
© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

A Case Study of Toyota
Unintended Acceleration and

Software Safety

1

Prof. Phil Koopman

Carnegie Mellon University

koopman@cmu.edu
betterembsw.blogspot.com

http://creativecommons.org/licenses/by/4.0/legalcode

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Overview
• Brief history of Toyota UA events

• Recalls, investigations, lawsuits
• Fines & jury awards – $$Billions

• Technical discussion of the problems
• This is a Case Study – what can we learn?

• What does this mean for future automobiles?
• The bar is raised, at least for now

• E.g, handling of GM ignition switch & Honda hybrid SW UA

• I testified as a Plaintiff expert witness
• I saw a whole lot of stuff, but not “source code”
• I can only talk about things that are public

2

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Aug. 28, 2009, San Diego CA, USA
• Toyota Lexus ES 350 sedan

• UA Reached 100 mph+

• 911 Emergency Phone Call
from passenger during event
• All 4 occupants killed in crash

• Driver:
Mark Saylor, 45 year old male.
Off-duty California Highway Patrol Officer; vehicle inspector.
• Crash was blamed on wrong floor mats causing pedal entrapment
• Brake rotor damage indicated “endured braking”

• This event triggered escalation of investigations dating back
to 2002 MY

3

http://www.nytimes.com/2010/02/01/business/01toyota.html?pagewanted=all&_r=0
http://www.autoblog.com/2009/10/26/nhtsa-releases-new-info-about-crash-that-prompted-toyota-floorma/

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Recalls & Public Discussion
(Brakes might not mitigate open throttle – more later)

• Floor mat recalls
• Sept. 2007 recall to fasten floor mats
• Wider recall Oct./Nov. 2009 after Saylor mishap

• Sticky gas pedal recall
• Jan. 2010 and onward

• Congressional investigation
• Toyota President testifies to US Congress, Feb. 2010
• April 2010: Economic loss class action venue selected

4
◄

http://www.cnn.com/2010/POLITICS/02/24/toyota.hearing.updates/
http://money.cnn.com/autos/storysupplement/toyota_timeline/
http://articles.latimes.com/2010/feb/18/business/la-fi-toyota-exponent18-2010feb18

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.
5http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/

May 25,
2010

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

NASA Investigation
• NASA team investigates UA (2010-2011)

• Including Electronic Throttle Control System (ETCS)
• Controls air + fuel + spark engine power

6[NASA UA Report Fig 4.0-1]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Toyota 2008 ETCS – Two CPUs

7

Main
CPU

(Contains
Software)

Monitor
Chip

(Contains
Software)

http://m.eet.com/media/1201063/Toyota_ECM.jpg

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Toyota ETCS Is Safety Critical
• If driver pumps brakes, loses vacuum power-assist

• With depleted vacuum, holding against WOT requires average of
 175 pounds of force on brake pedal

across vehicles tested [NHTSA data]
• With vacuum it’s only 15.0 - 43.6 pounds force

[http://www.nhtsa.gov/staticfiles/nvs/pdf/NHTSA-Toyota_vehicle_characterization.pdf]

• A software defect could command UA, for example via
Wide Open Throttle (WOT)
• The brakes will not necessarily stop the car

[Consumer reports: http://www.youtube.com/watch?v=VZZNR9O3xZM]

• Potential to command WOT matters for safety
• Not just whether there is an actual bug in that does that

• Drivers will not necessarily perform countermeasures
([NASA UA Report, p. 66]: shift to neutral; key-off while moving)

8
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

NASA Conclusions
• NASA didn’t find a “smoking gun”

• Tight timeline & limited information [Bookout 2013-10-14AM 39:18-40:8]

• Did not exonerate system

• But, U.S. Transportation Secretary Ray LaHood said,
“We enlisted the best and brightest engineers to study Toyota’s
electronics systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed
acceleration in Toyotas."

