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ABSTRACT 
 
Resident sensors are envisioned for civil infrastructure applications, but providing long-term power for such devices 
remains a design challenge.  An ideal solution would be to scavenge energy from structural strains and make the 
scavenging component a part of the sensor package.  In principle, piezoelectric materials are suited to that role, and 
studies by others have demonstrated the feasibility of energy scavenging from flexible PZT devices operated at large 
strains and high strain rates.  We have conducted experiments to collect electrical energy from PZT ceramics.  We 
summarize the governing piezoelectric equations and outline the most convenient forms to use for the energy 
scavenging problem, illustrated by tracing one complete loading cycle.  We review the material properties for the three 
PZT ceramics used in our experiments.  We show experimental results recording voltage and charge in the cases of 
open-circuit, resistive loads, and capacitive loads, showing good agreement with analytical predictions.  However, the 
greatest challenge is the approach to energy storage.  In theory, capacitors can store energy but at varying voltage and 
with non-negligible leakage, whereas a battery can store energy at constant voltage with little leakage.  We conducted 
experiments on both approaches, and we discuss our findings of the feasibility and efficiency of battery recharging at 
the scale of our devices, which have nominal dimensions of 10x10x1 mm. 
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1.  INTRODUCTION 
 
Piezoelectric devices are potentially useful for scavenging electrical power from time-varying strains in structures.  This 
power can be used to operate resident sensors that would periodically perform measurements, store data, and report by 
RF communications when polled.  The candidate application discussed here is to scavenge energy from structural strains 
using PZT (lead-zirconium-titanate, a piezoceramic) specimens with mm-scale dimensions in thickness and cm-scale 
dimensions in length and width. 
 
The device proposed must satisfy these requirements: 

• The device must be powered by changes in strain regularly encountered in a structure. 
• The device must be sufficiently small to form part of the packaging of an intended sensor. 
• The device must provide sufficient power for the intended periodic use of the sensor. 

Our preliminary analysis suggests that these requirements can be satisfied.  The simple case studied here is a thin disc 
polarized in the through-thickness direction, for which a mechanical change in thickness creates a voltage across those 
same poling electrodes.  Because the experimental study of piezoelectric performance may be new to many researchers 
in the field of structures, in this paper we first present the relevant background theory and then we report results from 
our laboratory investigations. 
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2.  PREVIOUS WORK 
 
The direct piezoelectric effect is the development of surface electrical charge in response to mechanical stress, and was 
first demonstrated as a property of certain asymmetric crystals by Pierre and Jacques Curie in 1880.  The inverse 
piezoelectric effect, the development of mechanical strain (dimensional change) in response to an applied electrical 
field, was predicted by Lippmann in 1891 and then quickly confirmed by the Curies.  The crystallographic principles 
were described by Voigt in 1910.  An early application was the first ultrasonic submarine sensors developed by 
Langevin in 1917, and another was the resonance of piezoelectric crystals for frequency control.  Piezoelectricity 
remains the basis for many excitation and sensing capabilities including most ultrasonic and ultrasound applications.  
The reader is referred to the relevant chapter1 in the text by Mason2 and to a paper by Ballato3 for an introduction to 
piezoelectricity. 
 
The use of the direct piezoelectric effect for power scavenging is the subject of significant recent attention.  One project 
at MIT4 involved the development of footwear heel materials containing a piezoelectric layer for the purpose of 
powering electronic devices carried by personnel.  A recent laboratory study at Sandia5 was a successful integrated 
demonstration of the use of power scavenging, structural sensing, and communications within a prospective application 
of building surety.  The study used a commercial PZT bending transducer, a microcontroller, and an RFID device to 
demonstrate energy conversion under high flexural strain, in which the microcontroller was powered and the RFID 
signal was encoded.  Ottman et. al.6 recently described a piezoelectric generator under sinusoidally varying strain, 
showed analytical and experimental results comparable to the ones presented here, and studied the use of a voltage 
controller to increase charging efficiency. 
 

