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Abstract

The “Five Point Relative Pose Problem” is to find all pos-
sible camera configurations between two calibrated views
of a scene given five point-correspondences. We take a
fresh look at this well-studied problem with an emphasis on
the parametrization of Essential Matrices used by various
methods over the years. Using one of these parametriza-
tions, a novel algorithm is proposed, in which the solution to
the problem is encoded in a system of nine quadratic equa-
tions in six variables, and is reached by formulating this
as a constrained optimization problem. We compare our
algorithm with an existing 5-point method, and show our
formulation to be more robust in the presence of noise.

1. Introduction

Estimation of world co-ordinates of scene points (called
“Scene Reconstruction”) and relative motion of camera
(called “Ego-motion estimation”) from images is a clas-
sical problem with extensive literature in photogrammetry
and (more lately) computer vision communities. It is well
known that in the calibrated setting (when all intrinsic pa-
rameters of the camera are known a priori), given enough
(at least five) point-correspondences between two views of
a scene, the relative motion of the camera can be recovered.
The “Five Point Relative Pose Problem” is to find all possi-
ble camera configurations between two calibrated views of
a scene given exactly five point-correspondences, and was
originally shown by Kruppa [3] to have 11 solutions. This
was later improved by [1],[4],[5] to show that there are in
fact only 10 possible valid solutions.

1.1. Previous Work

One of the earliest attempts at the solution to this prob-
lem, Kruppa’s method requires finding all intersection of
two sextic curves and does not render itself to a feasible im-
plementation. Over the years, several solutions have been
proposed but few of them are suitable for numerical imple-
mentation. Triggs [6] builds a 60 x 60 sparse matrix, which
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is later reduced to a 20 x 20 matrix, and then formulates the
solution as an eigen decomposition of this reduced matrix.
Philip [7] uses elimination to reach a 13" order polynomial,
ten of which are the solutions to our problem. Nister [8] ex-
tends this idea to get a 10" order polynomial, all of which
are the required solutions. Both these approaches work with
a closed-form high-order (13th and 10th) uni-variate poly-
nomial equation which encodes the solution to the prob-
lem. However, since no closed form solutions are known for
polynomials with degree greater than 5, iterative numerical
methods are used to converge to the solutions. Root find-
ing for high order polynomials is an ill-conditioned problem
[11], [12], where slightest perturbations in the coefficients
of the equation can cause the solutions to not only change
drastically but in some cases become complex. To get an in-
tuition of how ill-posed this problem really is consider the
following polynomial:

Pi(x) =x*+4° +6x> +4x+1, 1)
and a slightly perturbed version of this polynomial:
Py(x) = x* +4x° + 627 +4.01x+ 1. 2)

The result of the ‘solve’ command (in MAPLE©) on these
are:

roots{Pi(x)} =( -1 -1 -1 -1 )T7 3)

—1.34024
0.97500 —1 0.31723 )
0.97500+10.31723 |~
—0.70975

roots{P>(x)} =

Although for low order polynomials such extreme be-
haviors is mostly limited to repeated roots, high order poly-
nomials are inherently ill-posed for such analysis. As an
extreme example, consider the infamous Wilkinson’s patho-
logical polynomial [12]:

P(x) = (x+1)(x+2)...(x+20)
0 4+210x" + ... 420! (5)



Although this polynomial has small and separated in-
tegral roots (-1,-2,...,-20), its coefficients are very large.
Consider the displacement its roots undergo when the co-
efficient of x'° is perturbed by 2723 (which is a change of
5.66 x 1073%):

—1.00000 —2.00000 —10.09527 £10.64350
—3.00000 —4.00000 —11.79363 £11.65233
—5.00000 —6.00000 —13.99236+12.51883
—6.99970 —8.00727 —16.73074+£12.81262
—8.91725 —20.84691 —19.50244 £11.94033

(6)
We can only imagine the magnitude of errors that can
creep into our calculations from more realistic errors. The
situation is further worsened by the fact that the coefficients
of these high order uni-variate polynomials are not directly
estimated. These coefficients are derived by an elimination
procedure from several low-order multivariate polynomials,
further blowing up our estimates. It is for these reasons that
the authors would prefer to work with a low-order system.
The rest of the paper is organized as follows: Section 1.2
introduces the notation and the problem definition. Section
2 describes our algorithm for estimating essential matrices,
and Section 3 shows the results of a comparative evaluation
of our algorithm with an existing 5-point method [13].

