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Abstract
We derive a modified version of factor analysis for data that is poisson (rather than gaussian) distributed.

This modified approach may better fit certain classes of data, including neuronal spiking data commonly
collected in electrophysiology experiments.

1 Introduction
Factor analysis and other similar dimensionality reduction approaches (e.g., PCA or SPCA) are derived using
a state-space model. The latent state is modeled as a gaussian distribution. The observed output is modeled
as a linear function of the latent state with additive gaussian noise. This approach can provide the benefit of
reducing the dimensionality of the observed, but noisy, data to a small number of underlying factors. These
factors may then be used to provide meaningful predictions on new data.

For count, or point process, data, the gaussian output noise model used in factor analysis may not provide a
good description of the data. Instead, we modify the output noise model to be poisson. Additionally, we extend
the state-space model to incorporate a mixture of gaussians rather than a single gaussian distribution. This
extension can serve to better model the latent state, especially when there is an a priori expectation that data
is clustered. Once trained, the model can be used to make predictions of the latent (or unobserved) states for
new observed data.

We dub our new approach as “Factor Analysis with Poisson Output”, or FAPO for short.

2 Generative Model
The generative model for FAPO is given below.

x | s ∼N (
µs,Σs

)
(1)

yi | x∼Poisson(h(ci·x+d i)∆) for i ∈ 1, . . . , q (2)
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The random variable s is the mixture component indicator and has a discrete probability distribution over
{1, . . . , M} (i.e., P(s) = πs). Given s, the latent state vector, x ∈ Rp×1, is gaussian distributed with mean µs
and covariance Σs. The outputs, yi ∈N0, are generated from a poisson distribution where h is a link function
mapping R→ R+, ci ∈ Rp×1 and d i ∈ R are constants, and ∆ ∈ R is the time bin width. We collect the counts
from all q simultaneously observed variables into a vector y ∈Nq×1

0 , whose ith element is yi. The choice of the
link function h is discussed in the following section.

In this work, we assume that all of the parameters of the model, namely πs, µs, Σs, ci, and d i for s ∈
{1, . . ., M} and i ∈ {1, . . . , q}, are unknown. The goal is to learn the parameters so that the model can be used to
make predictions of x and s for a new y.

3 System Identification
The procedure of system identification, or “model training,” requires learning the parameters from the ob-
served data. The observed data includes N observations of y, an i.i.d. sequence (y1,y2, . . . ,yN ) denoted by {y},
and N observations of the mixture component indicators, s, an i.i.d. sequence (s1, s2, . . . , sN ) denoted by {s}.
The latent state vectors are hidden and not observed.

This situation is an unsupervised problem, although not completely unsupervised; the system identification
can be more challenging if s is also unknown. This latter scenario is beyond the scope of this article. Once the
model is trained, however, we estimate the most likely x and s with new observed data y, as described in the
following section.

The standard approach to system identification in the presence of unobserved latent variables is the
Expectation-Maximization (or EM) algorithm. The algorithm maximizes the likelihood of the model pa-
rameters (i.e., θ = {πs,µ1,...,M ,Σ1,...,M ,c1,...,q,d1,...,q}) over the observed data. The algorithm is iterative and
each iteration is performed in two parts, the expectation (E) step and the maximization (M) step. Iterations
are performed until the likelihood converges.

3.1 E-step
The E-step of EM requires computing the expected log joint likelihood, E

[
log P ({x}, {y}, {s} | θ)

]
, over the pos-

terior distribution of the hidden state vector, P
(
{x} | {y}, s,θk)

, where θk are the parameter estimates at the
kth EM iteration. Since the observations are i.i.d. we can equivalently maximize the sum of the individual
expected log joint likelihoods, E

[
log P (x,y, s | θ)

]
.

