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Abstract

This paper presents a new adaptive graph-cut based
move-making algorithm for energy minimization. Tradi-
tional move-making algorithms such as Expansion and
Swap operate by searching for better solutions in some pre-
defined moves spaces around the current solution. In con-
trast, our algorithm uses the primal-dual interpretation of
the Expansion-move algorithm to adaptively compute the
best move-space to search over. At each step, it tries to
greedily find the move-space that will lead to biggest de-
crease in the primal-dual gap. We test different variants
of our algorithm on a variety of image labelling problems
such as object segmentation and stereo. Experimental re-
sults show that our adaptive strategy significantly outper-
forms the conventional Expansion-move algorithm, in some
cases cutting the runtime by 50%.

1. Introduction

Graph-cut based move-making algorithms such as Ex-
pansion and Swap [4] are extremely popular in computer
vision. They enable researchers to efficiently compute
approximate maximum a posteriori (MAP) solutions of
Markov and Conditional Random Fields (MRFs, CRFs),
and are used for solving a wide variety of labelling prob-
lems such as image segmentation [3,19,21], object-specific
segmentation [2, 8, 26], geometric labelling [10, 20], image
denoising/inpainting [9,24,28], stereo [4,22,31] and optical
flow [4, 6].

Classical move-making algorithms such as Expansion
and Swap operate by making a series of changes to the so-
lution. These changes (also called moves) are performed
such that they do not lead to an increase in the solution
energy. Convergence is achieved when the energy cannot
be decreased any further. In each iteration, the algorithm
searches for a lower energy solution in a pre-defined neigh-
borhood (also called the move space) around the current so-
lution. It is important to draw a distinction between moves
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Figure 1: Exploiting Label Sparsity: (a) shows the histogram of
pixels in stereo sequence ‘Cones’ with respect to disparity labels.
We can see that a lot of labels are never observed; (b) shows that
our proposed approach is able to exploit this fact and cut the run-
time by more than 50% compared to standard Expansion; (c,d)
show histograms of number of labels observed in a single image
for PASCAL 2007 and MSRC datasets, both containing 21 cate-
gories. We can see that most images contain less than 4 classes,
and not a single image contains more than 10 labels.

and move-spaces. For instance, the Expansion-move algo-
rithm has |L| possible move-spaces (one corresponding to
every possible label in L), and 2n possible moves within
each space (one corresponding to a binary choice for ev-
ery node). An α-expansion move (where α ∈ L) finds the
minimum energy move within the move-space α.

Clearly, the move-space has an important impact on the
performance of the algorithm. In fact, the size and form of
the move-space is the key property that defines any move-
making algorithms. There has been a lot of research on
finding larger or more effective move spaces in which the
optimal move (one that decreases the energy of the solu-
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Figure 2: The first column of the figure shows three images from the dataset used for the PASCAL visual object category (VOC) challenge
2009. We used the pairwise energy functions for this problem used by [17]. The second column shows the first five labels used for expansion
moves by the standard algorithm and our guided variant. It can be seen that our algorithm is able to propose labels relevant to the problem
instance (marked in bold). The third column shows graphs of how the energy of the solutions obtained by standard Expansion and our
guided variant changes with time. It can be seen that our algorithm consistently outperforms the standard Expansion algorithm.

tion by the most amount) can be computed in polynomial
time [7, 16, 18, 29, 32].

However, there has been surprisingly little work on de-
termining what is the best move space to search over, given
the current solution and a family of move spaces. For in-
stance, in the case of the Expansion algorithm, the standard
approach is to iterate over the move spaces corresponding
to different labels one after the other in a pre-specified or
random order. This strategy is energy-oblivious and does
not exploit the knowledge that certain labels are more prob-
able to occur in the image and thus expanding them may
lead to lower energies. Further, the standard Expansion al-
gorithm makes complete sweeps over the label set. In many
labelling problems, only a few labels are assigned in the
MAP solution. This is particularly true in the case of object
segmentation problems. Fig. 1 shows that individual im-
ages in the popular MSRC [26] (21 object labels) and PAS-
CAL Visual Object Category dataset [5] (20 foreground and
1 background labels) contain very few labels. Specifically,
even though both dataset contain 21 labels, most images
contain less than 4 labels, and no image contains more than
10 labels. This certainly begs the question – why would we
want to repeatedly iterate over all possible labels within the
Expansion-move algorithm?

