
18
Distributed Time

Distributed Embedded Systems
Philip Koopman

Nov. 9, 2015

© Copyright 2000-2015, Philip Koopman



2

Preview
 Distributed time

 When things happen; chain of causal events
 Relating messages to causality

 Clocks and time ticks
 It is fundamentally impossible for all nodes to have exactly the same clock time
 Limitations of network messaging affect clock synchronization

(if you use the same network to distribute time and announce events, it is 
difficult to have a time base more precise than event announcement jitter)

 Clock synchronization algorithms
 Heavy duty distributed time algorithms are grad.-level material

 Kopetz book:  Chapter 3 goes into graduate-level descriptions
 The ideas are (almost) all in this lecture, but with more intuitive explanations



3

Why Is Distributed Time Difficult?
 Fundamentally, it is impossible to have a perfect, common time base

 So, we hope relativistic effects don’t matter
 We put in hacks for network delay time

– Measure typical propagation delays
– Measure typical time variations (drift, jitter)
– Assume that they don’t change a lot, and add in fudge factors to account for them

 But, EVEN THEN, “closely spaced” events are always a problem



4

The Same Problem on a Network
 Variations in time between event and sending network package

 A/D conversion speeds
 Sampling jitter  (interrupt priority/interference OR polling loop time delay)
 Operating system task scheduling jitter
 Network interface jitter & message prioritization



5

Causality & Time -- An Example
 Let’s say that a pipe breaks, causing a spill



6

Causal Order -- How Did It Happen?
 Pump overspeed caused pressure and vibration, breaking the pipe

 Assume the storage tank was full, so input flow zero despite pump
 (Assume the pipe was defective, and overspeed stressed the latent defect)

 Once the pipe is broken and pump stops, the tank empties



7

Message Delivery Order -- Can Be Arbitrary
 Messages can be delayed by:

 Priority-based blocking (e.g., if storage tank low level has highest priority)
 Multi-hop routing (e.g., if pump overspeed must traverse 5 network bridges)
 Other system loads (e.g., if pump overspeed computer is doing a non-

interruptible computation)

Possible 
Message 
Delivery 
Order



8

An Obvious Solution -- Time Stamps
 This is why time matters on a distributed system

 Provides a global sense of when things happened
 Provides notion of dead time from sense to actuate for distributed control loops

 BUT:
 Consumes bandwidth
 Requires synchronized time-of-day at every node



9

A Less Obvious Solution – Implicit Time Stamps
 Send every message in a cyclic pattern   (Another Time Triggered Idea)

 Cycle #1: Message #1
 Cycle #1: Message #2
 Cycle #1: Message #3
 Cycle #2: Message #1
 …

 Ensure that each message has the most recent data value when it is sent
 Best case is that message has brand new data
 Worst case is that message has data almost one cycle old
 Implicit time stamps consist of fact that data is never more than 1 cycle out of 

date (and, possibly, have an explicit cycle number attached)
– This is the basis for the Π /∆ precedence discussion in Kopetz
– The kinder, gentler version follows

 But first, a word about accuracy, precision & time ticks



10

Time Measurement Inaccuracy Sources
 Variations

 Synchronization difference (impossible to sync all clocks exactly)
 Clock drift (too fast, too slow, maybe time-varying)

 Quantization effects
 Micro-tick size limitation on a single node
 Across-network Tick size limitation on a system



11

Physical Clock
 Typical source: oscillator circuit, perhaps augmented

with GPS time signal
 R/C timing circuit; somewhat stable
 Commodity crystal oscillator; perhaps  10-6 /sec stability  (14-pin DIP size)

– Oven-controlled for wireless communications; perhaps 10-11 /sec stability
 Micro-rubidium atomic oscillator

– perhaps  10-11 /month stability
– 0.7 kg weight
– 0.3 liter volume



12

Simple Real-World Clock Drift Example
 A gizmo has a crystal oscillator running at 32,768 Hz + 0.002%

 32,768 Hz is a quartz watch crystal; 15-bit divider gives 1 Hz
 (.002% is a 2*10-5 drift rate)
 The product specification requires accuracy of 2 seconds/day
 Will the oscillator meet the specification?

(.00002 sec/sec drift rate * (60 sec * 60 min * 24 hr) 
=  1.728 sec drift per day   (so it meets the spec.)

 How far will it drift over a 2-year battery life?