The posterior distribution can be expressed as follows:

P
(
x | y, s,θk

)
∝ P

(
y | x,θk

)
P

(
x | s,θk

)
. (3)

Because P (y | x) is a product of poissons rather than a gaussian, the state posterior P (x | y) will not be of a form
that allows for easy computation of the log joint likelihood. Instead, as in [1], we approximated this posterior
with a gaussian centered at the mode of log P (x | y) and whose covariance is given by the negative inverse
hessian of the log posterior at that mode. Certain choices of h, including h1(z)= ez and h2(z)= log(1+ ez), lead
to a log posterior that is strictly concave in x. In these cases, the unique mode can easily be found by Newton’s
method.

log P (x | y, s,θ)= log P (y | x,θ)+ log P (x | s,θ)+C1

=
(

q∑
i=1

log P
(
yi | x

))
+ log Nx

(
µs,Σs

)+C2

=
(

q∑
i=1

−h
(
ci·x+d i

)
∆+ yilog

(
h

(
ci·x+d i

)
∆

)
− log

(
yi!

))
+ log Nx

(
µs,Σs

)+C3

=
(

q∑
i=1

−h
(
ci·x+d i

)
∆+ yilog h

(
ci·x+d i

))
− 1

2
x′Σ−1

s x+µ′
sΣ

−1
s x+C4 (4)
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Taking the gradient and hessian of (4) with respect to x, results in the following expressions.

∇x log P (x | y, s,θ)=
(

q∑
i=1

−∇x h
(
ci·x+d i

)
∆+ yi∇x log h

(
ci·x+d i

))
−Σ−1

s x+Σ−1
s µs

∇2
x log P (x | y, s,θ)=

(
q∑

i=1
−∇2

x h
(
ci·x+d i

)
∆+ yi∇2

x log h
(
ci·x+d i

))
−Σ−1

s

Letting, ζi = ci·x+d i. For the aforementioned versions of h1 and h2, the gradient and hessians are

∇x log P (x | y, s,θ)=
(

q∑
i=1

−eζ
i
ci∆+ yici

)
−Σ−1

s x+Σ−1
s µs (5)

=
(

q∑
i=1

(
−eζ

i
∆+ yi

)
ci

)
−Σ−1

s x+Σ−1
s µs (6)

∇2
x log P (x | y, s,θ)=

(
q∑

i=1
−eζ

i
ci(ci)′∆

)
−Σ−1

s (7)

and

∇x log P (x | y, s,θ)=
(

q∑
i=1

− eζ
i

1+ eζi ci∆+ yi eζ
i(

1+ eζi ) log
(
1+ eζi )ci

)
−Σ−1

s x+Σ−1
s µs

=
(

q∑
i=1

(
−∆+ yi 1

log
(
1+ eζi )

)
eζ

i

1+ eζi ci

)
−Σ−1

s x+Σ−1
s µs (8)

∇2
x log P (x | y, s,θ)=

q∑
i=1

[
− yi

eζ
i

1+eζi ci[
log

(
1+ eζi )]2

eζ
i

1+ eζi (ci)′x

+
(
−∆+ yi 1

log
(
1+ eζi )

) eζ
i
(
1+ eζ

i
)
ci − e2ζi ci(

1+ eζi )2 (ci)′
]
−Σ−1

s

=
q∑

i=1

[
− yi e2ζi[

log
(
1+ eζi )]2 (

1+ eζi )2 ci(ci)′

+
(
−∆+ yi 1

log
(
1+ eζi )

)
eζ

i(
1+ eζi )2 ci(ci)′

]
−Σ−1

s

=
q∑

i=1

[(
−yi eζ

i[
log

(
1+ eζi )]2 −∆+ yi 1

log
(
1+ eζi )

)
eζ

i(
1+ eζi )2 ci(ci)′

]
−Σ−1

s

=
q∑

i=1

[(
−∆+ yi 1

log
(
1+ eζi )

(
1− eζ

i

log
(
1+ eζi )

))
eζ

i(
1+ eζi )2 ci(ci)′

]
−Σ−1

s , (9)

respectively.
For observation n, let Qn be a gaussian distribution in Rp that approximates P

(
xn | yn, sn,θk)

and has
mean ξn and covarianceΨn. The expectation of the log joint likehood for a given observation can be expressed
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as follows:

En = EQn

[
log P (xn,yn, sn | θ)

]
(10)

= EQn

[(
q∑

i=1
log P

(
yi

n | xn

))
+ log P (xn | sn)+ log P(sn)

]
(11)

= EQn

[(
q∑

i=1
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

)
− log

(
yi

n!
))

− p
2

log(2π)− 1
2

log
(∣∣Σsn

∣∣)− 1
2

x′
nΣ

−1
sn xn +µ′

snΣ
−1
sn xn − 1

2
µ′

snΣ
−1
sn µsn

+ log P(sn)
]
.