Contributions. In this paper, we propose an adaptive
move-making algorithm that tries to find the best move
space to search over in each iteration. Our algorithm tries
to greedily find the label α for which the corresponding α-
expansion move will lead to the most decrease in the energy.
The labels chosen for some object segmentation problems
are shown in Fig. 2. We can see that the labels chosen by
our algorithm for Expansion are more meaningful and spe-
cific to the images. The figure also shows that the guided
Expansion algorithm is able to find a lower-energy solution
much more quickly compared to the standard method.

Our algorithm is inspired from the primal-dual interpre-
tation of the Expansion algorithm given by Komodakis et
al. [15, 16]. Komodakis and Tziritas [15] proposed three
graph-cut-based primal-dual algorithms namely, PD1, PD2
and PD3 for performing MAP inference. Furthermore, they
showed that one of their algorithms (PD3) has the exact
same steps as that of the Expansion algorithm. Thus, the
Expansion algorithm can be seen as solving a well known
Linear Programming (LP) relaxation (and its corresponding
dual) of the energy minimization problem.

The energy of the current solution and the achieved ob-
jective of the LP-dual provides upper and lower bounds
respectively on the energy of the optimal solution. Fur-
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thermore, the difference between these values (called the
primal-dual gap) provides a quantitative measure of the ac-
curacy of the current solution. In fact, state-of-the-art LP-
based methods for MAP inference [27] operate by incre-
mentally tightening the relaxation to reduce the primal-dual
gap. In the context of move-making algorithms, the above
argument would lead to a strategy where we search for the
optimal move in the move space that will lead to the biggest
decrease in the primal-dual gap.

Finding the best move space is a difficult problem. For
instance, to find out the best move space for Expansion
na ively, one may need to try out all possible move spaces,
i.e. one per label in the label set. This is a computationally
expensive operation and would make the algorithm imprac-
tical for large labels spaces (e.g. in denoising applications).
The key observation of this paper is that a good approxima-
tion to the relative drop in the primal-dual gap correspond-
ing to different Expansion move spaces can be constructed
using the primal and dual variables of the LP formulation
of the problem. This approach is extremely efficient and
runs in linear time in the number of variables and labels.
We test the efficacy of our method on a number of image
labelling problems. The experimental results show that our
adaptive method significantly outperforms the widely used
traditional Expansion-move algorithm.

2. Related Work

The last few years have seen the proposal of a number of
sophisticated methods to improve the efficiency of move-
making algorithms such as Expansion [1, 16, 18, 32]. These
methods can be divided into two broad categories: energy-
oblivious and energy-aware.

Energy-oblivious methods do not use the knowledge of
the energy function to reduce computation time. The FAST-
PD algorithm proposed by Komodakis et al. [16] and a re-
lated but simpler algorithm proposed by Alahari et al. [1]
are two such methods. They use results of initial iterations
of the Expansion algorithm to make subsequent iterations
faster, and are inspired from the the dynamic graph cuts al-
gorithm proposed by Kohli and Torr [13]. Another example
is the fusion-move algorithm [18, 32]. This algorithm uses
proposal solutions of the labeling problem obtained from
different methods for defining the move space for the move
making algorithm.

Our algorithm belongs to the class of energy-aware tech-
niques which use the energy function to guide the search.
The only other method which belongs to this class is
the gradient-descent fusion-move algorithm proposed by
Ishikawa [11]. This method tries to find the most promis-
ing move-space to search over by using the gradient of the
energy function.

3. Notation and Preliminaries
We start by providing the notation used in the

manuscript. For any positive integer n, let [n] be shorthand
for the set {1, 2, . . . , n}. We consider a set of discrete ran-
dom variables x = {xi | i ∈ [n]}, each taking value in a
finite label set xi ∈ L = [k]. Let G = (V, E) be a graph
defined over these variables, i.e. V = [n], E ⊆

(
[n]
2

)
. The

goal of MAP inference is to find the labelling x of the vari-
ables which minimize a real-valued energy function associ-
ated with this graph:

min
x∈Ln

E(x) = min
x∈Ln

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)

 , (1)

where θi(·), θij(·, ·) denote node and edge energies.

