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Abstract

Spectral clustering and eigenvector-based methods have
become increasingly popular in segmentation and recogni-
tion. Although the choice of the pairwise similarity met-
ric (or affinities) greatly influences the quality of the re-
sults, this choice is typically specified outside the learning
framework. In this paper, we present an algorithm to learn
class-specific similarity functions. Mapping our problem in
a Conditional Random Fields (CRF) framework enables us
to pose the task of learning affinities as parameter learning
in undirected graphical models. There are two significant
advances over previous work. First, we learn the affinity be-
tween a pair of data-points as a function of a pairwise fea-
ture and (in contrast with previous approaches) the classes
to which these two data-points were mapped, allowing us
to work with a richer class of affinities. Second, our for-
mulation provides a principled probabilistic interpretation
for learning all of the parameters that define these affini-
ties. Using ground truth segmentations and labellings for
training, we learn the parameters with the greatest discrim-
inative power (in an MLE sense) on the training data. We
demonstrate the power of this learning algorithm in the set-
ting of joint segmentation and recognition of object classes.
Specifically, even with very simple appearance features, the
proposed method achieves state-of-the-art performance on
standard datasets.

1. Introduction
Spectral clustering and eigenvector-based methods have

become the focus of significant recent research in com-
puter vision, particularly in clustering and image segmen-
tation [2, 4, 18, 21, 26, 29]. An important benefit of these
methods is that they offer good, computationally-efficient
approximations to combinatorial problems. The typical ap-
proach can be summarized as follows. First, a weighted
graph is constructed, where each node corresponds to either
a data element (in clustering) or a pixel (in segmentation);
and the undirected edge weight between two nodes is de-
fined by a pairwise similarity metric between the nodes. For

Figure 1: The need for class-specific affinities [best viewed
in colour]: the affinity between “blue” and “white” regions
should be high for images in the top row (those colors occur
together in street signs); the same affinities should be low
for images in the bottom row to enable white buildings and
birds to be segmented from blue sky.

example, Felzenszwalb and Huttenlocher [6] employ the
Euclidean (L2) distance between the colors of connected
pixels as a measure of their dissimilarity.1 On the other
hand, in their work on normalized cuts (Ncut), Shi and Ma-
lik [26] define the edge affinity using an exponential kernel
of the distance between two nodes in feature space. As has
been observed by several authors [2, 4, 25], the quality of
results achieved by such methods is strongly dependent on
the choice of the affinity function. Thus, it a natural to seek
principled ways for selecting these affinities.

For some problems, such as unsupervised, task-
independent bottom-up segmentation, it may be impossible
to propose an optimal affinity function for all possible im-
ages; indeed the current trend in computer vision is to treat
this type of segmentation simply as a pre-processing step
that generates over-segmentations [5, 9]. However, in cases
where segmentation is more closely tied to a specific task
(such as object category recognition), could we exploit the
availability of ground-truth segmentations by placing seg-
mentation within a supervised learning framework? Meila
and Shi [18] explore this problem in the random walk inter-
pretation of Ncuts, by minimizing the KL-divergence be-

1Dissimilarity and similarity are both employed in related work. This
paper consistently defines affinities as similarity.
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Figure 2: Overview of our approach [best viewed in colour]: (a) an input image; (b) superpixels extracted from this image;
(c) region graph G constructed over those superpixels; (d) optimal labelling of the image; (e) visualization of raw feature
space F ; (f) visual words extracted in this feature space; (g) shows the complete graph Gf over these visual words, along
with weights on nodes and edges. Unlike previous work, we employ class-specific edge weights.

tween the transition probabilities derived from the affin-
ity matrix and ground-truth segmentation. Bach and Jor-
dan [2] define a cost function measuring error between the
Ncut eigenvector and the ground-truth partition. They use
a differentiable approximation of the eigenvector to derive
the affinity matrix that is optimal under this cost function.
Cour et al. [4] derive an analytic form for the derivative of
the Ncut eigenvector and select the affinity matrix that mini-
mizes the L2 distance between the Ncut eigenvector and the
target partition. Shental et al. [25], reformulate the typical
cuts criterion [3, 7] as inference in an undirected graphi-
cal model, and learn the affinities as the “best” (in an MLE
sense) linear combination of features. This last work is the
one that is most closely related to our proposed method.

