
21
Critical Systems

Engineering
Distributed Embedded Systems

Philip Koopman
November 18, 2015

© Copyright 2000-2015, Philip Koopman

2

Why Is Automotive SW Safety A Big Deal?
Mechanical components break all the time

• And we expect that to be normal
• BUT, computers are expected to have “perfect” functionality/software

 Possible reasons for demands that software be perfect
• Software defects are design defects, and we don’t tolerate mechanical design

defects either
• Software failure modes can be very non-intuitive or seemingly random, causing

driver to feel lack of control over situation
• Redundancy might not work (both SW copies can break the same way)

 Can a software feature be just as unreliable as a mechanical feature?
• Possibly not if failures are due to software/design defects rather than wearout
• Worse, software might provide extra safety features that drivers rely upon,

causing accidents if feature is inoperative
• Therefore, it might be that a software version has to be safer than a mechanical

version to withstand public scrutiny

3

Automotive Software Woes – 1
Source: http://www.leshatton.org/Documents/Hatton_Xmas1_03.pdf

 In July 1999, General Motors has to recall 3.5 million vehicles because
of an anti-lock braking software defect.
• Stopping distances were extended by 15- 20 meters. Federal investigators

received reports of 2,111 crashes and 293 injuries.
• http://autopedia.com/html/Recall_GM072199.html

 In September 2000, Production of year 2001 models of Ford Windstar,
Crown Victoria, Mercury Grand and Lincoln stopped because of software
defect causing airbags to deploy on their own and seatbelts to tighten
suddenly.
• This stopped production for several days at Ford of Canada and other sites.
• http://www.findarticles.com/p/articles/mi_m3165/is_2000_Oct/ai_68324491

4

Automotive Software Woes – 2
Source: http://www.leshatton.org/Documents/Hatton_Xmas1_03.pdf

 20/May/2002. 2000 top of the range BMW cars had to be recalled because
of a software defect in the fuel injection pump.
• http://www.heise.de/newsticker/data/uvo-28.05.02-002 (in German)

 In September 2003, Mercedes reported that they were reviewing early time
to market in the wake of defects in automotive software systems which
‘were proving hard to debug’.
• http://www.autonewseurope.com/ (but unable to find this article)

May 2004; Mercedes has $30 million recall of 680,000 cars due to defects
in brake-assist-by-wire system. Blamed on hydraulics but the fix is
applying a software patch.
• http://www.automobil.md/news/comments.php?id=7

5

Automotive Software Woes – 3
 March 2004: Chrysler Pacifica (34,561 vehicles)

• Software protocol used to test the vehicle exhaust gas recirculation (EGR) system may
lead to engine stalling under certain circumstances, increasing the risk of a crash.

• http://www.car-accident-advice.com/chrysler-pacifica-recalls-030004.html

 Apr 2004: Jaguar recalls 67,798 cars for transmission fix
• Software defect slams car into reverse gear if there is a major oil pressure drop
• http://www.accidentreconstruction.com/news/apr04/042104a.asp

 Apr 2004: GM recalls 12,329 Cadillac SRXs
• One-second delay in brake activation “The problem, due to a software anomaly, only

occurs during the first few seconds of driving when the SUV is moving slowly”
• http://www.accidentreconstruction.com/news/apr04/040204a.asp

 Dec 2004: Hyundai recalls 120,000 Elantras
• Airbag software problem detected in Insurance Institute crash tests (driver side airbag

didn’t deploy in crash test)
• http://money.cnn.com/2004/12/19/pf/autos/bc.autos.hyundai.recall.reut/index.htm

6

Automotive Software Woes – 4
May 2005 Toyota recalls 23,900 Prius cars

• Hybrid car, engine dying in the middle of the highway
• Requires a software upgrade due to a “programming glitch”
• http://money.cnn.com/2005/05/16/Autos/prius_computer/index.htm

Feb 2010: CNN Headline:
“Toyota: Software to blame for Prius brake problems”
• “Toyota officials described the problem as a "disconnect" in the vehicle's

complex anti-lock brake system (ABS) that causes less than a one-second lag.
With the delay, a vehicle going 60 mph will have traveled nearly another 90
feet before the brakes begin to take hold.”

• “Brakes in hybrids such as the Prius operate differently from brakes in most
cars. In addition to standard brakes, which use friction from pads pressed
against drums or rotors, the electric motors in hybrids help slow them. The
process also generates electricity to recharge the batteries.”

• “The complaints received via our dealers center around when drivers are on a
bumpy road or frozen surface, said Paul Nolasco, a Toyota Motor Corp.
spokesman in Japan. "The driver steps on the brake, and they do not get as full
of a braking feel as expected."