3.1. The Expansion-Move Algorithm

The Expansion algorithm starts with an initial solution
and proceeds by making a series of changes which lead to
solutions having lower energy. An α-expansion move over
a label α ∈ L allows any random variable to either retain
its current label or take label α. One sweep of the algo-
rithm involves making moves for all α ∈ L in some order
successively.

The optimalα-expansion move can be computed in poly-
nomial time if the pairwise energy parameters θij define a
metric, i.e.

θij(a, b) = 0 ⇐⇒ a = b, (2a)
θij(a, b) = θij(b, a) ≥ 0 (2b)
θij(a, c) ≤ θij(a, b) + θij(b, c), ∀a, b, c ∈ L. (2c)

In this work, we do not assume the pairwise energies to be
metrics. We only require: θij(a, a) = 0, ∀a and θij(a, b) ≥
0.

3.2. MAP Integer Program

MAP inference is typically set up as an integer pro-
gramming problem over the boolean variables. Let
µi(s), µij(s, t) ∈ {0, 1} be indicator variables, such that
{µi(s) = 1 ⇔ xi = s}, and {µij(s, t) = 1 ⇔ xi =
s, xj = t}. Moreover, let µi = {µi(s) | s ∈ L},θi =
{θi(s) | s ∈ L} be vectors of indicator-variables and en-
ergies for node i. Let µij and θij be defined analogously.
Using this notation, the MAP inference integer program can
be written as:

min
µi,µij

∑
i∈V

θi · µi +
∑

(i,j)∈E

θij · µij (3a)

s.t.
∑
s∈L

µi(s) = 1 ∀i ∈ V (3b)∑
s∈L

µij(s, t) = µj(t) ∀(i, j), (j, i) ∈ E (3c)

µi(s), µij(s, t) ∈ {0, 1}. (3d)
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Figure 3: Interpretation of dual variables. See text for details

Problem (3) is known to be NP-hard in general [25].
The standard LP relaxation of this problem, also known
as Schlesingers bound [23, 30], is given by relaxing
the boolean constraints (3d) to the unit interval, i.e.
µi(s), µij(s, t) ≥ 0.

3.3. The Primal-Dual Interpretation of Expansion

Komodakis et al. [15, 16] gave a primal-dual interpreta-
tion of α-expansion. Since our contribution builds on their
interpretation, we briefly review their work here.

The LP-dual of (3) that Komodakis et al. [15, 16] chose
to work with was:

max
hi,yij(t)

∑
i∈V

hi (4)

s.t. hi ≤ hi(s) ∀i ∈ V, s
yij(t) + yji(s) ≤ θij(s, t) ∀(i, j) ∈ E , s, t
hi, yij(t) ∈ R,

where hi(s)
.
= θi(s) +

∑
j∈N (i) yji(s), where N (i) =

{j | (i, j) ∈ E} is the set of neighbours of node i.
Every feasible dual solution provides a lower-bound on

the MAP value, i.e.:
E(x) ≥ E(x∗) ≥

∑
i∈V

hi (5)

Moreover, for any primal labelling xp, the quantity Primal-
Dual Gap (E(xp)−∑i∈V hi) gives an estimate of the tight-
ness of the relaxation. Specifically, a pair of primal-dual
solutions (xp, {hi, hi(·), yij(·)}) is an f -approximate solu-
tion iff:

E(xp) =
∑
i∈V

θi(x
p
i ) +

∑
(i,j)∈E

θij(x
p
i , x

p
j ) ≤ f

(∑
i∈V

hi

)
(6)

Komodakis et al. [15, 16] proposed two primal-dual al-
gorithms called PD3 [15] and FastPD [16]1 that were
both shown to be equivalent to α-expansion. These al-
gorithms are based on a particular set of relaxed com-
plementary slackness conditions for the primal-dual pro-
grams. Specifically, if we define dmax

.
= maxij,s,t θij(s, t)

and dmin
.
= minij,s 6=t θij(s, t), a pair of primal-dual solu-

tions (xp, {hi, hi(·), yij(·)}) achieves an fapp = 2 · dmax

dmin
-

approximation ratio iff [14, 15]:
1FastPD is a faster version of PD3.

hi(x
p
i ) = min

s∈L
hi(s) (7a)

yij(x
p
j ) + yji(x

p
i ) = θij(xi, xj) (7b)

yij(t) + yji(s) ≤ 2θij(s, t) (7c)

Intuitive Interpretation + Example: An intuitive in-
terpretation of the dual variables helps in understand-
ing these constraints. Fig. 3 shows the dual variables
hi(x

p
i ), hi(α), hj(x

p
j ), hj(α) associated with an edge (i, j).