1.2. Problem Background and Formulation

Figure 1 shows a standard two view setup, where the sec-
ond view is reached from the first one when the camera un-
dergoes a rigid transformation (represented by a translation
and a rotation). In the calibrated setting, since all intrin-
sic parameters of the camera are known, we can directly
work with the normalized image plane instead of the retinal
plane. Assuming the starting position of the camera to be
the origin, and knowing the rigid transform it undergoes, the
finite-projection center camera matrices can be represented
as:

M] :K1[1|0] Ell’ld7 (7)

M = Ka[R|1]. ®)

If p and P’ are two image points (represented as homoge-
neous 3-vectors) looking at the same world point P (repre-
sented as homogeneous 4-vector), then the coplanarity con-
straint is represented as

pEP =0, ©)
where the Essential Matrix E is defined by
E =[t]xR and, (10)
[t] « is the cross product matrix formed by vector ¢,

0 —I3 15
[f]x = 3 0 -1 | =T a1
) I3 0

r Yo

Figure 1: The normalized two view setup. One of the cameras is
assumed to be at the origin.

Since the goal is to use the correspondence constraints to
compute the essential matrix, it is important to realize that
given enough constraints (at least 8) linear techniques exist
[9] to reach the solution, but no linear methods are known
when fewer than 8 correspondences are provided. It then
becomes necessary to study the properties of essential ma-
trices and use a ‘suitable’ parametrization to proceed. The
following (previously proved) theorems are collated from
[11,[51,[7] and [14]:

Theorem 1 The essential matrix is not full rank and has a
one dimensional null space, that is

det(E) =0 and, (12)
AN(ET) =1. (13)
Theorem 2 The essential matrix has two equal non-zero

singular values

svd

EXU vT. (14)

S o Q
(= ie]

0
o
0
Theorem 3 A nonzero 3x3 matrix is an essential matrix if
and only if it satisfies

1
(EETE — 5rrace(EET)E =0. (15)

Theorem 4 The necessary (but not sufficient) condition for
a nonzero 3 X3 matrix to be an essential matrix is

%trace(EET)2 —trace[(EET)?] = 0. (16)

While each one of the above theorems lends itself to
a particular parametrization of essential matrices, the next
theorem establishes that they are all equivalent.

Theorem 5 A real 3x3 matrix E is an essential matrix
if and only if

e Parametrization 1: It can be decomposed as the prod-
uct of a skew-symmetric and a rotation matrix,

E = [t]«R, (17)



and if and only if

e Parametrization 2: It has one singular equal to zero
and other two singular values equal,

y c 0 0
EXU|l0 o 0|V, (18)
0 0 0
and if and only if
e Parametrization 3: It satisfies the following cubic con-
straints
1
(EET)E — Etmce(EET)E =0, (19)
and if and only if

e Parametrization 4: It satisfies the following cubic and
degree-4 constraints

det(E) =0 and, (20)

%trace(EET)z —trace[(EET)Y]=0.  (21)

Parametrizations 3 and 4 describe the manifold of es-
sential matrices and have been extensively used in the past.
Parametrization 3 was introduced by Demazure [4] who
studied a sub-manifold (91) of P8 described by the 9 cu-
bic constraints. Maybank [1] introduced Parametrization 4
and showed that equations (20) and (21) together describe
the same manifold (907) of essential matrices, under the as-
sumption of real matrices. Philip [7] and Nister [8] use this
parametrization and eliminate variables in nine cubic con-
straints to achieve a univariate (13" and 10"") polynomial
equation. Parametrization 2 is generally used with SVD-
based techniques [2],[10] to decompose an essential matrix
into a rotation matrix and a translation vector.