(12)

The terms that do not depend on xn or any component of θ can be grouped as a constant, C, outside the
expectation. Doing so, and also moving terms that do not depend on xn outside the expectation, we have

En = EQn

[(
q∑

i=1
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

))
− 1

2
x′

nΣ
−1
sn xn +µ′

snΣ
−1
sn xn

]

− 1
2
µ′

snΣ
−1
sn µsn −

1
2

log
(∣∣Σsn

∣∣)+C

= EQn

[
q∑

i=1
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

)]

− 1
2

EQn

[
x′

nΣ
−1
sn xn

]+µ′
snΣ

−1
sn EQn [xn]

− 1
2
µ′

snΣ
−1
sn µsn −

1
2

log
(∣∣Σsn

∣∣)+C

(13)

= EQn

[
q∑

i=1
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

)]

− 1
2

Tr
(
Σ−1

sn

(
Ψn +ξnξ

′
n
))+µ′

snΣ
−1
sn ξn

− 1
2
µ′

snΣ
−1
sn µsn −

1
2

log
(∣∣Σsn

∣∣)+C,

(14)

where (13) is simplified to (14) by using the following relationship:

EQn

[
x′

nΣ
−1
sn xn

]= EQn

[
Tr

(
x′

nΣ
−1
sn xn

)]
= EQn

[
Tr

(
Σ−1

sn xnx′
n
)]

=Tr
(
Σ−1

sn EQn

[
xnx′

n
])

=Tr
(
Σ−1

sn

(
Ψn +ξnξ

′
n
))

.

Because the posterior state distributions are approximated as gaussians in the E-step, the expectation in
(14) is a gaussian integral that involves non-linear functions g and h and cannot be computed analytically in
general. Fortunately, this high-dimensional integral can be reduced to a one-dimensional gaussian integrals
(with mean ci·ξn and variance (ci)′Ψn(ci)).

The expectation of the log joint likelihood over all of the N observations is simply the sum of the individual
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En terms:

E= EQ
[
log P ({x}, {y}, {s} | θ)

]
=

N∑
n=1
En.

3.2 M-step
The M-step requires finding (learning) the θ̂k+1 that satisfies:

θ̂k+1 = arg max
θ

EQ
[
log P ({x}, {y}, {s} | θ)

]
. (15)

This can achieved by differentiating E with respect to the parameters, θ, as shown below. The indicator
function, I(sn = s) will prove useful. Also, let Ns =∑N

n=1 I(sn = s).

• Prior probability of mixture component identification s:

πs = 1
N

N∑
n=1

I(sn = s) (16)

• State vector mean, for mixture component identification s:

∂E

∂µs
=

N∑
n=1

I (sn = s)
(
Σ−1

s ξn −Σ−1
s µs

)= 0

µk+1
s = 1

Ns

N∑
n=1

I (sn = s)ξn (17)

• State vector covariance, for mixture component identification s:

∂E

∂Σs
=

N∑
n=1

I (sn = s)

∂

∂Σs

(
−1

2
Tr

(
Σ−1

s
(
Ψn +ξnξ

′
n
))+µ′

sΣ
−1
s ξn − 1

2
µ′

sΣ
−1
s µs − 1

2
log(|Σs|)

)

=
N∑

n=1
I (sn = s)

(
Σ−1

s

(
1
2

(
Ψn +ξnξ

′
n
)′−µsξ

′
n +

1
2
µsµ

′
s

)
Σ−1

s − 1
2
Σ−1

s

)
= 0

Ns

2
Σ−1

s =
N∑

n=1
I (sn = s)Σ−1

s

(
1
2

(
Ψn +ξnξ

′
n
)−µsξ

′
n +

1
2
µsµ

′
s

)
Σ−1

s

Σk+1
s = 1

Ns

N∑
n=1

I (sn = s)
(
Ψn +ξnξ

′
n
)− 2

Ns
µk+1

s

N∑
n=1

I (sn = s)ξ′n +
1

Ns
µk+1

s (µk+1
s )′

N∑
n=1

I (sn = s)

