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Abstract

We use Conditional Random Fields (CRFs) to classify regions in an im-
age. CRFs provide a discriminative framework to incorporate spatial
dependencies in an image, which is more appropriate for classification
tasks as opposed to a generative framework. In this paper we apply CRFs
to two image classification tasks: a binary classification problem (man-
made vs. natural regions in the Corel dataset), and a multiclass problem
(grass, sky, tree, cow and building in the Microsoft Research, Cambridge
dataset). Parameter learning is performed using Mean Field (MF) and
Loopy Belief Propagation (LBP) to maximize an approximation to the
conditional likelihood, and inference is done using LBP. We focus on
three aspects of the classification task: feature extraction, feature aggre-
gation, and techniques to combine binary classifiers to obtain multiclass
classification. We present classification results on sample images from
both datasets and provide analysis of the effects of various design choices
on classification performance.

1 Introduction

Standard approaches to texture based image region classification often require a homoge-
neous region of interest to be identified in the image to be classified [1]. To avoid this
human intervention, a test image is first segmented into homogeneous segments and then
each segment is individually classified. This is often prone to segmentation errors. The
other approach is to over-segment the image into superpixels [2], and classify each su-
perpixel based on it’s texture. However, natural images exhibit spatial smoothness, and
hence this should be exploited rather than classifying each of the superpixels individually.
Markov Random Fields (MRFs) allow the consideration of these spatial dependencies in a
principled manner, and hence have been used extensively for various region classification
applications in computer vision [3]. MRFs, however, are generally used in the generative
probabilistic framework where joint probability distribution of the observed data and the
corresponding labels is modeled. The posterior over the labels given the data is expressed
using the Bayes’ rule, where the prior over labels is modeled as a MRF and for computa-
tional tractability, the likelihood model is assumed to be a fully factorized form.

However, this assumption is too restrictive for several applications in computer vision.
This is because natural images exhibit spatial order and thus not only is an observation
at a particular site highly correlated with the observations at the surrounding sites, these
observations typically do not become independent even conditioned on the labels. While



it is important for the model to allow for tractable inference, it is undesirable to make
unwarranted assumptions. As stated in [4], one way to satisfy both requirements is to model
the conditional distribution over the labels given the observation data, instead of the joint
probability distribution over both labels and the observations. This is the discriminative
framework employed by Conditional Random Fields (CRFs) [5]. Arbitrary attributes of
the observations can be captured via this model by avoiding the factorization assumption
made for tractable inference on MRFs. In addition, for a classification task, the goal is
to assign a label to a novel set of observations (image) that maximizes the conditional
probability of the labels given the observations. This posterior distribution is often simple
to model, while the underlying joint distribution may be quite complex.

Kumar et al. [6] propose an enhancement to CRFs, called Discriminative Random Fields
(DRFs), and use local discriminative models to capture the class associations at the indi-
vidual sites as well as the interactions with the neighboring sites.

The rest of the paper is organized as follows. Section 2 provides background information
about CRFs and DRFs. Section 3 discusses our overall approach, Section 4 presents the
experimental results and Section 5 concludes the paper.

2 Conditional Random Fields: Background and Notation

Let « be the random vector over the observed data, the components of which, x; describe
the data at site 7, x; € €. Let y be the random vector over the label sequences, where every
component y; € Y. We deal with binary classifiers, and in ourcase Y = { —1 1 }. The
definition of Conditional Random Fields, as proposed by Lafferty et al. [5], is discribed
below:

CRF Déefinition: Let G = (V, E) be a graph such that y = (Y, )vev, so that y is indexed
by the vertices of G. Then (x,y) is a conditional random field if, when conditioned on x,
the random variables y., obey the Markov property with respect to the graph:

P | & 9v_(uy) = 2o | Z,yN,), (1)

where V. —{v} is the set of all nodes in G other than node v, and N, is the set of neighbors
of the node v in G.

A CREF is thus a random field globally conditioned on the observation vector x. Using the
Hammersley Clifford theorem [7] and assuming only upto pairwise clique potentials to be
non-zero, the joint distribution over the labels y given the observations & can be written as:
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where Z is the normalizing constant known as the partition function, and A; and I;; are the
negative unary (association) and pairwise (interaction) potentials respectively.