• http://www.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.html?hpt=T1

7

Automotive Software Woes – 5
March 2010: Toyota vehicles cause Congressional inquiries

• Newer vehicles are throttle-by-wire
• Concerns about runaway vehicles (See my Toyota UA talk from 2014)

– http://embeddedgurus.com/barr-code/2011/03/unintended-acceleration-and-other-embedded-software-bugs/

 April 2010: Toyota recalls Lexus GX 460 SUVs
• Consumer reports rated “do not buy” due to rollover risk uncovered during

testing
• Toyota recalled 9,400 in US; 34,000 worldwide, and suspended sales.
• Vehicle Stability Control software fix

– http://money.cnn.com/2010/04/19/autos/lexus_gx460_recall/index.htm

 Nov 2011: Ford sends 250,000 flash drives with software upgrades
to MyFord Touch
• Problems are said to be responsible for dramatic downtrend in quality perception
• Not sure how to upgrade 200K buyers outside US
• “the company also learned quickly that buyers aren't as forgiving with

glitches in their cars as they are with their phones or computers.” [Durbin
AP, Manufacturing.Net Nov 7, 2011]

– http://www.manufacturing.net/News/2011/11/Electrical-Electronics-Ford-To-Upgrade-MyFord-Touch-After-Taking-Heat/?

9

Automotive Software Woes – 6
 Honda recalls nearly 350k Odyssey minivans over unintended

braking
• The issue revolves around a combination of parts and software that have

been reported to cause the vehicle to brake hard and unexpectedly, without
illuminating the brake lights.

– http://www.autoblog.com/2013/11/03/honda-odyssey-recall-unintended-braking/

 Jan 2014: General Motors recalls 370,000 GM, Chevy pickups with
engine fire risk
• The trucks are only supposed to use two cylinders when idling, but a

software glitch is causing them to idle with most of their cylinders. This can
cause exhaust components to overheat, and hence potentially catch fire.

• 3 fires on customer-owned vehicles
– http://www.csmonitor.com/Business/In-Gear/2014/0113/General-Motors-recalls-370-000-GM-Chevy-

pickups-with-engine-fire-risk

Nov 2015: Tesla software can cause Mercedes B-Class Electric
Drive stalling

– http://ecomento.com/2015/11/04/tesla-software-can-cause-mercedes-b-class-electric-
drive-stalling/

10

Automotive Software Woes – 7
 Feb 2014: Toyota recalls 1.9M Prius cars due to software bug

• Hybrid vehicles with plenty of software controlling vehicle
• SW overheats/damages power electronics; vehicle shuts down while driving

– http://bostonherald.com/business/automotive/2014/02/toyota_recalls_19m_prius_cars_for_software_glitch

• Also 294,000 vehicles for skid control software problem
– http://www.washingtonpost.com/business/technology/toyota-recalls-vehicles-in-us-for-software-

glitch/2014/02/13/a7cff5ba-9481-11e3-9e13-770265cf4962_story.html

March 2014: Nissan Recalls 1M vehicles due to airbag flaw
• 2013-2014 Nissan & Infiniti models
• Shuts off airbag via weight sensor SW bug even if adult is in the seat

– http://money.cnn.com/2014/03/26/autos/nissan-recall/

11

12

13

Software Isn’t The Only Thing That Breaks
May 2000: Firestone tire recall is

perhaps the most deadly auto
safety crisis in American history
• (Software isn’t the only thing that

breaks)
• Estimated 250 deaths from rollover

after tire failure
– Treads peel off casings, problems with

hot weather & high speed
– Tires standard on Ford Explorer

• Legislation which mandates the
installation of safety equipment.
(TREAD) Act of 2000

– Tire pressure sensors
– http://www.firestone-tire-

recall.com/pages/overview.html

14

Overview
 Candidate automotive embedded safety critical development processes:

• MISRA
– Automotive specific; but 20 years old

• IEC 61508
– More generic, broad acceptance in non-automotive industry
– But, new variant would be desirable for automotive (especially X-by-Wire)

• ISO 26262 – newer standard
– Which is a significant adaptation of IEC 61508 to for automotive applications

 You need a defensible process for creating safe software
• Consider adopting documented best practices instead of inventing your own

– If you adopt your own, be prepared to demonstrate it is as good as standards
• If everyone else adopts MISRA or IEC 61508 and you don’t, you might be

considered negligent (failure to follow “standard practices”)

15

Why Can’t We Just Test Until Car Is Safe?
 Vehicle level testing is useful and important

• Can find unexpected component interactions
 But, it is impracticable to test everything at the vehicle level

• There are too many possible operating conditions
• There are too many possible timing sequences of events
• There are too many possible faults
• All possible combinations of component failures and memory corruptions
• Multiple software defects activated by a sequence of operations

