
Recitation #4

18-649 Distributed Embedded Systems
Friday 25-Sep-2015

Note: Course slides shamelessly stolen from lecture
All course notes © Copyright 2006-2010, Philip Koopman, All Rights Reserved

2

Announcements and Administrative Stuff
!  Project 4 posted

! TA office hours
!  http://www.ece.cmu.edu/~ece649/admin.html#info
!  Monday: BH237B 4:30-5:30 (Zach)
!  Wednesday: BH237B 8:00-9:00 (Jacob)
!  Thursday: BH237B 4:30-5:30 (Shane)
!  Does anyone have a hard conflict with these time?

!  Submission Mistakes
•  Please place portfolio files in the project root directory with no additional

directories.
–  Correct: proj3\(portfolio files)
–  Incorrect: proj3\portfolio\(portfolio files)

•  Minimum Contribution chart in peer review folder.

3

TA Office Hours
!  If you have questions about grading on a project

•  Go see the TA that graded your project if possible

!  For grade correction requests or disputes
•  You must submit a written (paper or e-mail) request including:

–  Your name
–  TA name that graded the assignment
–  Specific issue with grading

•  Within 1 week of when the grade is posted to blackboard
–  We’ll be a little flexible with projects 1&2 since it took a while to settle down office

hours

4

Project 3 in Review
!  Anyone have to update sequence diagrams to add missed behaviors?

•  This is expected
•  Good design process helps identify these bugs before implementation!

!  Some common things some might have missed:
•  Turning hall and car button lights OFF

–  If you see the button has already lit up, would you press it again?
•  Setting car position indicator

–  How does the passenger known when to get off the elevator?
•  What about safety cases?

!  Other notes:
•  Why do mHallLight and mCarLight exist?

–  Typically used for fancy dispatchers and fault tolerance
–  For state chart traceability, you can mark these as “future expansion”

»  But, any reasonable approach is fine so long as it is consistently applied

5

Project 4 Overview
!  Convert your event-triggered requirements to time-triggered

!  Create state charts using time-triggered requirements

!  Traceability between requirements and state charts

!  Log any changes to requirements, sequence diagrams, etc.

6

Previous: Event-Triggered
!  An event triggers a message to be sent ONCE

•  E.g. “Passenger presses a button”

!  Controllers take actions when they receive a particular message
•  Receiving a message is an event that triggers some action

!  Controllers can only act on one new message at a time
•  If actions require more than one message, controller has to store them

7

Now: Time-Triggered
!  Think of messages as periodic updates of system state variables

•  E.g. Repeatedly check “Is the button currently pressed?”

!  Controllers take actions based upon the current state of the system
•  Controllers run control loops at regular intervals
•  Constantly monitor the most recent values of messages

–  Actions performed once the most recent values match a particular set of conditions

!  Controllers keep the most recent copy of messages
•  Current state = most recent copies of messages

8

Another Magic Formula
!  Time-triggered system

•  (Null or <message value> , … <message value>)
 and (Null or <variable value test>, … <variable value test>)
 shall result in <message transmitted>, …
 <variable value assigned>

•  Can trigger on zero or more messages; zero or more variables
–  Need one or more total triggers
–  OK for left hand side trigger to ONLY be a state variable (or always be true)
–  Right hand side can have zero or more messages; zero or more variable values
–  “Shall” and “should” are both acceptable

•  OK to assign multiple messages, OK to assign multiple values

•  EVERY VERB GETS A NUMBER

9

Correct and Incorrect TT Requirement Examples
!  Correct:

R1. If X and Y then
 R1.a. M shall be set to m
 R1.b. N shall be set to n

•  One number per verb
•  Reminder: Trace to the sub-numbered bullets

!  Wrong:
R1. If X and Y then M shall be set to m and N shall be set to n

 Problem: More than one verb per traceable numbered requirement

10

Time-Triggered Requirements Guidance
!  Use typical message format to refer to the most recent copy

•  You don’t have to explicitly store the newest copy

!  Example:
R1. If (mAtFloor[g,b] is true) and (mDesiredFloor.f = = g), then
 R1.a. mCarCall[g,b] shall be set to false, and
 R1.b. CarLight[g,b] shall be set to false, and
 R1.c. mCarLight[g,b] shall be set to false.