In the CRF framework Lafferty er al. [5] propose and use a fixed feature function as the
association potential. These could be, for instance, real-valued functions taking on the
value of a feature for a particular range of values and zero otherwise. In the DRF framework
Kumar et al. [6] model the association potential as a posterior probability of the class labels
given the observation, with the parametric form:

Ai(yi, ) = log(o(y;wT hi(x))), (3)

where,
1
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and
hi(z) = [1, ¢1(fi(x)), ..., or(fi(x))], ©)

where ¢y (.) are arbitrary non-linear transforms of the feature functions f;(.), which them-
selves map the observations x onto a feature vector, so that f; : « +— R!, and w are the
parameters to be learnt. We use filter-bank responses (explained in detail in Section 3) as
our feature functions f;(.), and a quadratic kernel as the non-linear transform ¢ (.).

In the CRF framework, interaction potentials are also chosen as fixed real-valued feature
functions. As opposed to that, in the DRF framework, the interaction potential is repre-
sented as a pairwise discriminative model of the form:

Lii (i v, ®) = yiy;0" pij (), (6)

where, for a pair of sites (¢, 7), pi;(¢:(x), P ;(x)), (called p,;(x), for simplicity) is the
pairwise feature vector, 1; () is another feature function at site ¢, and v are the parameters
to be learnt. In our case, we use ;(x) to be h;(x), and concatenate 1;(x), and 1, (x), to
form the pairwise feature vector p;;(x) at the edge.

Since exact inference in a grid is computationally prohibitive due to a large treewidth, var-
ious approximate inference methods have been proposed for parameter learning. In this
work, we consider two simple approximations to the conditional likelihood (CL): mean
field (MF) and loopy belief propagation (LBP). Vishwanathan et al. [§8] promote use of
stochastic gradient methods for efficient CRF learning instead of the more conventional
limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Of the several meth-
ods they compared, they observe that Stochastic Meta-Descent (SMD) was the most effec-
tive due to is adaptive annealing schedule. Hence, we use SMD as the optimizer. These
parameter learning, inference, and optimizer algorithms were implemented using Kevin
Murphy’s 2D-CREF toolbox publicly available at [11].

3 Approach

We work with two different image classification tasks. The first task is a two-class problem,
where the image regions have to be classified as natural or manmade structures. The images
were taken from the Corel database. The second task is a multiclass problem where the
image regions are to be classified into sky, grass, cow, building and tree. The images
were taken from the Microsoft Research at Cambridge (MSRC) database [13], which also
provides hand segmented ground truth. Regions of the image that could not segmented
accurately were labeled as void. For both classification tasks, the images were divided into
non-overlapping blocks, and each of these blocks formed a site (node) in the graph, for
which a classification label was to be inferred.

The task of classifying the image regions into natural and manmade structures using the
Corel database has been presented by Kumar ef al. in [3, 6] where they establish the
superiority of CRFs over MRFs for this task. For the first half of the project time-line,
our goal was to reproduce these results. For each image site, a 5 dimensional single-site
feature vector and a 14 dimensional multi-scale feature vector f;(x) is computed using
gradient based features as described in [12], which incorporates the data interaction from
neighboring sites. The code for this feature extraction was obtained from [11]

Our main focus for the rest of the project was on the classification task of the MSRC
database classification task. We focussed on three main tasks: Feature extraction (extract-
ing features at each pixel in the image), feature aggregation (combining features within a
block to produce once feature vector that represents the entire block), and combining binary
classifiers via weighted majority voting to achieve multiclass classification. Our approach
to each of these is described below.



3.1 Feature extraction

A standard approach in object recognition for deformable objects is to treat the problem
as that of texture classification [1, 2]. The characteristics of texture are extracted by fil-
tering the image with several different filters. We design a filter bank similar to that used
by Winn et al. [1] as shown in Figure 1. It includes a Gaussian filter (smoothed version
of the averaging filter), Laplacian of Gaussian filter (LoG, smoothed version of the sec-
ond derivative filter), and the derivative of Gaussian filters (smoothed versions of the first
derivative filter) - all at several different scales (o). The RGB image is transformed to the
CIE L,a,b colorspace in a similar fashion as [1]. We convolve these filters with the image,
and the response of a pixel to each of these filters is concatenated to form a feature vector
corresponding to that pixel. For most filters, only the L-channel of the image was utilized,
however for the gaussian filter all three channels were utilized, similar to [1].
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Figure 1: Filter bank used for feature extraction.