= 1
Ns

N∑
n=1

I (sn = s)
(
Ψn +ξnξ

′
n
)−µk+1

s (µk+1
s )′ (18)

• Observation mapping constants:
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We want to maximize the following objective function, with respect to ci and d i:

Ẽ=
N∑

n=1
EQn

[
q∑

i=1
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

)]

=
N∑

n=1

q∑
i=1

EQn

[
−h

(
ci·xn +d i

)
∆+ yi

nlog
(
h

(
ci·xn +d i

)
∆

)]
=

q∑
i=1

N∑
n=1

EQn

[
−∆·h

(
ci·xn +d i

)
+ yi

nlog h
(
ci·xn +d i

)]
+C. (19)

First, let us instead examine the following more general problem: maximize the objective function
Ex[g (c·x+d)] with respect to c and d, where g is concave and x is gaussian distributed with mean
ξ and covariance Ψ. Defining the new variables c̃ = [c′ d]′ and x̃ = [x′ 1]′, the objective function can be
equivalently expressed as

O= Ex[g
(
c′x+d

)
]

=
∫

x
g

(
c̃′x̃

)
Nx(ξ̃,Ψ̃)dx

=
∫

z
g (z)Nz(c̃′ξ̃, c̃′Ψ̃c̃)dz, (20)

where ξ̃ = [ξ′ 1]′ and Ψ̃ is a matrix in R(p+1)×(p+1) with the upper-left p× p sub-matrix equal to Ψ and
the rest of the elements set to zero. This objective function can be maximized using Newton’s method
since it is concave in c̃. However, to perform this optimization method, we require the gradient and the
hessian of O. The gradient can be obtained as shown below.

∂O

∂c̃
= ∂

∂c̃

∫
z

g (z)Nz(c̃′ξ̃, c̃′Ψ̃c̃)dz

=
∫

z
g (z)

∂

∂c̃
Nz(c̃′ξ̃, c̃′Ψ̃c̃)dz

=
∫

z
g (z)

∂

∂c̃

[
1√

2π· c̃′Ψ̃c̃
exp

(
−

(
z− c̃′ξ̃

)2

2c̃′Ψ̃c̃

)]
dz (21)

Taking the partial derivative in (21) requires the following quantities.

∂

∂c̃

(
1√

c̃′Ψ̃c̃

)
= ∂

∂c̃
(
c̃′Ψ̃c̃

)− 1
2 =−1

2
(
c̃′Ψ̃c̃

)− 3
2 2Ψ̃c̃=− Ψ̃c̃

c̃′Ψ̃c̃
1√

c̃′Ψ̃c̃

∂

∂c̃
exp

(
−

(
z− c̃′ξ̃

)2

2c̃′Ψ̃c̃

)
= exp

(
−

(
z− c̃′ξ̃

)2

2c̃′Ψ̃c̃

)
∂

∂c̃

(
−

(
z− c̃′ξ̃

)2

2c̃′Ψ̃c̃

)

∂

∂c̃

(
−

(
z− c̃′ξ̃

)2

2c̃′Ψ̃c̃

)
=−2

(
z− c̃′ξ̃

)(−ξ̃)2c̃′Ψ̃c̃−4Ψ̃c̃
(
z− c̃′ξ̃

)2

4
(
c̃′Ψ̃c̃

)2

=−
−ξ̃(z− c̃′ξ̃)−Ψ̃c̃ (z−c̃′ξ̃)2

c̃′Ψ̃c̃
c̃′Ψ̃c̃

= z− c̃′ξ̃
c̃′Ψ̃c̃

(
ξ̃+ z− c̃′ξ̃

c̃′Ψ̃c̃
Ψ̃c̃

)

Using the equations above, we can reduce (21) to

∂O

∂c̃
=

∫
z

g (z)
[
− 1

c̃′Ψ̃c̃
Ψ̃c̃+ z− c̃′ξ̃

c̃′Ψ̃c̃

(
ξ̃+ z− c̃′ξ̃

c̃′Ψ̃c̃
Ψ̃c̃

)]
Nz(c̃′ξ̃, c̃′Ψ̃c̃)dz. (22)
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While there does not exist a convenient analytic solution to the above integral, it can be accurately and
reasonably efficiently approximated using gaussian quadrature [2], [3]. Specifically, gaussian quadra-
ture rules state that ∫

z
f (z)Nz(µ,σ2)dz ≈

J∑
j=1

w j f (Z j) for Z j =µ+γ jσ, (23)

for any function f , where w j are the quadrature weights and γ j are the normalized quadrature points.