9

[NASA UA Report. Executive Summary]

http://www.nhtsa.gov/PR/DOT-16-11

…

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Did NASA Have Correct & Complete Information?

• The ESP-B2 Monitor Chip has software in it
• But NASA does not analyze ESP-B2 software in its reports –

analysis is limited to Main CPU software.

• NASA credited Error Correcting Codes in RAM for 2005MY:

• Apparently because Toyota told NASA it had EDAC (ECC)
[Bookout 2013-10-14PM 83:19-84:25]

• Exponent public report claims ECC for Main CPU [p. 201]
• Only claims SEC, not SECMED

• But, actually no EDAC on RAM for 2005MY vehicle
[Bookout 2013-10-11 AM 55:22-25; 2013-10-14 AM 72:5-73:11; 2013-10-14AM
78:16-79:17]

10

[NASA REPORT P. 54]

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

$1.6B Economic Loss Class Action
• “Lawsuit pursues claims for breach of warranties, unjust

enrichment, and violations of various state consumer
protection statutes, among other claims.”
• https://www.toyotaelsettlement.com/
• 2002 through 2010 models of Toyota vehicles
• Toyota denies claims; settled for $1.6 Billion in Dec. 2012
• Brake override firmware update for in some recent models

11

https://www.toyotaelsettlement.com/
3 August 2014

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Bookout/Schwarz Trial
• October 2013, Oklahoma

• Fatal 2007 crash of a 2005 Toyota Camry
• Neither floor mat nor sticky pedal recalls

cover this MY; no “fixes” announced

• Toyota blamed driver error for crash
• Mr. Arora (Exponent) testified as Toyota software expert
• “[Toyota’s counsel] theorized that Bookout

mistakenly pumped the gas pedal instead of the brake, and by the
time she realized her mistake and pressed the brake, it was too late
to avoid the crash” [http://bigstory.ap.org/article/oklahoma-jury-considers-toyota-acceleration-case]

• Plaintiffs blamed ETCS
• Dr. Koopman & Mr. Barr testified as software experts
• Testified about defective safety architecture & software defects
• 150 feet of skid marks implied open throttle while braking

12
◄

[http://money.cnn.com/2013/10/25/news/companies/
toyota-crash-verdict/]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.
13

[http://www.beasleyallen.com/webfiles/toyota
-sua-jury-verdict-form-1.pdf (excerpts)]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.
14

Bookout
Trial

Reporting
http://www.eetimes.com/do
cument.asp?doc_id=1319
903&page_number=1

(excerpts)

“Task X death
in combination
with other task
deaths”

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

The Bookout/Schwarz Results
• Jury awarded $3 million compensation

• Key point in trial was whether ETCS design defects
caused the fatal crash
• To this day, Toyota disputes that their ETCS is flawed

• $1.5M each to Bookout and Schwarz estate
• Toyota settled before jury could consider

awarding additional, punitive damages

• Subsequent Federal trials put on hold
• Only ETCS software/safety case to actually go to trial

• Remaining Federal trials deferred
• Mass settlements proceeding during 2014

• Hundreds of cases pending being settled as of summer 2014

15

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

US Criminal Investigation
• “Toyota Is Fined $1.2 Billion for Concealing

Safety Defects” – March 19, 2014
• Four-year investigation by US Attorney General
• Related to floor mats & sticky throttle pedals only

• Deferred prosecution for three years in exchange for fine
and continuing independent review of its safety processes.

• Toyota said in a statement that it had made fundamental
changes in its corporate structure and internal safety
controls since the government started its investigation four
years ago.

16

http://www.nytimes.com/2014/03/20/business/toyota-
reaches-1-2-billion-settlement-in-criminal-inquiry.html

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

The Technical Point of View
• NASA didn’t find a smoking gun, but…

• They found plenty that is technically questionable
• It was a difficult assignment with limited time & resources

• Jury found that ETCS defects caused a death
• Experts testified ETCS is unsafe ..