Fundamentally, all of these methods attempt to learn a
mapping from the features derived at a pair of data points
(or pixels) to that affinity that best mimics the segmenta-
tion provided in the training set. However, this is inherently
an ill-posed task. Consider, for example, the images shown
in Figure 1, where the ground-truth segmentation separates
the foreground object (sign, bird or building) from the back-
ground. Suppose that our (weak) features are colour, and
that we would like to learn the affinity between “blue” and
“white”. The images in the top row would suggest that we
should like to keep the affinity between “blue” and “white”
high in order to penalize any cuts that separate the two. On
the other hand, the images in bottom row suggest that the
affinity between “blue” and “white” should be low in order
to encourage cuts that separate the two. We claim that these
conflicting notions can both be simultaneously incorporated
by learning class-specific affinities, i.e., affinities that are

not just a function of the features measured at the data-
points, but also the classes to which these two data-points
were mapped. In our framework, we no longer pose ques-
tions like “What is the affinity between ‘blue’ and ‘white’?”,
but rather “What is the affinity between ‘blue’ and ‘white’
when ‘blue’ corresponds to sky and ‘white’ to building?”.

This paper makes two significant contributions. First,
by learning class-specific affinities we employ a richer fam-
ily of dependencies and inter-relations between parts. Sec-
ond, formulating our problem in the framework of Condi-
tional Random Fields (CRFs) enables us to pose the task
of learning affinities as parameter learning in undirected
graphical models (in a manner similar to [25]). Thus we
provide a probabilistic interpretation for learning affinities,
and learn all parameters defining these affinities from data.
We demonstrate this learning framework on the task of joint
segmentation and recognition of multiple object classes in
images, where the goal is to output a K-way partition of the
image, and to assign to each partition a class label.

2. Proposed Approach

Figure 2 shows an overview of our approach and Table 1
defines the notation used throughout this paper.

2.1. Superpixels

In a manner similar to previous efforts [5, 9], we first
over-segment the image and treat the resultant superpixels
(rather than the pixels) as our elementary units. This en-
sures a locally-smooth labelling, and also speeds up the al-
gorithm.



Table 1: Summary of notations used in the paper
Gf complete graph (with loops) on visual words
G neighbourhood graph (without loops) on superpix-

els
W number of visual words, i.e. |V (Gf )|
N number of object classes
S number of superpixels in an image, i.e. |V (G)|
[N ] {1, 2 . . . N}
F raw feature space
fk raw feature vector extracted from superpixel k
µ, υ visual words
ωj(υ) reward for labelling visual word υ as class j
ωij(µ, υ) affinity between visual words µ (labelled i) and υ

(labelled j)eωj [ ωj(υ1) . . . ωj(υW) ]T(W×1)eωij [ ωij(µ1, υ1) . . . ωij(µW, υW) ]T(W2×1)

πk(υ) posterior probability of the visual word υ given fea-
ture vector fkeπk [ πk(υ1) . . . πk(υW) ]T(W×1)eπkl [ πk(µ1) πl(υ1) . . . πk(µW) πl(υW) ]T(W2×1)

Eπk [ · ] expected value of (·) under the distribution πk

X {X1, X2 . . . XS}, image represented as a collec-
tion of superpixels

Y {Yk : k ∈ [S], Yk ∈ [N ]}, a valid image labelling

D
n“

Y (1),X(1)
”
, . . . ,

“
Y (m),X(m)

”o
, dataset of

image, ground-truth segmentation pairs
m number of training images

2.2. Non-parametric Class-Specific Affinities

Our next step is to compute features for each superpixel.
These can include intensity, colour, texture or gradient cues.
We discuss our choice of features in Section 3, but since
our approach is agnostic to the exact form of the chosen
features, assume for the following discussion that there are
some image features2 (in a feature space F) that can be
extracted over these superpixels. Following the popular
bag-of-words model [22], we discretize/quantize this fea-
ture space to get “visual words”. We construct a complete
graph (Gf ) with the visual words as the nodes. Now, we de-
fine a family of weights on the node and edges parametrized
by the class labels, i.e.,