O
P

E
R

AT
IO

N
A

L
S

C
E

N
A

R
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

16

MISRA
 The Motor Industry Software

Reliability Association
• Includes largely UK automotive

organizations
• Has published recommended practices for

safe automotive software
• Overall guidelines and detailed reports

 You can register for & upload reports
• http://www.misra.org.uk/license.htm
Click “accept license” button at bottom to

continue
• Report 2 on Software Integrity is the

most important report for this lecture

17

MISRA Documents Overview
http://www.misra.org.uk/ download reports for free with registration
 Overview Document:

"Development Guidelines for Vehicle Based Software", November 1994
• Due for update “in 2004” – looks like they are moving to adopt IEC 61508

 Report with details on various areas:
• MISRA Report 1, "Diagnostics and Integrated Vehicle Systems", February 1995.
• MISRA Report 2, "Integrity", February 1995.
• MISRA Report 3, "Noise, EMC and Real-Time", February 1995.
• MISRA Report 4, "Software in Control Systems", February 1995.
• MISRA Report 5, "Software Metrics", February 1995.
• MISRA Report 6, "Verification and Validation", February 1995
• MISRA Report 7, "Subcontracting of Automotive Software", February 1995.
• MISRA Report 8, "Human Factors in Software Development", February 1995.
• MISRA Survey Report, "Sources of Information", February 1995.

• Guidelines for the Use of the C Language in Vehicle Based Software - also known as
"MISRA C" - (published April 1998)

– This one costs money; it is how they make enough money to keep everything else running

18

MISRA Basic Safety Principles – 1
(Commentary bullets are mine; not part of MISRA documents)
a) Safety must be seen to be present (i.e., safety cases must be public)

• Experience shows that public scrutiny of safety cases is required
• A proprietary safety case must be presumed to be hiding defects
• “Public” might just be access to independent certification authorities, although

truly public is even better
b) The greater the risk, the greater the need for information

• More Verification & Validation is required for greater risks
c) Software robustness, reliability and safety, like quality, should be built

in rather than added on
• High quality usually cannot be achieved via just fixing defects found by testing
• Specific and significant design effort must be spent on dependable/high

integrity from the very first day of any software project
d) The requirements for human safety and security of property can be in

conflict. Safety must take precedence
• Better to have a car totaled than to risk loss of life
• Shows up in approaches such as crumple zones (more body damage/less

people damage)
[MISRA guidelines]

19

MISRA Basic Safety Principles – 2
(Commentary is not part of MISRA documents)
e) System design should consider both random and systematic faults

• Random hardware faults are to be expected
• Design defects (especially software defects) are to be expected in an operating

vehicle; so design for safety even if defects occur
f) It is necessary to demonstrate robustness, not rely on the absence of

failures
• Simply observing no problems during functional testing is insufficient
• Verification & Validation must actively evaluate fault responses (e.g. fault

injection)
g) Safety considerations should apply across the design, manufacture,

operation, servicing and disposal of products
• Concern for safety doesn’t end when the product is shipped

[MISRA guidelines]

Example
MISRA

Lifecycle

[MISRA guidelines]

[MISRA guidelines]

22

Software Integrity
 Integrity is a notion similar to dependability + safety

 Integrity needed to avoid:
• Harm to humans
• Breaking legislated laws & regulations
• Undue traffic disruption
• Damage to property (e.g., collisions)
• Damage to environment (e.g., emissions)
• Undue financial loss to manufacturer or owner

 Level of integrity should vary corresponding to risk
• High levels of integrity required for high risk
• Lower levels of integrity acceptable for low risks
• Notes:

– RISK is more or less the traditional expected value of probabilities * losses
– Low integrity doesn’t mean “definitely bad” – it means we can’t prove it is good

23

Safety Integrity Level (SIL)
 Five levels that determine how critical system or component is

• Ranked according to possibility of safe recovery from a fault
• Similar approach to aviation & rail safety standards

SIL Controllability Acceptable Failure Rate
4 Uncontrollable Extremely Improbable
3 Difficult To Control Very Remote
2 Debilitating Remote
1 Distracting Unlikely
0 Nuisance only Reasonably possible

 If multiple potential faults have different levels of controllability:
• Highest single controllability risk determines SIL
• Can use analysis (e.g., FTA) to limit high SIL requirements to a few

components

24

What Do The Controllability Ratings Mean?
These are informal summaries – see MISRA guidelines for details

Examples are also informal; interpretations might vary
 Uncontrollable – SIL 4 “critical failure”

• No driver can be expected to recover from this fault
– E.g., loss of normal braking, parking brake, and steering simultaneously

• Usually extremely severe outcomes, such as multi-vehicle fatal crash
 Difficult to control – SIL 3 “critical failure”

• Good driver can recover in a favorable situation
– E.g., loss of normal braking; but parking brake still works