.. but jury is non-technical

• So……..let’s consider public information and
you can decide if ETCS is safe for yourself

• Consider accepted practices circa 2002 MY vehicles
• UA loss of command authority over the throttle
• Consider if “reasonable care” was used
• Standard of evidence is “more likely than not”

17
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

ETCS Architecture (simplified)

18

Source:
NASA UA
Report
Figure
6.4.1-1;
not all
functions
are depicted

Accelerator
Pedal

VPA1

VPA2

Cruise Control

Transmission
Shift Selector

Vehicle Speed

VTA1

VTA2

Monitor ASIC

Main CPU

Sub CPU

D
ig

ita
l I

np
ut

 &
 A

/D
 C

on
ve

rs
io

n

VPA1

VPA2

Other
Sensors

VTA1

VTA2

Failure
Monitor

Compute
Throttle

Command

Electronic
Fuel

Injection
And

Ignition
Timing

Throttle
Motor &

Valve
Engine

VTA: Throttle Position
VPA: Accelerator Pedal Position

256.6K Non-Comment Lines C Source + 39.5K NCSL headers (Main CPU) +
Proprietary Monitor Chip software [NASA App. A p. 21]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Didn’t Vehicle Testing Make It Safe?
• Vehicle level testing is useful and important

– Can find unexpected component interactions

• But, it is impracticable to test everything at the vehicle level
– Too many possible operating conditions, timing sequences
– Too many possible faults, which might be intermittent

• Combinations of component failures + memory corruption patterns
• Multiple software defects activated by a sequence of operations

19

O
P

E
R

AT
IO

N
A

L
S

C
E

N
A

R
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Testing Is Not Enough To Establish Safety
• Toyota tested about 35 million miles at system level

• Plus 11 million hours module level software testing
([NASA report p. 20], covering 2005-2010 period)

• In 2010 Toyota sold 2.1 million vehicles [Toyota annual report]

• Total testing is perhaps 1-2 hours per vehicle produced
• Fleet will see thousands of times more field exposure
• Vehicle testing simply can’t find all uncommon failures

20[Butler 1993, p. 10]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Safety Integrity Level (SIL) Approach
• SILs form different “bins” for levels of required safety

– Based on effects of the fault if not properly mitigated

• Poor Controllability dictates a low Acceptable Failure Rate
– Acceptable Failure Rate determines which techniques required to

achieve a correspondingly rigorous Integrity Level (SIL)

[MISRA SW p. 18, annotated] 21

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Safety Integrity Level Approaches Are Common
Standard Domain; Year Safety Integrity Levels (SILs)

MISRA Software Guidelines
[MISRA Guidelines p. 17]

Automotive; 1994 SIL 1 (lowest) .. SIL 4(highest)

IEC 61508
[IEC 61508-1, p. 34]

Process Control; 1998 SIL 1 (lowest) … SIL 4(highest)

ISO 26262
[ISO 26262-3, pg. 10]

Automotive; 2011 ASIL-A (lowest) .. ASIL-D (highest)

CENELEC EN-50128/9
[EN 50128 p. 12]

Rail; 1997/1998 SIL 1 (lowest) … SIL 4(highest)

FDA
[FDA 1998, pg. 8]

Medical; 1998 Minor, Moderate, Major

NASA NPG 8715.3
[Herrmann 1999, pg. 151]

Spacecraft;

1996/1997

Negligible, Moderate, Critical, Catastrophic

FAA Do-178b
[Do-178b p. 7]

Aircraft; 1992 Level D (minor) .. Level A (catastrophic)

MIL-STD-882D
[MIL-STD-882D p. 18]

US Combat Systems;

1977

IV (negligible) .. I (catastrophic)
(severity; maps to levels 1-20 of risk)

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

An Accepted Practice for Safety Critical SW

• SIL approach:
• Determine SIL based on failure severity
• Follow SIL-appropriate development process
• Follow SIL-appropriate technical practices
• Follow SIL-appropriate validation practices
• Make sure process is really working (SQA)