{ωj(υ) : υ ∈ V (Gf ), j ∈ [N ]} and, (1)
{ωij(µ, υ) : µ, υ ∈ V (Gf ), i, j ∈ [N ]} , (2)

where we define [N ] def= {1, 2, . . . , N} to be the set of class
labels,W def= |V (Gf )| to be the number of visual words . In-
tuitively, we can think of ωj(υ) as the reward for labelling
visual word υ class label j, and ωij(µ, υ) the affinity be-
tween visual words µ and υ when they were labelled as i

2For clarity of notation, we will refer to these features as “raw” features.

and j respectively. This is the quantity discussed in the ex-
ample in Figure 1.

2.3. Visual Word Posteriors

Instead of working with the raw features extracted over
the superpixels, we compute the posterior visual word dis-
tributions, which can be thought of as a soft assignment of
our feature vector to the quantized cluster centers. Formally,
if fk is the feature vector extracted at superpixel k,

πk(υ) = Pr (υ | fk) (3)
∝ Pr (fk | υ) Pr (υ) , (4)

where the first term is the likelihood of a feature vector
given a visual word, and is modelled using an exponential
kernel of euclidean distance:

Pr (fk | υ) ∝ e−d(fk,υ). (5)

It should be noted that in the above relation we have over-
loaded the term υ to be both the index of the visual word,
and the corresponding feature vector in F . The second term
in Equation 4, i.e., the marginal over the visual words could
be assumed to be uniform. However, since this quantiza-
tion is usually the result of a clustering process, we model
this marginal by the observed “popularity” of visual words
at the end of the clustering process:

Pr (υ) =
# members in cluster υ

# data points
. (6)

2.4. Expected Affinities

Now that we have extracted visual word posteriors, we
can talk about expected costs and affinities under these pos-
teriors, i.e., we define

ω̃j
def= [ ωj(υ1) . . . ωj(υW) ]T and, (7)

ω̃ij
def= [ ωij(µ1, υ1) . . . ωij(µW, υW) ]T , (8)

as the vectors holding affinities, and

π̃k
def= [ πk(υ1) . . . πk(υW) ]T and, (9)

π̃kl
def= [ πk(µ1) πl(υ1) . . . πk(µW) πl(υW) ]T , (10)

as the vectors holding marginal visual word posteriors for a
superpixel k, and the joint visual word posterior for a pair
of superpixels (k and l). Note that this joint distribution can
be extracted from our marginal distributions using an inde-
pendence assumption. Now, under these two distributions
the expected affinities can be written as:

Eπk [ωj ] = ω̃Tj π̃k and, (11)

Eπkl [ωij ] = ω̃Tij π̃kl. (12)



Intuitively, Equation 11 can be interpreted as the expected
reward for labelling superpixel k with class label j, while
Equation 12 gives the expected affinity between superpixels
k and l, when they are labelled as classes i and j, respec-
tively.

2.5. Model

Our model consists of a CRF [13,14] defined over a pla-
nar graph (G) whose nodes are the superpixel labels and
adjacent superpixels in the image correspond to an edge
in this graph. Formally, if our image is represented as a
collection of superpixels X = {X1, X2 . . . XS} (where
S

def= |V (G)|, is the number of superpixels), then every valid
image labelling is given by a collection of random variables
Y = {Yk : k ∈ [S], Yk ∈ [N ]}. We define a distribution
on the space of all such image labellings which defines our
model:

Pr(Y |X,θ) =

1
Z

exp

( ∑
k∈V (G)

Eπk

[
ωYk

]
+

∑
(k,l)∈E(G)

Eπkl

[
ωYkYl

])
(13a)

=
1
Z

exp

( ∑
k∈V (G)

ω̃TYk π̃k +
∑

(k,l)∈E(G)

ω̃TYkYl π̃kl

)
,(13b)

where Z is the partition function and θ =
{ω̃j , ω̃ij : i, j ∈ [N ]} is the set of parameters govern-
ing this distribution.