• Usually very severe outcomes, such as fatal crash
 Debilitating – SIL 2

• Ordinary driver can recover most of the time
• Reduction in safety margin, but usually no worse than severe outcome

 Distracting – SIL 1
• Operational limitations, but minor problem for any licensed driver

 Nuisance only – SIL 0
• Safety is not an issue; fault is only an issue of customer satisfaction

25

How Often Is Improbable?
MISRA Report 2 Appendix A gives a complex procedure

• There is no simple way to summarize the numbers
• But, the outcome is likely to be similar to aviation in the end, so use those as a

starting point to set expectations.
• CAUTION! – these are not the MISRA numbers; they just give a feel for the

situation

AVIATION failure rates with inexact analogy to automotive situations:
 Catastrophic (10-9/hr) => “uncontrollable” ~ SIL 4

• Prevents continued safe flight and landing
 Hazardous (10-7/hr) => “difficult to control” ~ SIL 3

• Large reduction in safety margins; perhaps fatal injuries to some passengers
Major (10-5/hr) => “debilitating” ~ SIL 2

• Significant reduction in safety margins; perhaps non-fatal injuries to passengers
Minor (10-3/hr) => “distracting” ~ SIL 1

• Slight reduction in safety margins; reasonable workarounds
 Nuisance (10-2/hr) => “nuisance only” ~ SIL 0

• Failure causes no effect

26

Real Vehicles Have Drivers
 Driver abilities/situation must be factored into overall Risk

 Human operator issues apply, just as in aviation & nuclear power:
• Human reaction times
• Ease of recognition of a situation
• Attentiveness
• Driver experience
• Risk compensation (improved safety can lead to riskier behavior)
• Subversion or overriding of system safety features/functions
• Smooth and readily perceived transfer of control from system to driver
• Workload of driver, especially at moment of failure

27

Approach To Avoid Hazardous Malfunctions

[MISRA Report 2]

28

How Do You Implement SW At A Given SIL?
 For each SIL, there are specific requirements

• Specification & design
• Languages & compilers
• Configuration management products
• Configuration management processes
• Testing
• Verification & validation
• Access for assessment

 In general, SILS 3 & 4 are critical
• SILS 1 & 2 require care, but 3 & 4 are treated as dramatically more critical
• Every SIL requires lower SIL activities plus, usually, additional activities

 Important notes:
• Technical requirements go beyond this list. For example, proof of safety

properties may require many techniques we’ve discussed to actually accomplish
• IEC 61508 has a more extensive list; it would be no surprise if a new version of

MISRA incorporates some of those as well

29[MISRA guidelines]

30[MISRA guidelines]

31

Need Adequate Technical Approaches Too
 Activities to achieve safety with a SIL approach:

• Determine SIL based on severity of a failure
• Follow SIL-appropriate development practices
• Follow SIL-appropriate technical practices
• Follow SIL-appropriate validation practices
• Make sure process is really working

 Follow accepted practices elsewhere:
• No single point of failure (see later in lecture)
• Real time scheduling that ensures deadlines met
• Watchdog timer that really works
• Code that can be tested and reviewed (good modularity; acceptable complexity)
• SQA and good practices throughout lifecycle
• Good safety culture (do you take safety seriously? Or just go through the

motions?)

BASED ON SIL:
DEVELOPMENT
TECHNICAL

 VALIDATION
 PROCESS QUALITY

32

Important Notes On Following Slides
 High level bullets are quotes from previous MISRA tables

 Other material is opinion, not hard-and-fast rules
• In some particular cases, requirements might be relaxed
• In some cases, requirements might be more stringent
• In all cases, designers are responsible for creating safe systems regardless of

MISRA rules/guidelines/opinions

 Important high-level potential conclusions to consider
• In general, everyday software development tools have to really stretch to reach

SIL 3
– Requires skills in formal methods
– Requires specialists in all areas, including testing & safety cases

• Probably you can’t write SIL 4 software without multiple Ph.D.s on staff who
specialize in safety critical software

33

Specification & Design
 SIL 1: Structured method

• UML is fine
• Generally, any methodical design approach is probably OK
• Pencil & paper is OK

 SIL 2: Structured method supported by CASE tool
• Some tool is used to help with structured method
• Simple examples: Statemate, Simulink
• More complex example: code synthesis from UML tool

 SIL 3: Formal specification of those functions at this level
• For example, specification of SIL 3 functions in Z
• Some areas can be difficult, such as expressing real time behavior

 SIL 4: Formal specification of complete system. Automated code
generation (when available).
• This is a research topic. Apparently some applications do this.
• Job is made easier by encapsulating SIL 4 behavior in smallest system possible

34

Languages & Compilers
 SIL 1: Standardized structured language

• Use a language without “goto” statement, e.g., C rather than BASIC
• Assembly language is, in general, not structured!
• That means, in general, assembly language is outlawed even for SIL 1