2. Proposed Algorithm

Given the minimal case of five point-correspondences be-
tween two views (Figure 2), each of these correspondences
result in an epipolar constraint (9), which is linear in the
entries of E, and can be written as

Ploc Evec =0, (22)
where
N
Pyec =
[P1P) P2Py P3Py P1Ps P2Ps P3P P1Ps P2ps P3ps]
(23)
and,
EL.=[En Ena Ei3 Eay Ex» Ex3 E31 Exp E33],  (24)

3

E has 5 free
parameters = \\

Minimum of 5
correspondences

Figure 2: Two views with five point-correspondences provided.

We can stack all 5 of the equations of the form (22) into
a constraint matrix

AE,.. =0, (25)

where A is a 5x9 matrix. Without the use of any other in-
formation, this system is under-constrained and thus the re-
quired essential matrix (in its corresponding vector form)
lies in the 4 dimensional subspace of P®. This subspace is
the null space of A, and the basis can be easily extracted
using SVD. Thus

4
Eyec = Z ;X ) (26)
i=1

where {X; X; X3 X4} is the basis for the right null space of
A, and o; are the four (arbitrary) scalar multipliers.

Since the essential matrix has 5 degree of freedom (and
we have already imposed 5 constraints), this system is ex-
actly constrained. All that is required is for us to enforce
that E is an essential matrix and that Ejy,Ey2,...,E33 are
not independent variables. As we have already seen, this is
usually done by describing the manifold of essential matri-
ces in terms of entries in £ (or equivalently ;). We enforce
E to be an essential matrix with the following constraints

tTE=0 and, (27)
EE" = (t«R)([«<R)"
= [f]«RR"[1]]
(1] 1]
= 17T . (28)

At this juncture, we would like to point out that the trans-
lation vector can be extracted from the essential matrix by
straightforward SVD-based techniques [2], [10], and thus
it is standard practice to solve for the essential matrix ex-
clusively. While it may seem counter-intuitive to simulta-
neously solve for the essential matrix and the translation
vector (which is perhaps why this has not been explored till



now), as we soon see, this allows us to system of quadratic
equations, and it is this reduction in the order of equations
that makes this a more stable formulation.

2.1. Formulating as a Constrained Optimiza-
tion

Equations (27) and (28) together form a system of 9 homo-
geneous quadratic equations (3 from equation (27) and 6
from (28) in 7 variables:

xTAjix=0, (29)

where
i=1,2,...,9 and,

XT: [Otl Oy O3 Oy 11 I t3]. 30)

Thus the problem can finally be formulated as

x" Ax||%, 31)

9
min

i=1

such that
xx=1, (32)

where equation (32) is necessary since the entire system
in homogeneous co-ordinates and hence up to any arbi-
trary scale. Thus we find that we have effectively reduced
our problem to that of a regular constrained minimization,
which can be solved using standard techniques. The imple-
mentation described in this paper uses the MATLAB® Op-
timization Toolbox function ‘fmincon’, and is not followed
by any root-polishing step. It should be noted here that the
objective function is non-convex, and multiple seeds are re-
quired to converge to different minima. While this proce-
dure does not guarantee convergence to global minima, in
practice (as we show in our experiments), we can achieve
a high confidence of finding the solution from a relatively
small number of seeds.

3. Experimental Setup and Compara-
tive Evaluations

The organization of this section is as follows: Section 3.1
describes the geometry of the synthetic data-sets used for
quantitative analysis. We then compare the performance
accuracies of our algorithm with an existing 5-point algo-
rithm (the implementation for which is available at [13]),
both without noise (in section 3.2) and with noise (in section
3.3). In section 3.4 we look at the convergence properties
of our objective function.

Figure 3: Geometry used to create test-set

3.1. Test Data Geometry

For quantitative analysis our experiments are performed on
two test sets:

Set 1: In test set 1, the rotation matrix, translation vector
and 5 world points are drawn from a uniform distribu-
tion.