Identifying the function f in (22) and substituting z = Z j = c̃′ξ̃+γ j
√

c̃′Ψ̃c̃, the quadrature function for
the gradient is

f1(γ j)= g(c̃′ξ̃+γ j

√
c̃′Ψ̃c̃)

[
− 1

c̃′Ψ̃c̃
Ψ̃c̃+ γ j√

c̃′Ψ̃c̃
ξ̃+

γ2
j

c̃′Ψ̃c̃
Ψ̃c̃

]

= g(c̃′ξ̃+γ j

√
c̃′Ψ̃c̃)

1√
c̃′Ψ̃c̃

[
γ jξ̃+ 1√

c̃′Ψ̃c̃

(
γ2

j −1
)
Ψ̃c̃

]
. (24)

Likewise, the same procedure must be performed to find the hessian of the objective function:

∂2O

∂c̃2 =
∫

z
g (z)

∂

∂c̃

[
Nz(c̃′ξ̃, c̃′Ψ̃c̃)

[
− 1

c̃′Ψ̃c̃
Ψ̃c̃+ z− c̃′ξ̃

c̃′Ψ̃c̃

(
ξ̃+ z− c̃′ξ̃

c̃′Ψ̃c̃
Ψ̃c̃

)]′]
dz. (25)

The following quantities will be useful.

∂

∂c̃

(
1

c̃′Ψ̃c̃
Ψ̃c̃

)′
= ∂

∂c̃

((
c̃′Ψ̃c̃

)−1 c̃′Ψ̃
)
=− 2(

c̃′Ψ̃c̃
)2 Ψ̃c̃c̃′Ψ̃+ 1

c̃′Ψ̃c̃
Ψ̃

∂

∂c̃

(
z− c̃′ξ̃
c̃′Ψ̃c̃

ξ′
)
= ∂

∂c̃

((
c̃′Ψ̃c̃

)−1 (
z− c̃′ξ̃

)
ξ′

)
=− 2(

c̃′Ψ̃c̃
)2 Ψ̃c̃

(
z− c̃′ξ̃

)
ξ′− 1

c̃′Ψ̃c̃
ξ̃ξ̃

′

∂

∂c̃

((
z− c̃′ξ̃
c̃′Ψ̃c̃

)2

c̃′Ψ̃

)
=

(
z− c̃′ξ̃
c̃′Ψ̃c̃

)2

Ψ̃+ ∂

∂c̃

((
z− c̃′ξ̃
c̃′Ψ̃c̃

)2)
c̃′Ψ̃

∂

∂c̃

((
z− c̃′ξ̃
c̃′Ψ̃c̃

)2)
= 2

z− c̃′ξ̃
c̃′Ψ̃c̃

(
−2

(
z− c̃′ξ̃

)(
c̃′Ψ̃c̃

)2 Ψ̃c̃− 1
c̃′Ψ̃c̃

ξ̃

)
=−4

(
z− c̃′ξ̃

)2(
c̃′Ψ̃c̃

)3 Ψ̃c̃−2
z− c̃′ξ̃(
c̃′Ψ̃c̃

)2 ξ̃

Next define a function a(·) as

a(γ j)= 1√
c̃′Ψ̃c̃

[
γ jξ̃+ 1√

c̃′Ψ̃c̃

(
γ2

j −1
)
Ψ̃c̃

]
. (26)

Substituting these expressions into (25), the quadrature function for the hessian is:

f2(γ j)= g(c̃′ξ̃+γ jc̃′Ψ̃c̃)
[
a(γ j)a(γ j)′+ 2(

c̃′Ψ̃c̃
)2 Ψ̃c̃c̃′Ψ̃− 1

c̃′Ψ̃c̃
Ψ̃− 2γ j(

c̃′Ψ̃c̃
) 3

2
Ψ̃c̃ξ′

− 1
c̃′Ψ̃c̃

ξ̃ξ̃
′+

γ2
j

c̃′Ψ̃c̃
Ψ̃−

4γ2
j(

c̃′Ψ̃c̃
)2 Ψ̃c̃c̃′Ψ̃− 2γ j(

c̃′Ψ̃c̃
) 3

2
ξc̃′Ψ̃

]
.