 SIL 2: A restricted subset of a standardized structured language.
Validated or tested compilers (if available).
• “Validated” compiler (really = “certified”) means high assurance that compiled

code represents source code (“no” compiler defects)
• MISRA C (more on this later; it isn’t really strongly typed)
• Preference for strongly typed languages
• Ada (especially Spark Ada, a subset of Ada)

– http://www.sparkada.com
– All Ada compilers are validated

 SIL 3: as for SIL 2

35

Languages & Compilers – 2
 SIL 4: Independently certified compilers with proven formal syntax

and semantics (when available)
• In general, C and C subsets are not strong on proven formal syntax and

semantics
• Issue is that different compilers can interpret code in different ways (ambiguity

in language specification)
• http://www.praxis-cs.co.uk/sparkada/pdfs/misracatsil4reader.pdf

talks about MISRA SIL 4 in particular

• In absence of formally proven compiler, might need to show that output
corresponds to input

– This implies re-verifying output code EVERY TIME IT IS COMPILED!

36

An Aside – MISRA C
 Guidelines that loosely define a subset of C programming language

• $76 document; 50 pages; NOT available on web for free
• Updated in 2004; 2012

 “Common sense” rules that belong in most coding style sheets
• Rule 20 (required): All object and function identifiers

shall be declared before use.

 Some stylistic rules that are a matter of opinion, but must be followed
• Rule 49 (advisory): Tests of a value against zero should

be made explicit, unless the operand is effectively
Boolean.

 Rules that are designed to reduce number of “stupid” errors
• Rule 104 (required): Non-constant pointers to functions

shall not be used.

 Off-the-shelf tools have MISRA C checkers (e.g., PC-LINT)
• You should at least use MISRA C for safety critical software

37

MISRA C Evolves with Time (so should your rules)

[Burden13]

38

Configuration Management: Products
 Configuration management areas:

• Uniquely identify versions of each software item
• Identify versions of each item that constitute a complete product build
• Identify build information for all products in development; delivered; installed
• Control simultaneous updating of software by multiple developers
• Provide coordination for updating multiple products at multiple locations

– This includes subcontractors!
• Identify and track all actions and changes from change requests – initiation

through release

 SIL 1: All software products. Source code
• Source code, designs, documents, manuals

 SIL 2: Relationships between all software products. All tools.
• All dependencies (e.g., module A version 6 requires module B version 3.2)
• All tools under configuration management (necessary to rebuild old versions)

– As a practical matter, includes old OS versions; maybe even old hardware

 SILs 3 & 4: As for SIL 2

39

Configuration Management: Processes
 SIL 1: Unique identification. Product matches documentation. Access

control. Authorized changes.
• Previous list of configuration management areas implemented
• Ensure product matches documentation (e.g., design matches implementation)
• Access control to ensure unauthorized people don’t change pieces of software
• Changes approved by configuration control board, not just at programmer’s

whim

 SIL 2: Control and audit changes. Confirmation process.
• Audits of control and change processes by independent auditors
• Confirmation means ensuring that installed software actually matches what

configuration management says it should be

40

Configuration Management: Processes – 2

 SIL 3: Automated change and build control. Automated confirmation
process.
• Changes automatically logged; automated version control system
• Software builds are done in a completely automated manner

– Makes it impossible to forget to do a build step for release software
• Confirmation that installed software is correct configuration is automatic

 SIL 4: As for SIL 3

41

Testing
 SIL 1: Show fitness for purpose. Test all safety requirements.

Repeatable test plan.
• Test plan must be written and give repeatable results. Can be manual testing

– Tests should be traceable to something (not necessarily requirements)
• Acceptance test must provide reasonable coverage of normal operating

scenarios (concept of operational profile applies)
• All safety requirements must be traceable to some test (preferably acceptance

test)

 SIL 2: Black box testing.
• Functional (behavioral)/black box testing performed of system

42

Testing – 2
 SIL 3: White box module testing – defined coverage. Stress testing

against deadlock. Syntactic static analysis
• Defined, defensible structural (white box) testing coverage. (95%+ is realistic)
• Multi-tasking stress tests to (hopefully) expose deadlocks and other

concurrency issues
• Syntactic static analysis is examination of code for structural problems

– Lint or high quality compiler warning analysis (maybe with multiple compilers)
– Can also include coding style design review

 SIL 4: 100% white box module testing. 100% requirements testing.
100% integration testing. Semantic static analysis.
• “100%” white box testing (probably this means branch coverage)
• 100% of requirements are traceable to tests
• 100% data connectivity integration testing (every data element transmitted to

every module)
• Semantic static analysis

– Includes strong type checking, and possibly other tools such as array bound checks

43

Verification & Validation
 SIL 1: Show tests: are suitable; have been performed; are acceptable;

exercise safety features. Traceable correction.
• Tests actually test the things that matter. At a minimum, backward traceability:

– White box tests backward traced to design & implementation
– Black box tests backward traced to design & requirements

• Test logs indicate test plan performed, including results of tests
• Test results are “pass” OR results corrected

– If “too many” acceptance tests fail at higher SILs, this raises question of software
quality

• 100% of safety features trace to tests
– Means every safety feature tested at least one way
– Does not mean safety has been completely tested!