The cost of each node-label pair is represented by a ball
with that height. Condition (7a) requires that the height of
ball corresponding to primal labelling be the lowest. We
can see that this is satisfied for node j but not for node
i, where hi(α) < hi(x

p
i ). Recall that hi(s) = θi(s) +∑

j∈N (i) yji(s). Thus, we may increase the height of α at
node i, hi(α), by increasing the dual variable yji, i.e. by set-
ting yji(α)← yji(α) + δ. However, constraint (7c) forces:

yij(α) + yji(α) ≤ 2θij(α, α) = 0 (8)
⇒ yij(α) ≤ −yji(α). (9)

Thus, increasing hi(α) decreases hj(α) by at least the same
amount, i.e., hj(α) ← hj(α) − δ. In this example, this
change increased the dual by +δ, i.e. hi+hj ← hi+hj+δ.

For a general graph, both algorithms – PD3 [15] and
FastPD [16] – operate in a block-coordinate ascent fashion.
They loop over labels in a pre-determined order and at each
step optimize all dual-variables corresponding to a label α,
while holding all other dual variables fixed.

• Loop on label α ∈ L:

–α-expansion: Update {hi, hi(α), yij(α), yji(α)};
Update {xpi |xpi = α}.

In both algorithms, conditions (7b), (7c) are satisfied by
construction, and the goal of these block-updates is to make
progress on condition (7a), i.e. to extract a primal labelling
that has the minimal height at all nodes. We refer the reader
to Komodakis et al. [15, 16] for details of the update steps.

4. Adaptive Primal-Dual Expansion Moves
In this paper we focus on how to enumerate over the la-

bels for primal-dual Expansion moves. Typical choices are
to loop over labels one after the other in a pre-specified or
random order. This is exactly the scheme that FastPD fol-
lows. We follow an energy-aware strategy that uses the pri-
mal and dual variables to make adaptive Expansion moves.
Specifically, we present a label proposal heuristic that sorts
labels according to a scoring function that quantifies how
helpful a label will be for α-expansion. Our label scoring
function is derived from complementary slackness condi-
tion (7a).
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Algorithm 1 LPDG-Sweep
1: for t = 0, 1, . . . do
2: Compute LPDG-based label scores ω(·) ∈

{ω1(·), ω2(·), ω3(·)}.
3: Sort label scores: {α1, . . . , αk} = sort(ω(·))
4: for i = 1, . . . , k do
5: αi-expansion: Update variables:

{hi, hi(α), yij(α), yji(α)}
6: end for
7: end for

4.1. Local Primal-Dual Gap

We first define a quantity we call Local Primal-Dual Gap
(LPDG) for every label and variable. Given a pair of primal-
dual solutions (xp, {hi, hi(·), yij(·)}), LPDG is formally
defined as:

lpdg(α, i) = hi(x
p
i )− hi(α). (10)

Using the ball analogy of dual variables from Fig. 3 again,
LPDG can be seen as the height difference between the balls
at node i corresponding to the primal labelling xpi and the
label α. Positive values of LPDG indicate violations of
complementary slackness, and we can say that dual vari-
able hi(α) is in deficit by an amount of lpdg(α, i). Neg-
ative values of LPDG indicate that complementary slack-
ness is satisfied and that dual variable hi(α) is in surplus by
amount lpdg(α, i). A dual variable in deficit hi(α) needs to
be “fixed” by the algorithm and a neighbouring dual vari-
able in surplus hj(α), j ∈ N (i) can help this process by
via the message-variables yij(α), yji(α). Thus, lpdg(α, i)
quantifies the amount of violation in complementary slack-
ness conditions at node i, label α, and lpdg(α, j) quanti-
fies how much node j can help correct this violation. More
specifically, we can state the following property of LPDG:

Proposition 1 Slackness: If LPDG for all nodes is non-
positive, i.e. lpdg(α, i) ≤ 0, ∀i ∈ V, α ∈ L, then comple-
mentary slackness conditions hold and we have achieved an
fapp-approximate solution.