Motivated by Kumar et al. [6], we extract single-scale features that characterize the pixel
locally, as well as multi-scale features that characterize the pixel at several scales of it’s
neighborhood. The filters highlighted in Figure 1 were used for extracting the 6 dimen-
sional single-scale feature, while all the filters displayed are used to extract a 17 dimmen-
sional multi-scale feature for each pixel. A comparison of the classification accuracy by
using single-scale features as opposed to multi-scale features is provided in Section 4.

3.2 Feature aggregation

As stated earlier, we divide the image into non-overlapping blocks, and each of these blocks
(and not each pixel) is a site to be classified. Hence, having extracted a feature vector at
each pixel, the goal is to combine the feature vectors from pixels that share a common
block in an appropriate way to represent the entire block.

One approach was to assume that the pixels belonging to a block come from the same
region, and hence the distribution of the features within a block is unimodal. In this case,
the average response within a block is used as the representative response.

However, consider a block as shown in Figure 2 (a). This block contains pixels from
grass as well as cow. Modeling this block as a unimodal distribution of features would
be inappropriate, and the average response of the block, as illustrated in Figure 2 (b, left),
would be meaningless. This is resolved by applying K-means clustering to each block.
The appropriate value of K, the number of clusters, is picked by maximizing the minimum



description length (MDL) criterion. Having picked the optimum value of K, the most
dominant (largest) cluster was used as the representative cluster, and the average response
of this cluster was used as the representative feature vector for the block, as illustrated in
Figure 2 (b,right).
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Figure 2: Feature aggregation

Again, a comparison between the classification performance of this method and the naive
unimodal modeling of each block is provided in Section 4.

3.3 Multiclass classification

Kevin Murphy’s tool box [11] only supports a binary classification problem. In order to
apply it to a C class problem, we train C binary classifiers that identify the corresponding
class as positive, and the rest as negative. For a given test instance, the outputs of these
binary classifiers are combined using weighted majority voting. Two different strategies
were employed to assign weights to the classifiers. One was the strength of the classifiers,
as quantified by it’s performance on the training data, and the other was the confidence
of the classifier as quantified by the belief of that classifier for that instance (node). In
both cases, if more than one classifier assigns a positive label to an instance, the label
corresponding to the classifier with the highest weight is assigned to that label. In both
cases, if none of the classifiers assign a positive label to the instance, we assign it to a reject
class. This is particularly relevant when we experiment with different number of classes. It
should be noted that this is not equivalent to the classification system rejecting an instance
and not making a decision for that instance, which does not play a role in the classification
accuracy. A comparison of the classification performance obtained using the strength of the
classifier as weights as opposed to using the confidence of the classifier during weighted
majority voting is provided in Section 4.

All possible combinations of the above design choices were experimented with.

4 Experimental results

As stated earlier, we applied CRFs for image region classification to two databases.

The Corel database contained 108 images for training and 129 images for testing. The
same split as that used by Vishwanathan et al. was used so that the results obtained can
be compared. The images were 256 x 384 pixels and were divided into non-overlapping
blocks of 16 x 16 pixels. An example of the results obtained on these images is shown in
Figure 3. The regions classified as natural are labeled in black, while the regions classified
as manmade structures are marked in white. The test error, as measured by the proportion
of misclassifications was found to be 0.12 using MF for inference. The results obtained are
similar to those reported by Kumar ef al. [6] and Vishwanathan et al. [8].

For the MSRC database, 53 images were used for training and 49 images were used for
testing. This split was made randomly, maintaining consistent distribution of classes in
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Figure 3: Example results on Corel images

both sets. The images were 312 x 208 pixels and were broken down into blocks of 13 x 13
pixels. Different number of classes were considered, where the number of classes was
increased by adding classes in the descending order of their performance on the training
set. As stated earlier, for each of these, all possible combinations for the different design
choices were experimented with. These were repeated for five different splits of training
and testing data sets.