1.728 sec/day * (365.25 days * 2 years) = 21 minutes drift over 2 years

 Observations:
 10-6 or 10-7 is probably desirable for consumer products that keep time
 There are a lot of seconds in a year  (31.6 million of them)

– Roughly Pi * 107



13

Distributed Time Ticks
 Micro-tick: granularity of clock  

(counter/timer interrupts)
 Length of time used on single node for time 

keeping
 Multiple of the local process oscillator speed

 Global Tick: clock events generated in global 
time
 Length of time used to coordinate events across 

nodes
 Usually many micro-ticks per global tick
 Sometimes called a Macro-tick
 A network-wide notion of time, independent of 

micro-tick size

 Key attribute: stability over operating time
 Global ticks have to happen often enough to keep 

things from skewing too far apart at nodes



14

Global Time Tick
 Global time granularity g is the size of global time stamp 

increments
 To be reasonable, g has to be > Precision Π
 Events must be 2 or more ticks apart to establish unambiguous temporal 

order
– Event A might be up to 1 tick faster than a notional “reference clock”
– Event B might be up to 1 tick slower than a notional  “reference clock”
– But, difference is < 2 ticks  (i.e., temporal ordering certain at >= 2g time 

difference)

 (For time-triggered network messages, “g” in terms of event ordering is 
based on message periods)

 How long does an event last?
 Up to 2g error on start of event
 Up to 2g error at end of event
 (Assumes that event start, event end, and elapsed time observer happen at 

different nodes)



15

Example, When Does the Bus Come?
(A gentle version of Π /∆ precedence)

 Say that the 61C bus comes every 5 minutes
per the schedule
 8:05 bus
 8:10 bus
 8:15 bus

 You get on a bus at 8:11; which bus was it?
 If buses run +/- 6 minutes early/late, it could have been any of the three
 If buses run +/- 5 early/late, it was the 8:10 or the 8:15
 If buses run < +/- 4 early/late, it could only be the 8:10

(Moral of the story:
don’t bother with a bus schedule if average jitter exceeds scheduled inter-arrival time)

 Now consider messages sent in a network...
 How do you connect message order to event sequence?



16

A Graphical Explanation
 Assume that time period g is slightly larger than precision

 So there is always an instant at which all nodes have the same period number

 An event could happen at one instant and appear to be:
 Period 7 in one node; period 8 in a second (leftmost vertical arrow)
 Period 8 in both nodes
 Period 8 in one node; period 9 in a second (rightmost vertical arrow)
 BUT NOT: Period 7 in one, and Period 9 in a second one
 There is no instant in which period number differ by 2 or more

– So, any events with period numbers >= 2 apart have unambiguous order

Period 7 Period 8 Period 9

Period 7 Period 8 Period 9

Assume Period=g is slightly larger than precision.



17

Why Is It 2g Instead of 1g?
 Assume order unknown  (e.g., RMA scheduled Network or RTOS)

 In above example:
 Assume time-triggered messages sent somewhere within each global tick
 Event 2 is reported by its message almost 2 ticks before Event 1

– (If messages take “zero” time, events have to be >= 2 ticks apart to guarantee order)
 Idea of “sparse time” – time stamps only increment at macro-tick boundaries



18

Need Only 1g Separation For Ordered Messages
 If message order is always the same (e.g., TDMA network)

only need 1g separation to guarantee unique order
 Any messages that arrive > 1g apart are guaranteed to be in correct order

(assuming no lost/dropped messages)
 But, this assumes you know network schedule, which might not be true



19

Distributed Time Measurement Errors
 Offset: difference in time at a particular instant per an omniscient observer
 Precision: (Π  ) maximum offset between any two clocks within system
 Accuracy: (A) offset between system time and the “real” time

Given this information:
“Real” correct time: 14
Node #1: 18
Node #2: 13
Node #3: 17

What is:
Offset: Node 1  vs. Node 2 ____   Node 3 vs. Node 2: ____
Precision:          _______
Accuracy: Node 1 ____ Node 2____ Node 3___



20

Clock Synchronization
 Every once in a while, clocks must be reset to the “correct” time

 Consensus among nodes (improving precision)
 Consensus with notional reference clock (improving accuracy)

 State correction
 Agree on the time and fast-forward/rewind to that time
 Simple, but introduces discontinuities in time base

 Rate correction
 Speed up/slow down tick rate to converge to better time
 More difficult to implement, less chance of a problem
 GPS time is “rate steered”