3. BACKGROUND 
 
3.1  Overview of piezoelectricity and development of the governing equations 
 
In an elastic material, equations relate the stress and strain tensors denoted {T} and {S}, respectively.  In a dielectric 
material, equations relate the electric field and electric displacement tensors, denoted {E} and {D}, respectively.  In a 
piezoelectric material the quantities are coupled to one another.  In principle, one pair of coupled equations should 
suffice for a typical application.  However, the piezoelectric equations have conventionally been developed to map out 
all possible pairings of dependent and independent variables, and as a result four pairs of coupled equations are 
generally encountered.  The four pairs are, of course, equivalent and can be derived from one another.  However, the 
alternate forms of the material constants needed for each equation pair, and the alternate forms by which material 
constants are reported by manufacturers, add to the burden of using these equations.  We present all four pair of 
equations, and material constants, for the case of a specific PZT material.  The matrices described below are simplified 
using the particular case of the PZT crystal symmetries.   
 
3.2  Reference axes and stress/strain definitions 

 
Figure 1.  Reference axes for stress components 

 
The piezoelectric properties of a PZT are formed by electroding two parallel surfaces and poling the material between 
them.  The direction of poling is defined as the 3-axis, and two orthogonal directions are defined as the 1-axis and 2-
axis.  For convenience we will work with rectangular cuboids and we will set the 1-axis and 2-axis to be parallel to the 
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edges  of those specimens, as shown in Figure 1.  Stresses are shown on the visible surfaces with the familiar symbols of 
σ for normal stress and τ for shear stress.  In the piezoelectric equations the six stress components are defined as T1 
through T6, as shown; components T1 through T3 correspond to normal stresses, while T4 through T6 correspond to shear 
stresses.  The strain components S1 through S6 are analogous.  Stress {T} and strain {S} are both vectors of length 6. 
 
In the absence of piezoelectric behavior coupling the mechanical and electrical variables, the elastic relation between 
strain and stress, or between stress and strain, is simply: 

 
{T} = [c]{S} or  {S}=[s]{T} 

 
where [c] is a 6x6 stiffness matrix and [s] is a 6x6 compliance matrix.  Matrices [c] and [s] are inverse to one another. 
 
In a piezoelectric material, the stiffness (and compliance) properties are different under constant electric field than they 
are under constant electric displacement.  Accordingly, the [c] and [s] matrices must be defined with respect to those 
two conditions, indicated by superscripts E and D, as follows: 
 
                  [cE]  = stiffness matrix at constant electric field 
 
with [cD], [sE], and [sD] accordingly. 
 
The PZT materials are members of a specific crystal class3 (labeled 6 mm, or 6Cv, or dihexagonal pyramidal, or Class 
26) possessing important symmetries.  The material properties are symmetrical about the 3-axis, which is why we may 
conveniently assign the 1-axis and 2-axis parallel to the sides of our specimen.  Whereas a general anisotropic material 
has 21 coefficients in its [c] or [s] matrix, materials with the PZT crystal structure have only four independent 
coefficients.  Moreover, many stress/strain pairs are not coupled to one another, reflected by matrix coefficients equal to 
zero.  The form for the [c] matrix for this class is as follows: 
 

                          

2
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00000

00000

000

000

000

1211

44

44

331212
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121211

cc
c

c

ccc

ccc

ccc
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Coefficient c66 is sometimes listed separately, but is not independent of c11 and c12, as shown.  Matrix [s] is analogous 
except that s66 is equal to 2(s11-s12). 
 
3.3  Dielectric properties 
 
The electric properties of interest, electric field E and electric displacement D, may have components along each of the 
three principal axes.  Therefore, electric field {E} and electric displacement {D} are vectors of length 3.  In the absence 
of piezoelectric behavior that couples the mechanical and electrical conditions, the relation between electric 
displacement and electric field would be written {E}=[ ε ]{D}, where [ε ] is the permittivity, most commonly 
expressed as a dielectric constant relative to ε 0, the permittivity of free space.  In this formulation, [ε ] would be a 3x3 

matrix.  The inverse relation between electric field and electric displacement would be written {D}=[ β ]{E}, where 

impermeability [ β ] is also a 3x3 matrix, and where [ ε ] and [ β ] are the inverse of one another.  For PZT the [ ε ] 

matrix is diagonal with only two independent coefficients: ε 11 (which equals ε 22) and ε 33.  The [ β ] matrix is 

similarly diagonal, each term being the reciprocal of the corresponding term in the [ε ] matrix. 
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In a piezoelectric material, the permittivity (and impermeability) properties depend upon whether the electric field and 
electric displacement occur under constant stress or under constant strain.  Accordingly, the [ε ] and [ β ] matrices must 

be defined under those two conditions, indicated by superscripts T and S.  Therefore, [ε T] is the permittivity matrix at 

constant stress, with [ε S], [ β T], and [ β S] defined accordingly. 