 SIL 2: Structured program review. Show no new faults after
corrections.
• Design reviews of, at a minimum, the actual code
• Some form of regression testing to catch fault reinjection effects

44

Verification & Validation – 2
 SIL 3: Automated static analysis. Proof (argument) of safety

properties. Analysis for lack of deadlock. Justify test coverage. Show
tests have been suitable.
• Static analysis of formally specified code (e.g., type checkers and more)
• Safety case
• Analysis for lack of deadlock livelock (testing alone isn’t good enough)
• If any test metric is less than 100%, justify why system is safe

– (From testing lecture, recall that 100% coverage on every metric is impossible)
• Ensure that all interactions of safety features have been covered
• Show that tests confirm the validity of formal analysis of formal specifications

– IMPORTANT – this is a shift from testing as finding defects to testing as a quality
check on creating “perfect” software!

45

Verification & Validation – 3
 SIL 4: All tools to be formally validated (when available). Proof

(argument) of code against specification. Proof (argument) for lack of
deadlock. Show object code reflects source code.
• Software tools formally validated (if such tools exist)

– This ensures that what designers put into tools matches generated code
– Don’t forget that this applies to any hardware synthesis tools as well!

• Formal proof/safety case of formally specified code against its specification
– In other words, need to prove that generated code really meets specification

• Prove that object code matches source code (even if compiler is validated)
• Proof/safety case against livelock and deadlock

46

Access For Assessment
If a third party can’t assess safety,

then your system can’t be considered safe.
• OEMs will, probably, increasingly require 3rd party assessments

 SIL 1: Requirements and acceptance criteria. QA and product plans.
Training policy. System test results.
• Copies of written requirements and acceptance tests/criteria
• QA plan, product development plan, system test results
• Training policy (how do you know developers have appropriate safety skills?)

 SIL 2: Design documents. Software test results. Training structure.
• Complete end-to-end design documents (including available traceability

analysis)
• Software test results (and, probably, all V&V paperwork)
• Inspection of company training (make sure training policy is being carried out)

47

Access For Assessment – 2

 SIL 3: Techniques, processes, tools. Witness testing. Adequate
training. Code.
• Written documentation of techniques, all software processes, and standard tools
• Ability to audit conformance to techniques, processes, use of tools
• Testing of system in presence of a witness (e.g., 3rd party witness to acceptance

testing)
• Audit/assess whether developers really possess skills they have been trained to

have
• Complete access to all source code

 SIL 4: Full access to all stages and processes.
• At a minimum, ability to ask any question and see any document
• Preferred – absolutely everything necessary to perform audit is in written form

48

Other Items Not In Table
 The table doesn’t say much about fault tolerance

• It is really buried in the “safety case” bullets and Report 2 Appendix E
• In general, need extensive self-checks and/or redundancy
• (excerpt from Rpt. 2 App. E):

49

“Reality Check” Time
 Consider a SIL 4 system:

• Should be huge MTBF for critical software defects (something like 109 hrs)

 What is the safety argument being made?
• Determine that SIL 4 is applicable
• Use listed techniques

• BUT, there is no measurement that the result actually achieves 10-9/hr !
• Rather, the approach is designed keeping in mind affordability vs. risk

– What it is really saying is, do everything reasonable for the integrity level
• AND, it assumes that you are trying as hard as possible to create safe code given the

processes you are using
• It is POSSIBLE that these lists aren’t really good enough

– The argument is that they are all automotive can afford; not that they are sufficient
– But, also, that the industry overall thinks that these are good enough, as far as we know

 What is a guess for the future?
• Almost certainly SIL 4 will get harder every time there is a major problem

– The goal is, for practical purposes, zero defects for critical software
• SIL 3 will probably adopt previous SIL 4 techniques as they become common
• Research community moving to “safety arguments” (see later slide)

50

Example Discussion: Electronic Parking Brake
http://www.conti-online.com/generator/www/de/en/continentalteves/continentalteves/themes/products/electronic_brake_systems/

parking_brake_1003_en.html

 Possible EPB Functions:
• Emergency braking if primary brakes fail
• “Drive-away” automatic release on hills
• Normal parking brake function
• Vehicle immobilizer (car security system)

 Discussion questions:
Assume critical functionality is provided by software
• What are the worst potential hazards?
• What is the SIL of this system?
• What is a likely acceptable failure rate?
• What architecture might be acceptable to provide this failure rate?
• Who is responsible for ensuring safe operation within design flow?