• This includes:
• “Near-perfect” software
• Design out single points of failure

(per appropriate fault model)
• Justify real time scheduling with analysis
• Watchdog timers that have real “bite”
• Good software architecture
• Good safety culture

23

BASED ON SIL:
DEVELOPMENT
TECHNICAL

 VALIDATION
 PROCESS QUALITY

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

MISRA SW Guidelines Required Practices

SIL 3 requires all SIL 1 + SIL 2 + SIL 3 activities

The ETCS likely qualifies as MISRA SIL 3 – and this is what it takes:

[MISRA SW,
1995 p. 21]

24

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

More MISRA Required Practices

25

[MISRA SW,
1995 p. 21]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

What’s The Required Level of Rigor?
• No certification requirement for US cars

• US standards generally insufficient for software safety
• FMVSS = Federal Motor Vehicle Safety Standards

don’t address typical software safety topics
• US DoT can require recalls and otherwise enforce if

safety problems are detected in field

• Legal standards vary
• Generally can’t be “unreasonably dangerous”

when used for intended purpose
• Auto makers not required to follow MISRA guidelines

• But, it was available if they wanted to follow it
• 2002 was first model year in economic Class lawsuit;

ETCS partial redesign for 2005MY [Bookout 2013-10-15AM 32:4-34:10]

26
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

What Is The Toyota Level of Rigor?
• Toyota does not claim to have followed MISRA Guidelines

• (Note that MISRA Guidelines >> MISRA C)
• NASA did not disclose an auditable software process plan
• NASA did not disclose a written safety argument from Toyota

• Toyota’s expert in Bookout trial offered two basic opinions
• No “realistic” ETCS fault that explains/caused Bookout mishap
• Any “realistic” failure will be caught and mitigated by failsafes

[Bookout 2013-10-22PM 47:3-48:1]

• Exponent “public report” basically argues the same things:
• Same-fault-containment-region fail-safes will mitigate UA
• Couldn’t find a “realistic” fault scenario for unmitigated UA
• Couldn’t find a system-level test that produces unmitigated UA

27

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Example Failsafe: Brake Echo Check
• “Brake echo check” is an ETCS failsafe

• Echo-back brake pedal state from Main to Monitor CPU

• May detect some Task X deaths after a UA
• BUT, requires a “brake pedal” transition

• Thus:
• If your foot is already on the brake
• And then a UA event occurs
• You may have to completely take foot off the brake

to trigger the failsafe (tail lights must turn off)
• If you pump brakes without a complete lift of your foot off the

brake pedal, failsafe is not activated
[Bookout 2013-10-11PM 96:4-11; 2013-10-14PM 16:25-17:22; 74:1-23; 2013-10-14PM 102:16-103:25]

28
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Random HW Faults & Safe Systems

[Constantinescu 2003, p. 16]

Radiation strike causing transistor disruption
[Gorini 2012].

29

• Hardware (HW) bits flip values
due to radiation strikes (“soft errors”)
• Affects memory, control logic, CPU registers – everything on a chip
• “soft errors must be taken into account” for drive-by-wire automotive

components [Mariani 2003, p. 50]

• Software defects can also corrupt memory
• Result of corruption can be “incorrect output” – not just SW crash

[Sullivan 1991, pp. 6, 8]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

How Often Do Random Faults Happen?
• HW faults every 10,000 to 100,000 hours per chip

• Perhaps 2% are dangerous 0.2 times per million hrs
[Data from Obermaisser pp. 8,10, using the favorable number here]

• HW Example: ~430,000 Camry vehicles built/year
• US cars driven about 1 hour per day x 365 days/year

• That’s 365 * 430,000 hrs = 156.95 million hours / year
• At 0.2 dangerous faults per million hours 31 / year for fleet

• One dangerous fault every 11.6 days at the low end –
per chip – for just one model year
• Approximate numbers – the point is they will happen