(27)
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For certain choices of h it is possible to compute the gradient and hessian analytically. To illustrate, we
start with the following form∫

z
g(z)Nz(µ,σ2)dz = 1p

2πσ2

∫
z

g(z)exp

(
−

(
z−µ)2

2σ2

)
dz (28)

for g(z) = −exp(z). The classic method to solve this integral is to “complete the squares” in the exponent.∫
z
− 1p

2πσ2
exp

(
−

((
z−µ)2

2σ2 − z

))
dz

=
∫

z
− 1p

2πσ2
exp

(
− z2 −2µz+µ2 −2σ2z

2σ2

)
dz

=
∫

z
− 1p

2πσ2
exp

(
− z2 − (

2µ+2σ2)
z+µ2

2σ2

)
dz

=
∫

z
− 1p

2πσ2
exp

(
− z2 −2

(
µ+σ2)

z+µ2 +2σ2µ+σ4 −µ2 −2σ2µ−σ4 +µ2

2σ2

)
dz

=−exp
(
µ+ 1

2
σ2

)∫
z

1p
2πσ2

exp

(
−

(
z− (

µ+σ))2

2σ2

)
dz

=−exp
(
µ+ 1

2
σ2

)∫
z
N

(
µ+σ,σ2)

dz

=−exp
(
µ+ 1

2
σ2

)
(29)

Relating this form back to (20), the gradient with respect to c̃ is

∂

∂c̃

[
−exp

(
c̃′ξ̃+ 1

2
(
c̃′Ψ̃c̃

))]=−exp
(
c̃′ξ̃+ 1

2
(
c̃′Ψ̃c̃

))(
ξ̃+Ψ̃c̃

)
. (30)

Likewise, the hessian can be computed as follows.

∂

∂c̃

[
−exp

(
c̃′ξ̃+ 1

2
(
c̃′Ψ̃c̃

))(
ξ̃+Ψ̃c̃

)′]=−exp
(
c̃′ξ̃+ 1

2
(
c̃′Ψ̃c̃

))((
ξ̃+Ψ̃c̃

)(
ξ̃+Ψ̃c̃

)′+Ψ̃)
(31)

For another choice of g(x), c̃′ξ, the gradient is trivially ξ and the hessian is the zero matrix.

4 Inference
Once the model parameters have been chosen, the generative model can be used to make inferences on the
training data or new observations. For the training data, the hidden state vector x is the only variable that
must be inferred. The posterior distribution of x can be approximated by a gaussian, exactly as described pre-
viously. This results in a distribution Q with mean ξ and covariance Ψ. Therefore, the maximum a posteriori
estimate estimate of x is simply ξ.

When performing inference for a new observation, the mixture component identification, s, is assumed to
be unknown. The posterior distributions of both s and x, given the data, y, are potentially of interest. The
first of these distributions can be expressed as follows:

P
(
s | y, θ̂

)∝ P
(
y | s, θ̂

)
P

(
s | θ̂)

=πs

(∫
x

P
(
y,x | s, θ̂

)
dx

)
=πs

(∫
x

P
(
y | x, θ̂

)
P

(
x | s, θ̂

)
dx

)
=πsEx|s

[
P

(
y | x, θ̂

)]
. (32)
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where the expectation in (32) is of a product of poissons with respect to a gaussian distribution that has mean
µ̂s and covariance Σ̂s. This expectation can be computed using sampling techniques or Laplace’s method.

To infer x given the data, the following derivation applies:

P
(
x | y, θ̂

)= M∑
s=1

P
(
x | y, s, θ̂

)
P

(
s | y, θ̂

)
=

M∑
s=1

P
(
x | y, s, θ̂

)
πsEx|s

[
P

(
y | x, θ̂

)]
. (33)
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