizing the loss function
- Optimization
- Random search
- Random local search
- Gradient descent
- Mini-batch gradient descent

Visualizing SVM loss function

- Difficult to visualize fully
- CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of 30,730 parameters
- Can gain intuition by visualizing along rays (1 dimension) or planes (2 dimensions)

Visualizing in 1-D

- Generate random weight matrix W
- Generate random direction W_{1}
- Compute loss along this direction $L\left(W+a W_{1}\right)$

Where is the minima?

Loss for single example

Visualizing in 2-D

- Compute loss along plane $L\left(W+a W_{1}+b W_{2}\right)$

Loss for single example

Average loss for 100 examples (convex function)

How do we find weights that minimize loss?

- Random search
- Try many random weight matrices and pick the best one
- Performance: poor
- Random local search
- Start with random weight matrix
- Try many local perturbations, pick the best one, and iterate
- Performance: better but still quite poor
- Useful idea: iterative refinement of weight matrix

Optimization basics

The problem of optimization

Find the value of \boldsymbol{x} where $\mathbf{f}(\boldsymbol{x})$ is minimum

Our setting: \boldsymbol{x} represents weights, $\mathbf{f}(\boldsymbol{x})$ represents loss function

In two stages

- Function of single variable
- Function of multiple variables

Derivative of a function of single variable

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivatives

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right)=2 x \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \text { if } x>0
\end{aligned}
$$

Finding minima

Increase x if derivative negative, decrease if positive i.e., take step in direction opposite to sign of gradient (key idea of gradient descent)

Doesn't always work

- Theoretical and empirical evidence that gradient descent works quite well for deep networks

In two stages

- Function of single variable
- Function of multiple variables

Partial derivatives

The partial derivative of an n-ary function $f\left(x_{1}, \ldots, x_{n}\right)$ in the direction x_{i} at the point $\left(a_{1}, \ldots, a_{n}\right)$ is defined to be:

$$
\frac{\partial f}{\partial x_{i}}\left(a_{1}, \ldots, a_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)}{h} .
$$

Partial derivative example

$$
z=f(x, y)=x^{2}+x y+y^{2}
$$

$$
\frac{\partial z}{\partial x}=2 x+y
$$

At $(1,1)$, the slope is 3

By IkamusumeFan - Own work, CC BY-SA 4.0,

The gradient of a scalar function

- The gradient $\nabla f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$
d f(X)=\nabla f(X) d X
$$

Gradients of scalar functions with multivariate inputs

- Consider $f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- $\nabla f(X)=\left[\begin{array}{llll}\frac{\partial f(X)}{\partial x_{1}} & \frac{\partial f(X)}{\partial x_{2}} & \cdots & \frac{\partial f(X)}{\partial x_{n}}\end{array}\right]$

Computing gradients analytically

$$
f(x, y)=x y \quad \rightarrow \quad \frac{\partial f}{\partial x}=y \quad \frac{\partial f}{\partial y}=x
$$

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]=[y, x]
$$

Derivatives measure sensitivity

$$
x=4, y=-3 \quad f(x, y)=-12
$$

$$
\frac{\partial f}{\partial x}=-3
$$

If we were to increase by a tiny amount, the effect on the whole expression would be to decrease it (due to the negative sign), and by three times that amount.

Computing gradients analytically

$$
f(x, y)=x+y \quad \rightarrow \quad \frac{\partial f}{\partial x}=1 \quad \frac{\partial f}{\partial y}=1
$$

Finding minima

Take step in direction opposite to sign of gradient

Gradient descent algorithm

- Initialize:
- x^{0}
- $k=0$
- While $\left|f\left(x^{k+1}\right)-f\left(x^{k}\right)\right|>\varepsilon$

Average gradient

 across all training examples- $x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)^{T}$
- $k=k+1$

$$
\begin{aligned}
& f\left(x^{k}\right)=\frac{1}{N} \Sigma_{i=1}^{N} f_{i}\left(x^{k}\right) \\
& \nabla f\left(x^{k}\right)=\frac{1}{N} \Sigma_{i=1}^{N} \nabla f_{i}\left(x^{k}\right)
\end{aligned}
$$

Step size affects convergence of gradient descent

Murphy, Machine Learning, Fig 8.2

Gradient descent algorithm

- Initialize:
- x^{0}
- $k=0$
-While $\left|f\left(x^{k+1}\right)-f\left(x^{k}\right)\right|>\varepsilon$

Average gradient across all training examples

- $x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)^{T}$
- $k=k+1$

Challenge: Not scalable for very large data sets
Challenge to discuss later: How to choose step size?

Mini-batch gradient descent

- Initialize:
- x^{0}
- $k=0$
-While $\left|f\left(x^{k+1}\right)-f\left(x^{k}\right)\right|>\varepsilon$
- $x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)^{T}$
- $k=k+1$

Average gradient over small batches of training examples (e.g., sample of 256 examples)

Special case: Stochastic or online gradient descent \rightarrow use single training example in each update step

Stochastic gradient descent convergence

Murphy, Machine Learning, Fig 8.8

SVM Ioss visualization

Challenge: Gradient does not exist

Computing subgradients analytically

The set of subderivatives at x_{0} for a convex function is a nonempty closed interval $[a, b]$, where a and b are the one-sided limits:

$$
\begin{aligned}
& a=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& b=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
\end{aligned}
$$

Computing subgradients analytically

$$
f(x, y)=\max (x, y) \quad \rightarrow \quad \frac{\partial f}{\partial x}=\mathcal{I}(x>=y) \quad \frac{\partial f}{\partial y}=\mathcal{I}(y>=x)
$$

The (sub)gradient is 1 on the input that is larger and 0 on the other input

Subgradient of SVM loss

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}}\left[\max \left(0, w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta\right)\right] \\
\nabla_{w_{y_{i}}} L_{i} & =-\left(\sum_{\substack{j \neq y_{i} \\
\text { Number of classes that didn't meet the desired margin }}} \mathcal{I}\left(w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta>0\right)\right) x_{i}
\end{aligned}
$$

$$
\nabla_{w_{j}} L_{i}=\mathcal{I}\left(w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta>0\right) x_{i}
$$

j-th class didn't meet the desired margin

Review derivatives

- Please review rules for computing derivatives and partial derivatives of functions, including the chain rule
- https://www.khanacademy.org/math/multivariable-calculus/multivariablederivatives
- You will need to use them in HW1!

Summary

Acknowledgment

Based in part on material from Stanford CS231n http://cs231n.github.io/ and CMU 11-785