 
3.4  Piezoelectric matrices 
 
The piezoelectric properties relate the six mechanical terms to the three electrical terms, or vice versa, and therefore will 
take the form of a 3x6 (or 6x3) matrix.  The piezoelectric properties are variously recorded as the [d], [e], [g], or [h] 
matrices.  Referring to the [d] matrix, a PZT has only three independent coefficients.  Moreover, along many of the 
direction pairings there is no coupling, reflected by matrix coefficients equal to zero.  The form of matrix [d] for this 
crystal class is as follows: 
 

000

00000

00000

333131

15

15

ddd

d

d

 

 
Matrices [e], [g], and [h] are analogous.  The matrices are not independent and can be derived3 from one another.  
Quantities in [d], [e], [g], and [h] have units of c/N, c/m2, Vm/N, and V/m, respectively.  The quantity d33 is sometimes 
termed the piezoelectric modulus, g33 the piezoelectric pressure constant, and h33 the piezoelectric deformation constant.  
Note that the units of g are equivalent to V/m (electric field) per Pascal.   
 
3.5  Governing equations, coupling factors 
 
The governing equations are grouped below into four pairs.  A matrix transpose is denoted with a prime. 
 

}]{'[}]{[}{ EeScT E −=   (1a) 

 

}]{[}]{[}{ ESeD Sε+=   (1b) 

 

}]{'[}]{[}{ DhScT D −=   (2a) 

 

}]{[}]{[}{ DShE Sβ+−=   (2b) 

 

}]{'[}]{[}{ EdTsS E +=   (3a) 

 

}]{[}]{[}{ ETdD Tε+=   (3b) 

 

}]{'[}]{[}{ DgTsS D +=   (4a) 

 

}]{[}]{[}{ DTgE Tβ+−=   (4b) 

 
Piezoelectric material properties are most commonly characterized with the use of coupling factors, expressing the ratio 
of the mutual energy to the geometric mean of the elastic energy and the dielectric energy.  For a one-dimensional stress 
state T3 (with all other stresses equal to zero) the coupling factor is designated k33 and is shown in Mason1 to equal: 
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For strain S3, with all other strains equal to zero, the coupling factor is designated kt and is equal to: 
 

3333

33

SDt
c

h
k

β⋅
=   (6) 

In practice, piezoelectric material properties are generally expressed with a small number of individual constants and a 
well-chosen set of coupling factors.  
 

4.  ANALYSIS OF A FOUR-STEP LOAD AND DISCHARGE CYCLE 
 
It is instructive to discuss a four-step cycle of load, discharge, unload, and discharge.  In our example calculation we use 
published material properties for PZT-5 taken from Mason1,2, and we apply and remove a uni-axial compressive stress 
by applying a force of 1 kN to a specimen measuring 10mm x 25mm x1mm.  The four-step cycle proceeds as follows: 

1. Stress T3 (equal to –4 MPa) is applied and we use Eq’s. 4 to find strain {S} and electric field {E}.  Strain S3 is 
calculated as sD

33T3 and equals -38 µ e.  Electric field E3 is calculated as –g33T3 and equals 99 kV/m, and is 

multiplied by the thickness, 1mm,  to obtain a voltage of  99 V. 
2. The device is discharged; we allow current to flow between the electrodes until {E} is equal to zero and then 

we use Eqs. 3 to find strain {S} and electric displacement {D}.  A new strain S3 is calculated as sE
33T3 and 

equals -75 µ e; the magnitude of compressive strain has increased as the electric charge was drawn.  Electric 

displacement D3 is calculated as d33T3 and equals -0.0015 coul/m2.   
3. T is removed and we use Eqs. 4.  A new strain S3 is calculated as g33D3 and equals -37 µ e.  Electric field E3 is 

calculated as β T
33D3 and equals -99 kV/m.  The magnitude of compressive strain has decreased as the stress 

was removed, and  the electric field is opposite in sign as compared to step 1. 
4. The device is discharged, setting {E} to zero.  All quantities return to zero, illustrating that the compressive 

strain is not recovered until the remaining electric charge is drawn. 
Mechanical work is done by the applied load in steps 1 and 2, and is only partly recovered from strain energy when 
unloaded in step 3.  The “loss” in mechanical work is accounted for by the drawing of electrical energy from the system.  
Similarly, an outside force must work to “lift” the weight in step 4, or else the system cannot return to its zero position. 
 