2.6. Parameter Learning and Inference

Our model (Equation 13b) tells us that every valid con-
figuration of affinities parameterizes a distribution over
image labellings. We have thus formulated the prob-
lem of learning affinities as parameter learning in this
undirected model. We learn these parameters from
a dataset of segmented and labelled images (D ={(
Y (1),X(1)

)
, . . . ,

(
Y (m),X(m)

)}
) by maximizing the

conditional log-likelihood of this training dataset, i.e.,

θ̂MLE = arg max
θ

L(D | θ) (14)

= arg max
θ

log Pr
(
(Y (d))d∈D | (X(d))d∈D,θ

)
.

(15)

The motivation behind this criterion is that we want to
choose the parameters that lead to a distribution under
which the ground-truth segmentations become most likely,
and are thus the most discriminative parameters for this
dataset. The properties of CRF log-likelihoods have been
well studied and the reader is referred to [1, 12, 14–16] for

detailed discussions and background. We perform this max-
imization by gradient ascent, and in general, the derivative
of the conditional log-likelihood with respect to a parame-
ter simplifies to a difference between the expected and ob-
served feature responses. Analytically, we can express the
gradient as:

∂L(D | θ)
∂ω̃j

=
∑
d∈D

(
∂ log Pr

(
Y (d) |X(d),θ

)
∂ω̃j

)
(16a)

=
∑
d∈D

− ∑
Y

(d)
k =j

π̃
(d)
k −

1
Z(d)

∂Z(d)

∂ω̃j

 (16b)

=
∑
d∈D

− ∑
Y

(d)
k =j

π̃
(d)
k +

∑
k∈V (G)

Pr(Y (d)
k = j) π̃

(d)
k

 ,

(16c)

where the second term in Equation 16c requires the
marginal class label distribution of a superpixel. A similar
update rule can be derived for the pairwise weights (ω̃ij),
which will involve class label distributions for pairs of su-
perpixels. Exact computation of these marginal distribu-
tions is in general intractable, and thus approximations like
Monte Carlo sampling are commonly employed [8]. In a
manner similar to [25], we use Loopy Belief Propagation
(LBP) [19] to approximate these marginal beliefs. We can
see that gradient ascent will converge (i.e., the gradient will
become zero) when our model completely “believes” in the
training data. It should be noted that our update rule (Equa-
tion 16c) requires us to perform inference on all the train-
ing images (e.g., 276 in the MSRC dataset) at each step of
gradient ascent. Thus, in practice, we follow a sequential
update (rather than this batch update) rule, where the pa-
rameters are updated (in the direction of the gradient) after
inference on each image.

At test time, we perform Maximum Posterior Marginal
(MPM) inference to estimate the most probable segmenta-
tion and labelling of an image.

3. Experiments
We evaluated our algorithm on three standard image col-

lections: the 21-class MSRC [27], the 7-class Sowerby [9]
and the 7-class Corel [9] datasets. Our results, summarized
below, confirm the benefits of employing a class-specific
affinity formulation.

3.1. 21-Class MSRC

The MSRC dataset consists of 591 images (mostly 213×
320) containing 21 object classes (ignoring ‘void’, ‘horse’
and ‘mountain’). A number of recent works have reported
encouraging results on this dataset: Shotton et al. (Tex-
tonBoost) [27] introduced novel shape-texture features in a



boosted framework, and used a CRF to integrate these with
other cues; Verbeek and Triggs [28] explored combining
spatial field models (like MRFs) with aspect-based models
(like PLSA, LDA); Yang et al. [30] combined texture, key-
point spatial co-occurrence and global shape into a mean-
shift framework to perform multi-class segmentation of im-
ages. In order to enable direct comparisons against Texton-
Boost, we duplicate Shotton et al.’s experimental method-
ology [27] and employ a random split of 45% for training,
10% for validation, and 45% for testing, while maintaining
a similar distribution of classes.