• Software faults will only make it worse
• Every large deployed fleet suffers HW & SW faults

• ETCS fail-safes catch some – but not all – of these faults
30(Note: yearly production is approximate)

◄_

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

• HW/SW faults can have far-reaching effects
• One hardware bit flip can kill an entire task
• A wild pointer can corrupt a seemingly unrelated function

• A Fault Containment Region (FCR)
provides a fault “firewall”
• Faults inside stay inside
• External faults stay outside

• Faults can have an arbitrarily bad effect within FCR
• A single FCR can’t self-police all of its own failure modes
• Consistency checks – assume at least some data is accurate
• Within-FCR failsafe might be corrupted by the fault it looks for

31

F
C

R

ault
ontainment

egion

FAULT

FAULT

Fault Containment Regions

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Redundancy Required For Critical Systems
• Need multiple, independent FCRs to detect faults

• Each FCR can police other FCRs, but not itself in all cases
• Shared resources are a dangerous single point of failure
• Self-test isn’t enough for safety

• Two common safety patterns:
– Multi-channel system

• Multiple CPUs cross-check or vote
– Monitor/Actuator

• Main CPU computes; secondary CPU checks

• Complete protection requires redundancy
– Independent observations of input values
– You can’t trust another FCR – what if it gives you bad data?

32

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Safe Dual Processors Split Input Sources

Monitor
Chip

Monitor
Chip

Main
CPU

Main
CPU

Accelerator Pedal 2
VPA2

Accelerator Pedal 2
VPA2

Accelerator Pedal 1
VPA1

Accelerator Pedal 1
VPA1

Throttle Position 2
VTA2

Throttle Position 2
VTA2

Throttle Position 1
VTA1

Throttle Position 1
VTA1

ALL SENSORS Undetected
Faulty Data

TOYOTA ETCS
TOYOTA ETCS

with Monitor CPU
Data Sampling Fault

(a) (b)

X

Monitor
Chip

Main
CPU

Accelerator Pedal 1
VPA1

Throttle Position 1
VTA1

Accelerator Pedal 2
VPA2

Throttle Position 2
VTA2

Cross-Checks
Detect Mismatch

Monitor
Chip

Main
CPU

Accelerator Pedal 1
VPA1

Throttle Position 1
VTA1

Accelerator Pedal 2
VPA2

Throttle Position 2
VTA2

Cross-Checks

Acceptable Fault Tolerant
ETCS Architecture

Contains Faults in Either CPU

Acceptable Fault Tolerant
ETCS Architecture

(b)(a)

X

33

Sharing of inputs
permits undetected faulty
data to reach main CPU

Alternate design uses
separate A/D inputs
to cross-check data

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Accelerator
Pedal

VPA1

VPA2

Cruise Control

Transmission
Shift Selector

Vehicle Speed

VTA1

VTA2

Monitor ASIC

Main CPU

Sub CPU

D
ig

ita
l I

np
ut

 &
 A

/D
 C

on
ve

rs
io

n
VPA1

VPA2

Other
Sensors

VTA1

VTA2

Failure
Monitor

Compute
Throttle

Command

Electronic
Fuel

Injection
And

Ignition
Timing

Throttle
Motor &

Valve
Engine

VTA: Throttle Position
VPA: Accelerator Pedal Position

Redundant Accelerator Position Signals (VPA1/VPA2)

34

This is a Single Point of Failure

Both copies of
VPA (and other
signals) go
through same
input block
on the
same chip

◄

• Safe architectures do not have single points of failure

[Bookout 2013-10-11AM 63:21-64:14]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

What About Software Bugs?
• For example what if MISRA C rules are violated?

• MISRA C is a safer subset of C programming language
developed for automotive use

35

Toyota data on infotainment software shows an expected
one “major bug” for every 30 coding rule violations

[Kawana 2004].