5.  EXPERIMENTAL RESULTS 
 
5.1  Preliminary study of electrical properties 
 
In our experiments we used PZT specimens of 0.66 mm thickness, 6.45 mm width, and 6.45, 12.9, or 19.4 mm length, 
fabricated from three different PZT materials (designated A, B, C) with properties given in Table 1.  The piezoelectric 
pressure constant, g33, is seen to decrease as the dielectric constant increases.   
 
 
 
 
 
 

Table 1.   Properties of three piezoelectric materials studied experimentally 
 
An unstressed specimen functions electrically as a parallel plate capacitor with capacitance C calculated as  

   
h

A
C

ε=   (7) 

Type Dielectric constant (0T
33, relative) d33, c/N g33, Vm/N k33 kt 

A   425 150x10-12 39.9x10-3 0.66 0.50 
B 1300 295x10-12 25.0x10-3 ---- --- 
C 3800 650x10-12 19.0x10-3 0.75 0.55 
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where A is the plate area, h is the PZT thickness or the plate spacing, and ε  is obtained by multiplying ε 0 (the 
permittivity of free space, 8.85x10-12 c2/Nm2) by the relative dielectric constant ε T

33.  Specimens with three different 
areas were prepared from each of the three PZT products and the resulting sample capacitances were measured at 1 
MHz.  The measured capacitance was proportional to area, and the dielectric constants extracted from a linear fit were 
452, 1326, and 3443 for A, B, and C respectively.   
 
We then conducted a series of experiments measuring voltage as a function of time under various conditions of 
electrical load.  Data was obtained using a DAQ plug-in card controlled by NI-DAQ/Labview software.  A National 
Instruments SCXI-1122 16 channel isolated transducer multiplexer module was used for signal conditioning.  The 
multiplexer presents a resistive load to the PZT capacitor which tends to discharge the capacitor.  With no other load, 
the capacitor voltage is given by  

RCteVtV /
0)( −=   (8) 

where C is the PZT capacitance and R is the input resistance of the multiplexer.  The multiplexer gain was set to a 
specified input resistance of 1 G Ω , yielding a predicted discharge time constant of 0.23 sec for the smallest specimen 
of material A.  The discharge time was further shortened by leakage effects, and therefore in subsequent experiments we 
used larger specimens of materials B and C because they exhibited lower leakage effects and longer time constants. 
 
5.2  Derivation of the Equivalent Circuit Model 
 
We can easily show that the PZT under load acts as a current source in parallel with a capacitor.  Considering a uni-axial 
stress state in the 3-direction and omitting the subscripts, one of the governing equations for piezoelectric material is 

   EdTD Tε+=   (3b) 
where D is electric displacement, T is stress, and E is electric field.  
 
Taking the derivative with respect to time yields  

   
t

E

t

T
d

t

D T

∂
∂+

∂
∂=

∂
∂ ε     (9) 

In this expression, the time derivative of the electric displacement is related to the external current through 

eA

i

t

D =
∂
∂

     (10) 

where i is the current and Ae is the electrical area, the area of the PZT where a charge is developed.   The time derivative 
of the stress is given by 

   
t

F

At

T

m ∂
∂=

∂
∂ 1

    (11) 

where F is the force applied and Am is the mechanical area.  Finally, assuming a constant electric field in the bulk of the 
PZT, we have 

t

V

ht

E T
T

∂
∂=

∂
∂ εε      (12) 

where V is the voltage across the PZT and h is the thickness of the PZT. 
   
Substituting Eqs. 10, 11, and 12 into 3b and using Eq. 7 for a parallel plate capacitor, we obtain 

  
t

V
C

t

F

A

A
di

m

e

∂
∂+

∂
∂=    (13) 

The first term is proportional to the rate at which load is applied, and the second term is the current through a capacitor.  
The interpretation of this result is that a piezoelectric material acts like a current source in parallel with a capacitor.  The 
capacitance has the value of the PZT capacitance and the current source output is proportional to the rate at which the 
external load is applied. 
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5.3  Verification of the model 
 
Several simple experiments were used to verify this result, using the circuit shown below.  The PZT is represented by 
the parallel combination of a current source and a capacitor. 