Superpixels. For superpixel generation, we experimented
with both the Felzenszwalb-Huttenlocher (FH) [6] and the
Ncut [26] code, and ultimately chose FH purely for its com-
putational efficiency. No effort was made to identify opti-
mal FH parameters; all of the experiments described here
used sigma = 1, k = 150, min = 400 for superpixel gener-
ation. The number of superpixels per image varied from 4
(e.g., for images containing mostly grass) to 58 (for clut-
tered indoor environments) with the average being 27.

Weak Raw Features. While our proposed framework
works with arbitrary features, we present experimental re-
sults on a set of commonly-used weak colour and tex-
ture features to highlight the power of our learning algo-
rithm. Specifically, we adopt the the same colour features
as Hoiem et al. [11], and filterbank responses proposed by
Malik et al. [17]. These raw features were clustered to
form a visual word dictionary using a publicly-available
efficient C implementation of k-means/x-means by Pelleg
and Moore [23]. The number of clusters was automati-
cally chosen using the x-means algorithm [24] maximizing
a Bayesian Information Criterion (BIC) within a range (10–
60).

Baseline 1: Node features only. In order to establish
a baseline, and to get an estimate of the “power” in our
features, we classified superpixels based on these features
alone. To this effect, we trained 21 one-vs-rest binary logis-
tic classifiers [20] to model the probability of a class given
the feature vector. Ground-truth label for a superpixel was
taken to be the most frequent label among the pixels it con-
tained. At test time, we assigned to each feature vector the
label of the most confident of the 21 models. These super-
pixel level classifications were then used to provide pixel
level labels by assigning the same label to all pixels within
a superpixel. This method achieved an overall pixel accu-
racy of 59.3%. As a comparison, using their stronger node
features alone (without the CRF) Shotton et al. (Texton-
Boost) [27] were able to achieve 69.6%.

Baseline 2: Class-agnostic affinities. For our second
baseline, we explore the use of affinities that unlike our pro-
posed class-specific affinities, are not explicit functions of
object classes; we refer to these as “class-agnostic” affini-
ties. Such affinities are common in the computer vision lit-
erature, e.g., Kumar and Hebert [13] use a logistic unit to
model Pr (Yk = Yl | π̃kl), i.e., the probability of two nodes
having the same class given their pairwise feature vector.
In our model, this would correspond to replacing our class-
parametrized edge affinities (Equation 2) by a weaker fam-
ily:

{ωij(µ, υ) : µ, υ ∈ V (Gf ), i, j ∈ [N ]} −→{
ωδ(i,j)(µ, υ) : µ, υ ∈ V (Gf ), i, j ∈ [N ]

}
, (17)

where δ(i, j) def= I(i = j), is defined as the indicator func-
tion for the case (i = j). Corresponding to this family of
weights our conditional distribution over image labellings
becomes:

Pr(Y |X,θ) =

1
Z

exp

( ∑
k∈V (G)

ω̃TYk π̃k +
∑

(k,l)∈E(G)

ω̃Tδ(Yk, Yl) π̃kl

)
.

(18)

In the context of our example from Figure 1, intuitively this
family of pairwise affinities tries to characterize whether a
pair of visual words (say “blue” and “white”) should belong
to the same or different classes. In a manner similar to our
discussion in section 2.6, this model was also trained by
maximizing the conditional log-likelihood though gradient
ascent. We achieved an overall pixel accuracy of 60.9%
with this model.

Comparison with these baselines. Table 2 compares the
performance of class-specific affinities (CSA) with these
two baselines. We note that our node features are indeed
weak, and perform poorly across most classes except the
ones easily distinguished by their colour or texture alone
(e.g sky, grass, road). Using the CRF framework over these
weak node features with agnostic affinities helps a little,
but we achieve a significant improvement by using class-
specific affinities, thus re-affirming our intuition about their
usefulness. An interesting observation is that there exists
a certain coupling between classes or correlation in accu-
racy jumps. This suggests classes that frequently co-occur
in the same image (e.g., boat–water, face–body) boost each
other’s performance though pairwise interactions.