4.2. LPDG-based Label Scoring Functions

LPDG gives us an appropriate language to describe our
goals for label scoring. In order to get the highest drop
in primal-dual gap, we need to pick a label α that has the
most deficit. However, we also need to make sure there is
enough surplus so that we may actually make an improve-
ment. Keeping this in mind, we propose the following three
label scoring functions:

• LPDG-crisp:
ω1(α) =

∑
i∈V I[0∞) (lpdg(α, i)),

where IS(y) =
{

1 y ∈ S
0 else (11)

Algorithm 2 LPDG-Partial-Sweep
1: for t = 0, 1, . . . do
2: Compute LPDG-based label scores ω(·) ∈

{ω1(·), ω2(·), ω3(·)}.
3: Find highest label score: α = argmaxα̂ ω(α̂)
4: α-expansion: Update variables:

{hi, hi(α), yij(α), yji(α)}
5: end for

• LPDG-deficit:
ω2(α) =

∑
i∈V lpdg(α, i) · I[0∞) (lpdg(α, i))

• LPDG-tradeoff:
ω3(α) =

∑
i∈V

∣∣lpdg(α, i)∣∣
LPDG-crisp ignores the actual LPDG values and sim-

ply counts the number of nodes in deficit. LPDG-deficit on
the other hand also incorporates the how much these nodes
are in deficit. Finally, LPDG-tradeoff incorporates both the
amount of deficit and the surplus over all nodes.

Finally, we propose the following two adaptive primal-
dual Expansion algorithms: 1) LPDG-Sweep, shown in
Alg 1 that uses an LPDG-scoring-function-based permuta-
tion of labels to perform α-expansion in each sweep, and
2) LPDG-Partial-Sweep, show in Alg. 2, that performs par-
tial sweeps where LPDG-based reordering of labels is per-
formed after each alpha-expansion.

The standard Expansion algorithm goes through all la-
bels in one iteration, and thus has a linear runtime com-
plexity in the number of labels in the problem. This makes
it inefficient on problems with very large label sets. Our
partial-sweep scheme based on LPDG scores is not bound
to the linear complexity and only expands labels which are
relevant to the problem instance.

5. Experiments

We evaluated our method on the problems of object seg-
mentation and stereo matching.
Stereo: We use image pairs from the Middlebury Stereo
Dataset.2 We used the energy function made available by
Alahari et al. [1]. The number of disparity labels in different
problem instances were: Tsukuba (16), Venus (20), Cones
(60) and Teddy (60).
Object Segmentation: For this application, we used
the pairwise energy functions constructed by Ladicky et
al. [17] that are based on the method of Shotton et
al. [26]. We tested our algorithm on some images from the
MSRC [26] (21 object labels) and PASCAL Visual Object
Category dataset [5] (20 foreground and 1 background la-
bels) datasets.

2http://vision.middlebury.edu/stereo/data/.
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Figure 4: Correlation between LPDG-based scores and decrease in energy. Graph (a) shows the relationship between the true de-
crease in energy and the LPDG-crisp score. Each point on the graph corresponds to a proposed label-expansion at the start of the energy
minimization procedure. The x-axes shows what was the LPDG-crisp score for the particular label expansion, while the y-axes shows what
was the decrease in the energy of the solution when this label-expansion was performed. Graphs (b) and (c) show the corresponding plots
for the LPDG-deficit and LPDG-trade-off scores respectively. It can be seen that all scores are highly correlated at the start. Graph (d)
shows that the correlation between the LPDG scores and the decrease in the energy falls as we perform more expansion moves.

Correlation between LPDG-ranking and True-ranking
To quantify the performance of our LPDG-based metrics
in predicting usefulness of labels, we measure the correla-
tion between the proposed label LPDG scores and the true
decrease in the primal energy. To do this, we performed
the following experiment: we first let k sweeps of alpha-
expansion occur in the usual fashion (i.e., in some static
pre-fixed ordering over the variables). After the comple-
tion of these k standard sweeps, we loop over all labels and
for each label l we record all three of our label scores and
also record the drop in energy if this label was expanded
on immediately after finishing the k standard sweeps. Fig 4
shows the correlation plots for the k = 0 case, i.e. without
any sweeps. We can see a very strong correlation for all
three of our label scores. Fig 4 also shows the correlation
coefficient as a function of k. We can see that the correla-
tion is very high initially and then slows decays away as the
problem moves towards convergence. However, it is impor-
tant to remember that with methods like FastPD it is the first
few iterations that are responsible for most of the time taken
by the algorithm and this is precisely where LPDG is most
helpful.
Comparison with FAST-PD. We compare the performance
of our method with the FAST-PD algorithm proposed by
Komodakis et al. [16], which is an efficient version of the
standard Expansion algorithm. To ensure our experiments
assess the relative performance of our proposed LPDG
scores and are not influenced by the particular details of
the primal-dual alpha-expansion implementation, we use
the use the implementation provided by Komodakis et al.
for all our experiments.3 All methods reported in this pa-
per differ only in the order of expansions and thus the rel-
ative performance differences can be directly attributed to
our improved score function.