                                                               
Figure 2.  Circuit representing PZT and resistive load 

 
The transfer function from the current I to the voltage across the resistor is 
 

 
1+

=
sCR

R

I

V
    (14) 

 
where s is the Laplace transform complex frequency.  Resistors of 10 M Ω  and 20 M Ω  were connected across the PZT 
specimen, which was loaded by an Instron 4400R testing machine.  The voltage was sampled at 100 Hz and the load 
was sampled at 10 Hz.  The load data was interpolated using a cubic spline and numerically differentiated, and the 
current was then calculated using the discrete time equation, derived from Eq. 13,  
 

  
t

F

A

A
di

m

e

∆
∆=      (15) 

 
The predicted voltage was determined using the Matlab LSIM command and the transfer function (Eq. 14).  Figure 3 
shows the predicted and measured voltages from an experiment in which the load was increased linearly to 1 kN over a 
2.5 sec period and then held constant, with electrical discharge into a resistive load.  Figure 4 shows the predicted and 
measured voltages from an experiment in which the load was cycled between 0 and 1 kN following a triangular 
(sawtooth) history at a 4 sec period.  The predicted and measured voltages show good agreement, validating our model.   
 
 

 
Figure 3. Type B PZT discharging to a 20 M Ω  resistor.   Figure 4.  Type C PZT discharging to a 10 M Ω  resistor, cyclic loading. 
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5.4  Charging a capacitor 

                                                  
Figure 5.  Circuit employed in charging experiments 

 
We next consider charging an external capacitor using the circuit of Figure 5.  The PZT is connected to the charging 
circuit and subjected to force F(t), with F(0) equal to zero and F(t2) denoting the maximum force applied.  The voltage 
on the external capacitor at the start of the loading cycle is V0 and (neglecting the diode turn-on voltage) diode D1 turns 

on when the PZT voltage reaches this value.  For 10 tt ≤≤  diode D1 is off; and for 21 ttt ≤≤  diode D1 is on and 

the external capacitor is being charged.   
 
The current output may be expressed as 

  
t

F

A

A
dti

m

e

∂
∂= 33)(        (16) 

 

For 10 tt ≤≤ , 
pztC

tQ
tV

)(
)( = , where the capacitor charge, )(tQ  may be calculated as 

  )()()( 330 0 33 tFd
A

A
d

t

F

A

A
ddItQ

m

e
t t

m

e ⋅=
∂
∂== ∫ ∫ τττ    (17) 

 
At t1, the diode just turns on and we have 

  
pzt

A
A

pzt
o C

tFd

C

tQ
VtV m

e )()(
)( 1331

1 ===      (18) 

 

rearranging and solving for )( 1tF  

 

  
m

e
A

A

pzto

d

CV
tF

33
1 )( =        (19) 

 

For 21 ttt ≤≤ , the PZT voltage is 

CC

ttQ
VtV

pzt +
−

+=
)(

)( 1
0        (20) 

where 

  ( ))()()()( 1331
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tFtF
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A
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e
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t
−==− ∫ ττ     (21) 
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Substituting Eqs. 19 and 21 into Eq. 20 and rearranging yields the voltage at the end of the charging period 
 

  
CC

tFd

CC

C
VtV

pzt

A
A

pzt

pzt
o

m

e

+
+





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



+

−=
)(

1)( 233
2     (22) 

 
which is applied incrementally to obtain the voltage after each loading cycle.   
 
Experiments were performed using two PZT specimens (material B, 6.45 mm x 19.4 mm, the size having been chosen 
for ease of handling), in parallel electrically and in series structurally such that Ae/Am is 2, loaded cyclically to 1 kN 
following a triangular (sawtooth) pattern at 0.66 Hz.  Figures 6 and 7 show the measured and predicted voltages.  The 
increase in voltage V is essentially linear with the number of cycles.   
 

 
 Figure 6.  Charging a 1uF capacitor   Figure 7.  Charging a 10uF capacitor 
 
The energy stored in the capacitor at any time is calculated as E= ½CV2, with V obtained from Eq. 22.  Under uniform 
cyclical forcing, we find that maximum energy storage in a single cycle is obtained when the capacitor is at a voltage  
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V
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A
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pzt
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m

e

    (23) 

 
Although this result is interesting, it is of limited practical significance for power scavenging from structural strains 
because the loads, such as axle loads from trucks on highway bridge girders, will vary. 
 