!  Time-triggered requirements act on the current state of the system
•  Don’t refer to a message “being received” or some other event

11

How Does This Impact Sequence Diagrams?
!  Message arcs represent the change in value

•  Event-triggered: The time when a single message value is broadcast
•  Time-triggered: The time when a periodic message value changes
•  So, the number of message arcs should remain about the same

!  Time-triggered requirements may simplify your sequence diagrams
•  You may not need to explicitly store variables now
•  Some of your variable assignment bubbles might need to be removed

!  Update sequence diagrams if a behavior is changed, added, or removed

!  Yes, if you modify sequence diagrams you must update traceability
•  You must enter each change in the issues log if it is a defect rather than an

enhancement
(Until mid-semester, almost everything you change will be due to finding a
defect)

•  You must report number of defects in mid-sem. presentation, so keep track!

12

State Charts
!  Event-Triggered:

•  Arcs are taken in response to received message
•  Asynchronous state machine

–  Only does something when an event occurs
–  Action inside a state takes place exactly once per arc transition

•  Switch statements for state machine are executed once per arriving arc

!  Time-Triggered:
•  Arcs are taken periodically if conditions are true
•  Synchronous state machine

–  Does something on regular period regardless of changes
–  Actions inside state occur repeatedly (every period)

•  Switch statement for state machine executed once per period

!  What’s the difference?
•  What happens when you increment a variable within a state in an event-

triggered state machine vs time-triggered?

13

State Charts
!  Create state charts based on your time-triggered requirements

•  Each state must set all outputs of the control interface in every state
•  Make decisions based ONLY on the current state of the system
•  Have mutually excluding transitions

–  No two guard statements can be simultaneously true on arcs from same state
–  Implicit “stay in same state” guard condition if no other guards are true

•  Note that action inside a state happens every time state chart is evaluated
–  So if you have “set light to on” and the state chart runs at 10x/second,

the light gets an “on” command 10 times per second
•  For now you can run state charts as fast as you want

–  (In general run them at least as fast as the fastest message repetition rate)

!  Create three tables per state chart
•  State activities table
•  Transitions table
•  Traceability for states and transitions to requirements
•  See examples

14

State Charts
!  Forbidden

•  No actions on arcs
–  All actions performed in the state

•  No entry actions (actions occuring only once upon entry)
•  No branches in transitions

–  Just make more than one transition

!  Avoid:
•  Using a state variable to collapse states

–  Break it down into two separate states
–  Compact does not mean easier to read / understand / implement!

•  Nested state charts
–  There’s examples of how to do it correctly in the Soda Machine
–  Still not recommended

15

ButtonControl Time Triggered Statechart

16

ButtonControl Time Triggered Statechart
Each state updates
all interface outputs

(and possibly
variables)

Each state gets
a name

All transitions
are numbered

17

A Brief Word Nested State Charts
!  They’re tricky

•  Can make implementation and traceability a pain too sometimes
!  Avoid nested state charts (the stuff in the blue box)

•  Your state charts aren’t going to be complex enough to need this

18

Traceability
!  Forward:

•  Does every requirement
map to at least one state
or transition?

!  Backward:
•  Does every state or

transition map to at least
one requirement?

!  Include this table in
your behavioral
requirements

19

Traceability Updates and Issues Log
!  If you change or add a behavior, update your sequence diagrams

!  Update your issues log

!  Retrace sequence diagram arcs to requirements to state charts

!  We require end-to-end traceability
•  It takes longer than you would like, make sure you leave time for it!

20

Notes On Defect Tracking
!  If you find a problem while you are working on something, don’t

bother logging it
•  Defects “count” once you try to unit test, peer review, or check code in
•  In other words, start counting defects when you think an item is ready to push

to the next phase

!  For peer review record defects on a peer review log
•  Only promote to the Issue log if not fixed by the weekly due date

(i.e., for every “not fixed” entry in a review log there should be an entry in the
issue log added that week)

•  When reporting defects in presentation metrics, include peer review defect
count, even if defect was closed that week

!  For tests, record defects in test log AND issue log
•  You can add all review defects to issue log if you want for consistency, but it is

optional

21

Questions?