51

Overall Themes
 In some cases the tools/techniques for SIL 4 are problematic

• MISRA guidelines say “if available”
• This means you have to have a substitute if tools are unavailable

– Example: manual verification of output code if compiler isn’t formally proven
• It also means if something becomes available, you’ll have to adopt it

– Failure to keep up with best practice/available tools could be a legal liability!

 Simply following the rules blindly isn’t good enough
• Time and again, experience shows that software safety requires “safety culture”

in the industry, supplier, and OEM
– The reality is there is very little SIL 4 automotive software deployed
– If you don’t have to use “unavailable” tools, then are you really as safe as you are

supposed to be?
– Really, what SIL 4 is saying is use everything you can afford

• When SIL 4 software starts being common, the rules are likely to change
– They are likely to change by becoming stricter!

52

SIL-Like Approach Is Common
All have a catalog of techniques for risk reduction

 Rail – European (and US) train systems CENELEC ENV-50128/50129
• “Vital” and “non-vital” processes, with SILS 1-4
• Tables of “recommended” and “highly recommended” practices, just like MISRA

 FDA – US medical software
• Standard is “Premarket submissions for software contained in medical devices”
• SILs: “Minor Concern” / “Moderate Concern” / “Major Concern”

 NASA – US Spacecraft (NPG 8715.3 Safety Manual)
• “Catastrophic” / “Critical” / “Moderate” / “Negligible” and probability classes

 UL – Underwriter Laboratories / Consumer goods
• UL 1998 version 2 / May 2000
• “Critical” / “Non-Critical” / “Supervisory” sections of software

 FAA – Aircraft safety (Do-178b)
• Levels A (catastrophic if faulty) through E (no effect if faulty)

 US DoD – MIL-STD-882D (severity below is mapped to 20 risk levels)
• “Catastrophic” $1M+ / “Critical” $200K+ / “Marginal” $10K+ / “Negligible”

 Also, NUREGS CRC6463 Software Review Guidelines (Nuclear Power)
• Gives design rules & entertaining catalog of common software defects

53

ENV 50129: Railway Signaling Safety
 1998 European standards

from CENELEC
• Covers hardware & overall

system; uses SIL
• Extensive list of

techniques:
– M = Mandatory
– HR = Highly

Recommended
– R = Recommended
– NR = Not Recommended

 Probably more stringent
than MISRA
• Many years of SW safety
• Trains can fail safe
• Trains carry more people

[ENV50129]

[ENV50129]

Example techniques

SIL Overview

54

ENV 50128: Railway Signaling Software Safety
 2001 European standards from

CENELEC
• Designed for use with ENV50129

 List of 69 software safety
techniques
• Both high level areas & specific

techniques
• Higher SILs require some

techniques
• Some techniques are NR (e.g.,

artificial intelligence for safety)

[ENV50128]

[ENV50128]

55

IEC 61508
 IEC 61508

• The new main standard for software safety
• Strategy is to tailor for different domains (e.g.,

chemical process)
• Comprehensive standard – would be no

surprise if MISRA shifts to this for next
generation (but, that is speculation on my part)

• Includes SILs & table of recommended
techniques

• E/E/PES = electrical/electronic/programmable
electronic safety-related systems

 Also, a few new ideas that are useful
• E.g., concept of a “proof test”

56

Parts Of IEC 61508
1. General Requirements
2. Requirements for electrical/electronic/programmable electronic safety-

related systems (“E/E/PES”)
• General hardware/system guidelines

3. Software requirements
• Software-specific techniques

4. Definitions and abbreviations
5. Examples of methods for determination of SILs
6. Guidelines on the application of parts 2 & 3
7. Overview of techniques and measures

• Brief summary description of all techniques mentioned

57

IEC 61508 Safety Integrity Levels (SILs)

 Continuous / high demand
• Continuous operation or very frequent discrete time operation
• “Critical” boundary is SIL 3 at 10-7/hr

 Low demand – occasionally activated
• For example, emergency backup system
• Expressed as probability it will fail if it is used one time (e.g., emergency brake)
• “Critical” boundary is SIL 3 at 10-3 – one failure per 1000 activations
• Presumption is that it is difficult to get into a situation where this is necessary

SIL
Continuous/High
Demand
(Dangerous failures/hr)

Low Demand
(Probability of failure
to perform on demand)

4 10-9 to 10-8 /hr 10-5 to 10-4

3 10-8 to 10-7 /hr 10-4 to 10-3

2 10-7 to 10-6 /hr 10-3 to 10-2

1 10-6 to 10-5 /hr 10-2 to 10-1

Source: [Redmill98]