5.5  Charging a battery  
 
Finally, we consider a cycle in which an electrochemical battery is charged at constant voltage, with the equivalent 
circuit depicted in Figure 8.  The derivation is similar to that in section 5.4 for charging a capacitor.  Again, the load F is 
applied to the PZT from time 0 to time t2.  Diode D1 turns on at time t1 and until the time that diode turns on there is no 

difference between this case and that of the capacitor, so Eqs. 16 through 20 are still valid.  For 21 ttt ≤≤ , 

oVtV =)(  since the battery voltage remains constant during the charging cycle.  Combining this with Eq. 16 yields an 

expression for power supplied to the battery 
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Figure 8.  Circuit for battery charging 

 
The total energy stored in one cycle is  

  ( ))()()( 123333

2
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dVdPW
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Substituting Eq. 19 for )( 1tF  yields the energy W, per cycle, as 

   

  pztoA
A

o CVtFdVW
m

e 2
233 )( −=        (26) 

This result suggests that the PZT capacitance should be as small as possible.  This is reasonable, because the larger the 
PZT capacitance, the more charge is wasted bringing the PZT voltage up to the battery voltage during each cycle. 
 
Experiments were performed using four PZT specimens (material B, 6.45 mm x 19.4 mm), in parallel electrically and in 
series structurally such that Ae/Am is 4, loaded cyclically to 1 kN following a triangular (sawtooth) pattern at 0.66 Hz.  
The energy charged a Panasonic ML616 rechargeable battery, which has a nominal capacity of roughly 30 J.  Figure 9 
shows the measured battery open-circuit voltage increasing over the course of 92,000 load cycles, establishing that the 
battery received charge; charging was also confirmed by applying a 270 k Ω  resistive load to the battery, measuring a 
2.17 V drop before charging and 2.25 V after charging.  Approximately 0.86 J of energy was transferred to the battery. 
 
 

                                                  
Figure 9.  Battery voltage increase during charging, 92000 cycles 
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Using Eq. 26, the battery voltage that gives optimum energy storage can be calculated.  Taking the partial derivative of 
Eq. 26 with respect to V0 and setting it to zero gives  

  02)( 233 =−=
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∂

pzto
m

e

o

CVtF
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      (27) 
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An upper bound to the energy that can be extracted in any cycle is the amount of energy stored in the PZT capacitor 
were it not connected to an external circuit.  Using Eq. 17, the charge as a function of applied load may be calculated as 
 

  Fd
A

A
Q

m

e ⋅= 33max         (29) 

 
From this result, the electrical energy stored in the PZT is 
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2
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Substituting Eq. 29 into Eq. 30 yields 
 

  

2
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This result suggests, in theory, an optimum force F at which a PZT might be operated. 
 
We finally substitute the optimum voltage Vopt, Eq. 28, into the expression for the energy stored in a battery, Eq. 26: 
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Upon manipulation we obtain: 
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Comparing Eq. 33 with Eq. 31, we observe  
 

  max2

1
WWopt =          (34) 
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6. DISCUSSION AND CONCLUSIONS 

 
A background discussion of piezoelectric charge generation and energy storage was presented.  Equivalent circuit 
models were examined for discharge, for charging a capacitor, and for charging a battery.  Experiments were performed 
to verify and demonstrate each case.  The laboratory experiments were performed as imposed-force loadings, inducing a 
strain of roughly 70 µ e.  Within the stress range and specimen dimensions studied, on the order of 105 cycles would be 

needed to transfer 1 J of electrical energy. 
 
Our experiments were performed as imposed-force loadings, and not as imposed-strain loadings which would apply for 
specimens affixed to structural members.  Packaging of specimens and their coupling to structural members would 
constitute an additional engineering problem, which has not been addressed.  However, coupling specimens to regions 
of highest cyclical strain could increase the charge developed in the PZT. 
 
As presented in Eqs. 28-34, if a PZT is operated optimally with the battery voltage satisfying Eq, 28, the energy 
delivered to the battery in each cycle is one-half the energy stored in the PZT.  Proper matching of the battery voltage to 
the PZT will therefore improve charging efficiency.  However, that optimal voltage will typically be much higher than 
the voltages at which sensors operate.  For example, for the loads and PZT properties used in our experiments, the 
optimum battery voltage would be around 60 volts; in prospective applications for power scavenging from structural 
strains, the optimum battery voltage could be higher.  One possible approach for future work would be to charge many 
batteries in series, so as to approach an optimum voltage level, and to switch the batteries into parallel for powering 
sensors at lower voltages. 
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