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

What Is Toyota Source Code Quality?
• Coding style: rules for code formatting & language use

• Toyota claimed 50% MISRA C overlap for coding rules
• But only 11 MISRA C rules out of MISRA C in the Toyota coding rules

• Toyota did not always follow its own coding rules
• For example, 105 out of 343 “switch” keywords without “default”

[e.g., NASA App. A pp. 21-23]

• Reason given for not using MISRA C rules for 2002 MY:
Its coding rules pre-date 1998 MISRA C [NASA App A p. 28]

• 35 MISRA C rules that NASA tools could readily check:
• 14 of 35 rules violated; 7,134 violations

• Mostly macro use and use of #undef [NASA App. A. p. 29]

• Mike Barr’s team found 80,000 violations of MISRA C
[Bookout 2013-10-14PM 44:19-45:2]

36
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

NASA ETCS Static Analysis Results

37

• NASA used several static analysis tools [NASA App. A, pp. 25-31]

• Toyota did not claim warning-free on these, but results informative
• Coverity:

• 97 - declared but not referenced
• 5 - include recursion

• Codesonar:
• 2272 - global variable declared with different types
• 333 - cast alters value
• 99 - condition contains side-effect
• 64 - multiple declaration of a global
• 22 - uninitialized variable

• Uno:
• 89 - possibly uninitialized variable
• 2 - Array of 16 bytes initialized with 17 bytes

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Code Complexity

• McCabe Cyclomatic Complexity metric
– Number of “eyes” in flow control graph
– Unit tests harder with complex graph

– Over 50 is considered “untestable”

• Toyota ETCS code:
– 67 functions with complexity over 50
– Throttle angle function complexity = 146;

1300 lines long, no unit test plan
[Bookout 2013-10-14 31:10-32:23; 32:15-23]

Complexity=7
[NIST 500-235, 1996,
pp. 28-29]

[RAC 1996, p.124] 38

“Spaghetti code”:
Incomprehensible code due to unnecessary
coupling, jumps, gotos, or high complexity

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Global Variables Are Evil
• Global variables can be read/written from any system module

– In contrast, local variables only seen from a particular software module
• Excessive use of globals tends to compromise modularity

– Changes to code in one place affect other parts of code via the globals
– Think of it as data flow spaghetti

[Wulf 1973, pp. 28,32]
39

. .

.

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Toyota Global Variable Use
• Ideal number of writeable globals is ZERO

• OK to have moderate “const” values and configuration data:
• Toyota code has: [NASA App. A p. 33]:

• 4,720 read-only & text variables
• 11,253 read/write variables

• ETCS globals command throttle angle, report engine speed
[Bookout 2013-10-14 PM 29:4-15]

• Toyota: 9,273 – 11,528 global variables
[NASA App. A pp. 34, 37]

• “In the Camry software a majority of all data objects (82%) is
declared with unlimited scope and accessible to all executing tasks.”
[NASA App. A, pg. 33]

• NASA analysis revealed: [NASA App. A, pg. 30]

• 6,971 instances in which scope could be “local static”
• 1,086 instances in which scope could be “file static”

* Various counts differ due to use of different analysis tools with
slightly different counting rules 40

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Concurrency Bugs / Race Conditions
• One CPU can have many tasks (e.g., with Real Time Operating System)

– Tasks take turns, sharing the CPU
and memory
(“multi-tasking”)

• Concurrency defects often come
from incorrect data sharing
– One way to fix this is to

disable interrupts before reading to
ensure one task reads/writes at a time

– Defects may be due to subtle
timing differences, and are
often difficult to reproduce

[Wind River]
41

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

ETCS Concurrency Issues
• NASA identified a specific concurrency defect

• Nested scheduler unlocks [Bookout 2013-10-14PM 21:10-22:1]

• Shared global variables not all “volatile” [NASA App. A pp. 33-34]

• Shared globals not always access with interrupts masked

42

. . .