Set 2: In test set 2, these quantities are drawn form a dis-
tribution centered around a reasonable geometry. The
baseline between views is used as the reference unit
and world points are chosen in a particular region of
depths. This geometry is shown in Figure (3), and the
parameters used are listed in table below:

Depth | d | w | h 0, 0,
10¢ 5t | 5t | 5t | [-25° +25°] | [20° 707]

In all experiments a random rotation matrix and transla-
tion vector was sampled from the data-set to make an es-
sential matrix. Five world points were also sampled and
then projected using the two camera matrices to obtain cor-
respondences, which were used for estimating the Essential
Matrix via the two algorithms. Two different error metrics
were used. The first was the residual

E; E )

min | min - i , (33)
i { ( NEA [ETTTHIE] - E

computed over all the solutions returned. The second was
the re-projection error, between the true projections of the
world co-ordinates sampled:

Xtrue = M2 true Xworld, 34)

and their estimates from our calculations:

N

9

X= M, Xworld7 (35)
measured in pixel distances

Error = Z 1%true — £, (36)
Spts
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Figure 4: Errors (in negative log) in data-set 1. Each experiment
involves 200 data points. The arrows indicate the variance above
and below the mean.
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Figure 5: Errors (in negative log) in data-set 2. Each experiment
involves 1000 data points. The arrows indicate the variance above
and below the mean.

where M, follows from equation (8).

3.2. Performance without noise

We would like to point out that without the presence of noise
all 5-point methods would perform exactly the same in the-
ory, and any differences seen in practice are due to imple-
mentation choices and resulting numerical issues (for exam-
ple in our case, the precision of the stopping criterion, and
the granularity of successive increments). It can be seen
from Figure (4),(5) that without the presence of noise, as
expected both 5-point methods perform very similar to each
other. However, as we explore soon, they have different per-
formances under noisy conditions.

3.3. Performance with noise

We study the performance of these algorithms under the
presence of noise. To simulate tracking errors, Gaussian
noise was added to the correspondences after projecting the
true world points onto the two cameras. Figures (6),(7)
show the behavior of these algorithms under noise on test-
set 1, and we can see that our algorithm performs better un-
der noisy conditions. The cases when [13] does not return
any solution are not taken into consideration for computing
the errors. Figures (8),(9) shows these error over test-set 2.
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Figure 6: Test-setl: E MSE error versus Noise sigma. Each ex-
periment involves 1000 data-points. Vertical lines at points denote
confidence intervals at that sigma.

0.9¢
0.8k === Proposed Alg.
'O State of art
0.7p =
o’
’,
5 0.8F o
= .
i R
c 0.5F =
8 .
o '
-2 0.4f G
=4 .
€03 o
s
=4
0.2F . .l"
)
. ‘o"'
01 L e
. -
e -
olgziom- : . . . .
0.0001 0.001 0.01 01
Noise Sigma

Figure 7: Test-setl: Re-projection error versus Noise sigma. Each
experiment involves 1000 data-points. Vertical lines at points de-
note confidence intervals at that sigma.

3.4. Convergence Behavior

As we discussed in section 2, our algorithm requires random
seeds as the starting point. It is important thus, to have an
idea about the convergence, to study how the performance
depends on the number of seeds. Figure (10) shows how
frequently the true root of the system is reached as the num-
ber of seeds (drawn randomly with uniform prior) are in-
creased. It can be seen that as the seeds reach as high as 15,
the probability that the solution has been reached become
more than 95 percent. Considering that in the worst case,
there might be up to ten solutions to our system, this seems
a reasonable number.

4. Conclusions

To summarize, we introduced an alternative formulation for
estimating essential matrices in the minimal case of five
points. We intuitively argued the stability of this method
because of the reduction to a quadratic system of equations,
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Figure 8: Test-set2: E MSE error versus Noise sigma. Each ex-
periment involves 1000 data-points. Vertical lines at points denote
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Figure 9: Test-set2: Re-projection error versus Noise sigma. Each
experiment involves 1000 data-points. Vertical lines at points de-
note confidence intervals at that sigma.

and showed the same to be true with experimental valida-
tion on synthetic data.
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