The first analysis from the above experiments was to analyze the effect of each of our
design choices on the classification accuracy. For instance, the performance using single-
scale features was compared to that using multi-scale features, averaged across all possible
choices for the other factors such as the feature aggregation techniques, weights used for
weighted majority voting in combining classifiers, the inference engine, and five random
splits of the data into training and testing. The results obtained are summarized in Figure 4.
The average performance and the 95% confidence intervals are shown. The results reported
are considering only two classes, however similar trends were observed with more classes.

Single Multi Uni  Multi Belief Train MF  LBP
Scl  Scl Mdl  Mdl Wgh Wgh

Figure 4: Effect of different design choices on test classification error

It can be seen that multi-scale feature extraction perform better than single-scale with sta-
tistical significance. This indicates that incorporating information from neighboring sites
while making decision about a particular site enhances the classification accuracy. Model-
ing each block with a multimodal distribution during feature aggregations does not enhance
the performance. This may be due to the fact that the blocks are fairly small, and hence
most blocks have homogeneous texture. Using the strength of the classifiers as weights in
majority voting performs significantly better than using the confidence of the classifiers.
This is because, especially with LBP, the actual values of the beliefs are over-confident and



hence not reliable. For inference, LBP has a better average accuracy then MF, however
it has a high variance as compared to MF, and hence the difference was not found to be
statistically significant. Based on the above analysis, the following design choices were
made: multi-scale features, modelling the blocks to be unimodal distribution of the fea-
tures (for computational simplicity), using the training performance as weights to combine
classifiers, and LBP for parameter learning and inference.

Having made these choices, we observe the effect of added classes on the classification
accuracy. The graph of the classification error vs. number of classes considered is shown
in Figure 5. It can be seen that the classification error increases quite drastically as the
number of classes increase. Apart from the added complexity due to more classes, the order
in which the classes are added incrementally - in decreasing order of their classification
accuracy on the training data, also adds to the degradation in performance. However, since
the training performance is used as weights during weighted majority voting for combining
the classifiers, this order is a natural choice. Figure 5 shows a comparison between the
performance of CRFs and two naive baselines where all regions were given the same label
(1) assuming uniform prior among classes and (2) learning the prior from the training data.
This shows that CRFs are providing meaningful labels.
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Figure 5: Effect of number of classes on test classification error

Classification results on sample images are shown in Figure 6. Three classes were consid-
ered - grass, cow and sky. The green labels correspond to grass, the red regions to cow, the
blue regions to sky and the black regions to the reject class. It can be seen that the regions
are classified fairly accurately. The region corresponding to the building has indeed been
rejected by the grass, cow and sky classifiers. It can be seen that the segmentation obtained
is rather coarse, not only due to the coarseness introduced by the blocking of images, but
also due to the smoothness constraints in CRFs.

5 Conclusion

We used a discriminative framework, CRFs, that allow for incorporation of spatial depen-
dencies in images to classify image regions based on their texture. We used mean field
and loopy belief propagation for parameter learning and approximate inference. We ex-
periment with two image classification tasks, a binary classification problem to distinguish
between natural and manmade structures, and a multiclass problem involving trees, grass,
cow, building and sky. We mainly focused on feature extraction, feature aggregation and
techniques to use binary classifiers for the multiclass classification problem. The effects
of the different design choices as well as increasing number of classes on the classification
performance was analyzed. While using CRFs provides meaningful results (as compared to



Figure 6: Example results on MSRC images

extremely naive approaches), the classification errors were high, especially as more classes
are added to the problem. Potential scopes of improvement include using a validation set
of images instead of training images to compute the weights of the classifiers (if more
data is available), experimenting with different orders of classes being added, performing
multi-factor statistical analysis to determine the optimum selection of design choices as
opposed to the single-factor analysis, learning the mapping of the beliefs of classifiers to
a more reliable estimate of the classifier’s confidence that also incorporates the strength of
the classifiers, monitoring the time taken for learning and inference as the dimensionality of
the features increases, extending the CRF toolbox to truly handle multiclass problems, and
comparing the performance of the CRFs with other baselines such as logistic regression.
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