– GPS time is typically accurate within 200 ns to 1 microsecond

 Fault Tolerant correction
 Usually, drop the lowest and highest clocks, then average the rest
 (Advanced theory and correctness proofs apply here…)



21

Master Clock Synchronization
 Master node says “it is now 1:32 PM”

 Assume that master node has access to high-quality time reference
 Assume that master node never fails, or is redundant
 Assume that master node messages have high priority

 Embellishments:
 Use multiple round-trip messages to establish message latency; compensate 

time for message latency
 Use a broadcast message instead of individual messages to each node
 Use periodic broadcasts, and establish a local phase-locked-loop with master 

clock at each node



22

Distributed Time Synchronization
 Improve precision by reducing variation

 Nodes vote to establish mean time value
 Nodes adjust time to conform to mean
 Only works well when:

– Adjustments are tweaked to total zero in aggregate (to avoid system drift)
– Node time drift is completely random (unbiased)

 This is good enough if the time in the outside world doesn’t matter
 If accuracy matters, use an external time base as one of the node times

 Distributed time synch is used in most dependable embedded systems



23

g in an Embedded Network
 Basic granularity limit is 2 tpd in an embedded network

 Node A starts sending a bit
 Node B “sees” a bit 1 tpd later (tpd = propagation delay)

– Might have started sending a bit of its own during that tpd interval
 Node A “sees” results of potential interference from B yet another tpd later

 Consequences:
 Takes special care to achieve clock synchronization better than 2 tpd

 Bit times on some networks are limited to 2 tpd in size to synchronize state 
machines controlling network protocol

 And, of course, gate delays in network interface logic make it worse

 Example:
 1 Mbit CAN network;  assume speed of signal in wire = 0.5 C
 Maximum length:  2 tpd = 1 μsec       length = 0.5 C * tpd = 150 meters

– But, tall buildings might be > 350 meters high... Have worse than 1 μsec synch.



24

Daylight Savings Time & Time Zones
 Daylight savings time switches

 Which are declared annually by Congress and have been known to change
– WW II had war-time daylight savings time to save energy
– “Energy Crisis” in the 70’s resulted in year-round daylight savings time
– Only the Navajo nation within Arizona does DST (not the state; not the Hopi resv.)

 http://www.energy.ca.gov/daylightsaving.html
– Beginning in 2007, Daylight Saving Time extended:
– 2 a.m. on the Second Sunday in March  to

2 a.m. on the First Sunday of November.
– This does not correspond to European dates!

www.time.gov





26

Problems With Time in the Real World
 Coordinated Universal Time (UTC; the world time 

standard)
 Is not a continuous function due to leap seconds

(and is only monotonic by putting 61 seconds in a minute just before midnight)
 And, of course, leap year also causes discontinuities, although they’re more 

predictable

 Time zones
 Not just on hourly boundaries – Venezuela is UTC/GMT -4:30 hours; no DST
 VCR auto-time-set might sync to channel from wrong time zone via cable feed

 DST changeover date changes fairly often
 With little warning compared to a 10-20 year embedded system lifetime

 “Y2K”
 The GPS 1024 week time rollover (a ship got lost at sea…)
 And Unix rollover  problem (January 19, 2038  03:15:07 GMT)
 Leap year occurs more often … but still a problem





28

F-22 Raptor Date Line Incident
 February 2007

 A flight of six F-22 Raptor fighters attempts to deploy US to Japan
 $360 million per aircraft  (Perhaps $120M RE, rest is NRE)

 Crossing the International Date Line, computers crash
– No navigation
– No communications
– No fuel management
– Almost everything gone!
– Escorted to Hawaii by tankers
– If weather had been bad, might

have caused loss of aircraft

 Cause: “It was a computer glitch
in the millions of lines of code, 
somebody made an error in a 
couple lines of the code and 
everything goes.”

[DoD]

[Wikipedia]



29

2013: NASA Declares End to Deep Impact Comet Mission

http://news.nationalgeographic.com/news/2013/09/1309
20-deep-impact-ends-comet-mission-nasa-jpl/

http://apod.nasa.gov/apod/
image/0505/art1_deepimpact.jpg



30

Review
 Distributed time

 When things happen; chain of causal events
 Relating messages to causality

 Clocks and time ticks
 It is fundamentally impossible for all nodes to have exactly the same clock time
 Limitations of network messaging affect clock synchronization

(if you use the same network to distribute time and announce events, it is 
difficult to have a time base more precise than event announcement jitter)

 Clock synchronization approaches
 Tradeoff of changing rate of change or changing value