Comparison with existing methods. Table 3 presents a
comparison of our method with three previous works: Shot-
ton et al. [27] (TextonBoost), Verbeek and Triggs [28] (Ver-
beek07), and Yang et al. [30] (Mspatch). The compar-
ison with TextonBoost is particularly interesting because
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Node Alone 62 95 67 9 19 95 24 43 23 38 63 61 33 3 53 1 75 31 17 19 2 40
Class-agnostic 49 90 67 16 48 88 58 51 7 48 77 90 41 15 40 17 60 44 33 27 0 46
Class-specific 68 94 84 37 55 68 52 71 47 52 85 69 54 5 85 21 66 16 49 44 32 55

Table 2: Classification accuracies for the 21 classes in the MSRC dataset achieved by node feature alone, class-agnostic
affinities, and class-specific affinities

68.1 1.8 3.3 0.9 3.6 1.0 0.6 1.6 4.9 1.4 0.2 3.2 7.2 0.4 1.6 0.2

0.3 94.1 1.3 0.8 0.2 0.2 0.2 2.9 0.1

2.2 6.3 83.9 0.2 4.4 0.2 1.6 0.9 0.1 0.1

1.9 28.0 1.5 37.5 1.9 0.1 0.5 0.4 5.9 0.4 3.6 6.5 6.0 5.5

21.5 0.4 9.2 54.5 14.4

7.3 0.4 67.6 0.1 13.6 2.0 3.5 4.0 0.1 1.4

22.5 8.5 7.8 6.1 51.7 0.3 0.3 2.8

4.0 1.0 0.2 1.0 71.4 6.5 3.8 11.0 1.1

23.7 1.6 0.8 0.1 0.2 0.2 46.9 0.1 13.6 0.2 12.4

22.4 0.1 3.4 2.8 2.2 1.3 51.7 1.0 6.0 9.1

7.7 1.2 0.7 0.1 0.2 0.7 85.3 4.1 0.1

1.2 2.7 0.4 0.3 69.4 9.3 16.8

20.4 0.7 15.6 53.7 9.6

12.218.2 2.2 2.9 4.7 13.6 0.7 7.5 7.4 4.2 4.6 14.8 0.5 3.3 3.0

6.4 0.2 1.9 0.1 84.7 0.3 6.4

20.222.7 0.9 5.9 1.2 2.7 11.6 5.2 4.0 20.8 4.9

10.1 3.5 0.5 0.1 3.7 0.7 7.8 3.2 1.7 0.1 0.4 1.1 0.2 66.4 0.5

15.5 23.3 6.6 9.4 2.8 1.9 23.415.6 0.2 1.2 0.2

1.3 12.5 4.4 2.7 1.5 6.6 1.9 0.8 17.9 49.5 0.9

9.1 7.0 4.4 1.0 2.8 0.9 4.5 8.4 3.5 0.5 12.3 1.7 43.9

10.0 0.4 19.5 37.5 0.3 0.6 31.8
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Figure 3: Confusion matrix for 21 class MSRC using class-
specific affinities.

the two approaches (Textonboost vs. CSA) focus on two
different aspects of the overall recognition system (node
features vs. learning framework). They use an extensive
boosting framework (involving 5000 rounds and 42 hours
of training) to find powerful node features, which when
used alone achieve a competitive classification accuracy
(69.9%). However, their learning framework posts only
a minor boost (∼ 3%) in performance. On the other
hand, while our node features are weak (59.3%), the boost
achieved from our learning framework over the node fea-
tures is significantly higher (∼ 10%). Clearly this shows
that our algorithm’s performance should primarily be at-
tributed to our learning framework rather than the choice
of features.