58

IEC 61508 Techniques
 Similar to ENV 50128; with more detail

• M = Mandatory
• HR = Highly Recommended
• R = Recommended
• NR = Not Recommended

[IEC 61508-3]

59
[IEC 61508-3]

60

IEC 61508-7 –Techniques & Measures
 Dictionary of software dependability techniques

• Includes “aim”, “description” and references
• 178 pages, with 2 or 3 techniques per page
• Not all are appropriate in every situation
• BUT, this is probably the most authoritative + extensive such list

 Nonetheless, it is incomplete
• Does not have much on distributed system dependability
• IEC 61508 specifically excludes human factors, which is important to vehicles

61

ISO 26262 (Automotive Drive-By-Wire)
 Recommends approaches as in 61508, BUT

• Includes human interface
• Only considers high demand (continuous operation)
• Claims to be more about normal operation than specific safety functions

– (but in practice the distinction is blurred even for 61508)

 ASIL (Automotive SIL)
• ISO 26262 part 3 describes ASILs
• ASIL A (lowest) … ASIL D (highest integrity)
• ASIL “QM” is equivalent of SIL 0 -- not safety related (Quality Management)
• ASIL concept is: “use these techniques and it will reduce risk to an acceptable

level” (techniques chart similar to 61508)

• Next slide shows how you get an ASIL

62

ISO 26262 ASIL Determination
 Severity:

• S0 = no injuries
• S1 = light and moderate injuries
• S2 = severe and life-threatening

injuries (survival probable)
• S3 = life-threatening injuries

(survival uncertain) and
fatalities

 Probability of exposure:
• E0 = Incredible
• E1 = Very low probability
• E2 = Low probability (e.g., 1%)
• E3 = Medium probability
• E4 = High probability

 Controllability
• C0 = Controllable in general
• C1 = Simply controllable
• C2 = Normally controllable

(e.g., can control 90% of time)
• C3 = Difficult to control or

uncontrollable
 Notice that only one bin is ASIL D

(highest level)

63

Redundancy and SIL Requirements
 SIL 1 & SIL 2 are semi-critical – probably nobody dies in mishap

• Let’s say target is 10-5/hr
• Single board computer failure rate is ballpark 10-5 to 10-6/hr
• So that means SIL 1 and SIL 2 can be achieved with a single computer

 SIL 3 & SIL 4 are life-critical – likely that someone dies in mishap
• Let’s say target is 10-7/hr or lower failure rate
• This means that you must have redundancy to achieve safety

– In rough terms, two components at 10-5/hr gives you 10-10/hr

• What failures do you worry about? Any arbitrary fault.
– It’s not good enough just to handle faults you can think of
– Any two functions on a chip can fail together, just because they are on the same

chip, even if there is no physical way you can think of for that to happen.
– As a thought experiment – if you tried your hardest to design an unsafe system on

just one chip, would the redundant chip catch it and make it safe? If not, then your
design isn’t safe.

64

Example Safe Computing Hardware Patterns
 Gated actuation pattern

• Variant is a shutdown
pattern (resets system
if problem)

• Common in automotive
systems

 Two of Two pattern
• Redundant computation in

each CPU shuts down the
pair if a mismatch is
detected

• Common in Rail systems
• NOT THE SAME as primary/standby, which provides availability but not safe

shutdown

[Kalinsky 2005]

65

Hardware Reliability Matters Too
 Usually SIL 3 and above require hardware redundancy

• Is this single chip CPU good enough for SIL 3? (Possibly not)

[Freescale09]

66

Safety Arguments
 Goal Structuring Notation (GSN) http://www.goalstructuringnotation.info/documents/

GSN_Standard.pdf

67

Related Book Chapters
 Chapter 29 – Watchdog timers

• Should be in any embedded systems pre-req course
• But we have found it is often missing, so this chapter catches you up
• In particular, don’t kick the watchdog timer from an ISR

– Unless the ISR is actually watching the health of every other task in the system!

 Chapter 30 – System reset
• You should always have a way to reset
• Make sure the system is well behaved during reset

– What happens if an I/O port hardware defaults to “max speed” upon reset?

68

Review
MISRA

• Existing standard for automotive industry
• Most prevalent in UK, but spreading to global supplier network
• Probably will be replaced over time by ISO 26262, which is IEC 61508 adapted

to automotive industry

 IEC 61508
• The new main standard for software safety; background in process industry

– Strategy is to tailor for different domains (e.g., chemical process)
– Comprehensive baseline standard (i.e., basis for domain-specific standards)

• Includes SILs & table of recommended techniques

• Does not include human factors as contributor to accidents
– For automotive, ISO 26262 includes driver as a consideration

• Does not specifically include distributed computing; more a component-level
approach