Fig. 5 shows the energy-vs-iteration and energy-vs-time

3http://www.csd.uoc.gr/˜komod/FastPD/index.html.

plots for stereo problems, while Fig. 2 and 6 shows the same
for object segmentation problems. We can see that in all
cases LPDG-based dynamic label schedules perform signif-
icantly better than the standard static schedules. For most
problem instances, our guided approach can reduce the run-
ning time by more than 50%.
Complete vs Partial Label Sweep. We experimented with
partial sweeps but on Pascal it performed very similar to the
full sweep algorithm, which also converges very quickly.
We believe the reason for this is that the energies are fairly
confident, and most labels are only expanded on once. On
Stereo, we were able to observe improvement of partial
sweeps over full sweeps, typically by 10-20%. We believe
problems with extremely large label spaces where individ-
ual instances contain only a small subset of these labels
would most benefit from our partial sweep algorithm. Fig. 7
shows performance of all scoring function for full and par-
tial sweep on the Venus stereo problem.
Initialization vs. Dynamic Schedules. For all methods
presented in this paper, we initialized the primal labelling
uniformly with ones, i.e. xpi = 1, ∀i ∈ [n]. Of course, a
better initialization scheme based on unary potentials might
help, e.g., we can initialize with the labels that minimize
node energies independently, i.e. xi = argmins∈L θi(s).
However, we found in our experiments that even with a
bad uniform initialization, LPDG-based methods outper-
formed standard Expansion with a good initialization based
on unary potentials. This demonstrates the power of LPDG
based dynamic scheduling. Of course, ideally we should
use both a good initialization and a good dynamic schedul-
ing scheme. Fig. 8 shows the results.

6. Conclusions

We presented a novel method for proposing good ex-
pansion moves that significantly speeds up the Expansion
and FAST-PD energy minimization algorithms. The results
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(c) Cones: Energy vs. Iterations.
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(d) Cones: Energy vs. Time.
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(e) Teddy: Energy vs. Iterations.
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(f) Teddy: Energy vs. Time.
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(g) Venus: Energy vs. Iterations.
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(h) Venus: Energy vs. Time.

Figure 5: Results on energy functions used for Stereo-Matching. (a) Cones image from the Middlebury Stereo Dataset. (b) The computed
disparity map by minimizing the energy used in [1]. (c) Graph showing how the energy of the solution changes with number of expansions
of the different variants of guided Expansions and standard FAST-PD. (d) Graph showing how the energy of the solution obtained by
different variants of guided Expansion and FAST-PD changes with running time. (e) and (f) Results for Teddy image pair. (g) and (h)
Results for Venus image pair.
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(b) Energy vs. Iterations.
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(c) Energy vs. Time. (d) Segmentation.

Figure 6: Results on energy functions used for Object Segmentation. (a) Image from the PASCAL VOC 2009 dataset. (b) Solution
obtained by minimizing the pairwise energy function used in [17]. (c) Graph showing how the energy of the solution changes with number
of expansions of the different variants of guided Expansions and standard FAST-PD. (d) Graph showing how the energy of the solution
obtained by different variants of guided Expansion and FAST-PD changes with running time.

of our experiments have demonstrated that primal and dual
solutions can be used to make good predictions on which
label-expansion will lead to lower energy solutions. We be-
lieve that the theory developed in this paper, and our method
will help significantly reduce the time taken for energy min-
imization in problems which are defined over large label
sets (e.g. denoising).

This paper focused on developing the LPDG-based rank-
ing scores for Expansion moves. Extending these ideas to
general moves like Range [29] and Fusion [18, 32] is an in-
teresting direction for future work.
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