[NASA App. A pp. 33-34]

[NASA App. A pp. 33-34]

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Toyota ETCS and Recursion
• Safety rules typically forbid recursion

• Risk of stack overflow
• Recursion makes it impossible to do the

V&V necessary for a system like the ETCS
[NASA APP A. p. 129]

• Toyota ETCS uses recursion
• Stack is 94% full PLUS any recursion

[Bookout 2013-10-14PM 35:7-24]

• No mitigation for stack overflow
• Incorrect assumption that overflow always

results in a system reset [NASA APP A pg. 130]

• Memory just past stack is OSEK RTOS area
[Bookout 2013-10-14 PM p. 39:1-5]

43[MISRA C, page 43]

MEMORY
SPACE

G
LO

BA
LS

/
R

TO
S

D
AT

A

RECURSION CAN
KEEP PUTTING
COPIES OF DATA
ONTO STACK,
CAUSING
OVERFLOW

...

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Watchdog Timers Must Detect Task Deaths
• Watchdog Operation:

– If count-down timer reaches
zero, it resets the CPU

– CPU periodically “kicks”
watchdog to indicate it is
awake, replenishing the
counter

• Proper watchdog use
includes:

– Kicking from timer tick interrupt
service routine usually a bad sign

– Any single task death must
inhibit watchdog kick

• That means checking all tasks
for liveness before kicking
[e.g., Lantrip 1997]

Microcontroller
CPU

WATCHDOG
TIMER

CLOCK

KICK

RESET

[Brown 1998, p. 46]

[Koopman 2010, p. 335]

44
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

ETCS Watchdog Operation
• Toyota ETCS detects if CPU load too high

[NASA App. A p. 18]
• (Note that if a task dies, that decreases CPU load)

• But…
• System ignores RTOS error codes (e.g., task death)
• Watchdog kicked by a hardware timer service routine
• Watchdog does not detect death of major tasks,

including “Task X”
• Task X includes throttle angle calculation & most failsafes
• Task X sets most Diagnostic Trouble Codes (DTCs)
• Watchdog only detects death of the 1 msec task, not others

[Bookout 2013-10-14PM 70:10-72:23; 81:5-11; 105:14-21]

45
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Safety Culture
• “No knowledge at Toyota” for some parts of the “V” process

(e.g., module inspections)
• No independent certification for parts they couldn’t/didn’t check

[Bookout 2013-10-11 PM 32:22-33:19]

• Example of Toyota’s UA investigation philosophy:
• “In the Toyota system, we have the failsafe, so a software

abnormality would not be involved with any kind of UA claim.”
(Employee tasked with examining vehicles with reported UA problems)

[Bookout 2013-10-11 PM 35:6-21]

• 2007 e-mail internal Toyota e-mail says:
• “In truth technology such as failsafe is not part of the Toyota’s

engineering division’s DNA.” …
… “Continuing on as is would not be a good thing.”

[Bookout 2013-10-14 PM 96:20-97:3]
46

◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Other Issues
• Poor isolation of task functions

• “Kitchen Sink” “Task X” both computes throttle angle AND is responsible for
many of the failsafes (same CPU, same task). Brake Override function in
2010 MY Camry is in this same task. [Bookout 2013-10-14 AM 80:5-82:16]

• OSEK RTOS not certified; 80% CPU load (> 70% RMA limit)
[Bookout 2013-10-14PM 42:6-25] [NASA App. A p. 119]

• Many large functions
– 200 functions exceeded 75 lines of non-comment code [NASA App. A p. 23]

• Reviews informal and only on some modules
[Bookout 2013-10-11 PM 29:24-30:5; 2013-10-14 49:17-21]

• No configuration management [Bookout 2013-10-11 PM 30:7-10]

• No bug tracking system [Bookout 2013-10-14 PM 49:3-50:23]

• No formal specifications [Bookout 2013-10-11 PM 29:24-30:5]

47
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Some Legal Concepts
• The trials have been civil, not criminal

• “Beyond reasonable doubt” is a criminal standard
– not applicable in the death & injury lawsuits

• US typical decision threshold for civil lawsuit liability is:
• “More likely than not”

• For product defects, common ideas are:
• Was reasonable care exercised in the design?