Analyzing learnt class-specific affinities. As discussed
in Section 2.2, our algorithm learns a family of affinities
parametrized by a pair of classes. Figure 4 shows this fam-
ily of learnt parameters for one particular pair of code words

grass
sheep

water
bicycle

bird
road

body grass sheep water bicycle bird road body

−20

0

20

40

60

Figure 4: Class-Specific Affinities [best viewed in colour]:
plot (top) shows the learnt affinities between a pair of visual
words (brown–green) as a function of classes; bottom rows
shows images containing the pair of classes (cow–grass) un-
der which these visual words had the highest affinity be-
tween them.

(whose colours roughly correspond to brown and green).
The figure shows that there is a significant variation in the
edge affinity parameters for different classes. The maxi-
mum occurs at the joint assignment of “cow-grass” and ex-
ample images where this pair of code words was assigned
to these classes are shown. Class-agnostic affinities are
restricted to representing this set of parameters with only
a single number. This prevents such techniques from ad-
equately capturing the rich class-specific interactions be-
tween features in real-world images.

3.2. Sowerby and Corel

The Sowerby dataset introduced by He et al. [8] con-
sists of 104 images (64 × 96) containing 7 classes, and the
Corel (subset) dataset3 contains 100 images (120 × 180)
also containing 7 classes. We compare our algorithm to
TextonBoost and He et al. [8] (mCRF) who propose a mul-
tiscale CRF defined over the pixels, in a manner similar to

3Referred to as “Corel A” by He et al. [9].



21-MSRC Corel Sowerby

CSA (Us) TextonBoost Verbeek07 Mspatch CSA (Us) TextonBoost mCRF CSA (Us) TextonBoost mCRF

Node Alone 59.3 69.6 - - 63.2 68.4 66.9 84.6 85.6 82.4
With Learning 69.5 72.2 73.5 75.1 82.8 74.6 80.0 87.8 88.6 89.5

Boost 10.2 2.8 - - 19.6 6.2 13.1 3.2 3.0 7.1

Table 3: Comparison of our method (CSA) with other works; first row holds accuracies achieved by node features alone;
second row shows accuracies by using the overall learning framework; and the third row shows the gain.
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Figure 5: Confusion matrices for the Corel and Sowerby
datasets using class-specific affinities.

the product-of-experts model [10]. Following their method-
ology we also use a random split of 60% for training and
40% for testing on both these datasets.

Table 4 compares our method with the two baselines,
and Figure 5 shows the confusion matrices achieved by our
method using class-specific affinities. For the Corel dataset,
using class-specific affinities improves performance over
node features alone and class-agnostic affinities in almost
all the classes. Table 3 shows that compared to Texton-
Boost and mCRF, we work with weaker features but after
learning outperform both. For the Sowerby dataset, we post
poor performance in classes “Road Marking”, “Street Ob-
jects” and “Cars”. This is because that dataset contains low-
resolution images (64 × 96) and these objects sometimes
occupy as few as 2 pixels in the image. Since our model
is based on superpixels, our training set consists of fewer
than 5 superpixels from each of these three classes, which
predictably leads to poor training of classifiers.

4. Discussion and Conclusions

We introduce the concept of class-specific affinities, i.e.,
affinities that are not just a function of the features mea-
sured at the data-points, but also the classes to which these
two data-points were mapped. We present examples of the
inherent conflicts that are impossible to resolve when using

class-agnostic affinities (Figure 1), and show (Figure 4) how
our learnt class-specific affinities incorporate a richer set of
dependences and relationships between pairs of classes and
visual words. One consequence of employing our proposed
family of affinities is that the number of learned parameters
scales quadratically with the number of classes (since we
examine all pair-wise class interactions). Fortunately, our
experiments show that the standard datasets are sufficiently
large to allow us to learn these parameters without overfit-
ting. We demonstrate our framework on the task of joint
segmentation and recognition of object classes in images,
and show our proposed framework for affinities can achieve
comparable to state-of-the-art performance even while us-
ing weak appearance features. In particular, we show that
the improvement obtained over the node-only and class-
agnostic baselines is significantly greater than that reported
in recent related work. As future work, it would be inter-
esting to combine with the proposed learning framework
with more powerful features (e.g., those used by Texton-
Boost [27]).
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