• For example, were accepted practices followed?
• Unreasonably dangerous/defective for intended use?

• Would it have been economically feasible to cure the defects?
• The defects were a plausible cause of the loss event

• Not necessarily the only possible cause
(Laws vary by US State; these are just common ideas)

48

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Discussions
• My blog with relevant topical postings

• Postings starting February 17, 2014 are edited
excerpts from my Toyota expert report
http://betterembsw.blogspot.com/

• Contains full citation information

• Technical Reporting
• EE Times articles by Junko Yoshida

• Mike Barr talk on code details
• http://www.barrgroup.com/files/killer_apps_barr_keynote_eelive_2014.pdf

• Video of pumping brakes with open throttle
• Consumer reports goes 80 mph with full braking:

http://www.youtube.com/watch?v=VZZNR9O3xZM

49

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Source Documents
• NASA & NHTSA Reports (significant redactions)

• http://www.nhtsa.gov/UA

• Some Bookout Trial materials (small redactions)
• http://www.safetyresearch.net/2013/11/07/toyota-unintended-

acceleration-and-the-big-bowl-of-spaghetti-code/

• Exponent public report: (from Toyota experts)
• http://pressroom.toyota.com/article_download.cfm?article_id=3597

• Timeline: (from plaintiff lawyers)
• http://www.toyota-lawsuit.com/toyota-recall-timeline/

50

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Acknowledgements
• The NASA Toyota UA review team

• The Plaintiffs’ source code review team
• Michael Barr
• Nathan Tennies, Dan Smith, Nigel Jones
• Carl Muckenhirn, Steve Loudon, Doug Denney

• Many people who have worked on this topic
• Lawyers who decided to take on these cases
• Other, numerous efforts

51

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Additional Slides
on Real Time Scheduling

52

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Real Time Scheduling
• Hard real time systems have a deadline for each periodic task

– With an RTOS, the highest priority active task runs while others wait
– System fault occurs every time a task misses a deadline
– Mathematical analysis is accepted practice for ensuring deadlines are

met (…next slide…)

[Alexeev 2011, p. 5]

[Kleidermacher 2001 pg. 30]

53

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Ensuring Deadlines Are Met
• Mathematical analysis is required to assure deadlines are met
• Rate Monotonic Analysis/Scheduling (RMA/RMS)

– Ensures no missed deadlines under a set of assumptions
– Must know worst case execution time of each periodic task
– Some assumptions (e.g., no inter-task blocking)

• To accomplish RMS:
– Prioritize tasks based on period (shortest period = highest priority)
– Leave enough slack to account for worst case task arrivals
• Maximum 69.3% CPU usage maximum for an infinite number of tasks

• E.g., for 4 tasks: 4 * (4throot(2) – 1) = 4 * (20.25-1) = 75.68% loaded
(There is special case that has a better bound, but that does not apply here)

 %3.69lim;12
1

n

n

i

n

i

i n
P
C

[Liu p. 53]

54
◄

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Does ETCS Meet Deadlines?
• Toyota didn’t follow RMA and…

• Has task over-run handling code [Bookout 2013-10-14PM 82:9-17]

• Operating System not certified OSEK
[Bookout 2013-10-14PM 42:6-25]
• Multiple priority levels; each with round-robin tasking
• Toyota analysis based on 10 second engine run

[NASA App. A p. 120]

• Timing analysis too difficult for NASA
• Worst Case Execution Time difficult due to busy-wait

loops, indirect recursion, etc. [NASA App. A pp. 120-133]
• But, no deadline misses seen [NASA App. A. pp. 120-125]

• Main CPU less than 20% idle time at 5000 RPM
• In other words, more than 80% loaded [NASA App. A p. 119]

• Would miss deadlines even if RMA had been used

55

Partial Task List
[NASA App. A p. 37]

