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7.1 INTRODUCTION
Neural prostheses, which are also termed brain–machine and brain–computer
interfaces, offer the potential to substantially increase the quality of life for
people suffering from motor disorders, including paralysis and amputation.
Such devices translate electrical neural activity from the brain into control
signals for guiding paralyzed upper limbs, prosthetic arms, and computer
cursors. Several research groups have now demonstrated that monkeys (e.g.,
Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Musallam et al.,
2004; Santhanam et al., 2006; Mulliken et al., 2008; Velliste et al., 2008) and
humans (e.g., Kennedy et al., 2000a; Leuthardt et al., 2004; Wolpaw and
McFarland, 2004b; Hochberg et al., 2006; Kim et al., 2008; Schalk et al.,
2008) can learn to move computer cursors and robotic arms to various target
locations simply by activating neural populations that participate in natural
arm movements.

Figure 7.1 illustrates the basic operating principle of neural prosthetic
systems. Neural activity from various arm movement–related brain regions
(e.g., Wise et al., 1997) is electronically processed to create control signals
for enacting the desired movement. Non invasive sensors can collect neural
signals representing the average activity of many neurons. When invasive
permanently implanted arrays of electrodes are employed, as depicted, it is
possible to use waveform shape differences to discriminate individual neurons
(e.g., Lewicki, 1998; Santhanam et al., 2004). After determining how each
neuron responds before and during a movement, which is typically accom-
plished by correlating arm movements made during a behavioral task with
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FIGURE 7.1

Concept sketch of cortically controlled motor and communication prostheses. Neural
signals are recorded from cortical areas such as PMd, M1, and intraparietal area/parietal
reach region (MIP/PRR) using intra-cortical electrode arrays. The times of action potentials
(spikes) are identified and assigned to neural units. A decoder then translates the activity
across a neural population into control signals for the prosthetic system. Please see this
figure in color at the companion web site www.elsevierdirect.com/companions/
9780123750273.

associated neural activity, estimation algorithms can be designed to decode
the desired movement trajectory (continuous decoder) or movement target
(discrete decoder) from the pattern of neural activity. The system can then
generate control signals appropriate for continuously guiding a paralyzed or
prosthetic arm through space (motor prosthesis) or positioning a computer
cursor on the desired letter on a keyboard (communication prosthesis).

Motor prostheses aim to provide natural control of the paralyzed limb,
via functional electrical stimulation of de-innervated muscle, or of a pros-
thetic replacement limb. In the case of upper-limb prostheses, natural control
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involves the precise movement of the arm along a desired path and with a
desired speed profile. Such control is indeed a daunting ultimate goal, but
presumably even intermediate steps along the way would lead to clinically
viable systems. For example, simply being able to feed oneself would help
thousands of tetraplegics (e.g., Velliste et al., 2008).

Communication prostheses do not aim to restore the ability to communi-
cate in the form of natural voice or natural typing (i.e., moving the fingers).
Instead, they aim to provide a fast and accurate communication mode, such as
moving a computer cursor on an onscreen keyboard so as to type out words.
Ideally performance could rival, or even surpass, the natural communication
rate at which most people can speak or type. For example, “locked-in” ALS
patients are altogether unable to converse with the outside world, and many
other neurodegenerative diseases severely compromise the quality of speech.
Being able to reliably type several words per minute on a computer will be a
meaningful advance for these patients. In fact, many of the most severely dis-
abled patients, who are the likely recipients of first-generation systems, will
benefit from a prosthesis capable of typing even a few words per minute (e.g.,
Donoghue, 2008).

While motor and communication prostheses are quite similar conceptually,
important differences critically affect their design. Motor prostheses must
produce movement trajectories as accurately as possible to enact precisely the
desired movement. The decoder translates, on a moment-by-moment basis,
neural activity into a continuous-valued movement trajectory. In this case, the
decoder solves a regression problem. In contrast, communication prostheses
are concerned with information throughput from the subject to the world; this
makes the speed and accuracy with which keys on a keyboard can beselected of
primary importance. Although a continuously guided motor prosthesis can be
used to convey information by moving to a key, only the key eventually struck
actually contributes to information conveyance. The decoder, thus, acts as a
classifier. This seemingly subtle distinction has implications that profoundly
influence the type of neural activity and the class of decoder to be used.

In this chapter, we focus on the engineering goal of improving prosthetic
system design, with particular emphasis on neural decoding algorithms. We
make no claims here about these decoding algorithms furthering our basic sci-
entific understanding of the relationship between neural activity and desired
movements, although such findings may well inform next-generation algo-
rithmic design. In the following sections, we will first describe the behavioral
task and the different types of neural activity that are used to drive motor
and communication prostheses. For both classes of prosthetic systems, we
will then briefly review existing and detail new decoding algorithms that we
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recently published (Yu et al., 2007; Santhanam et al., 2009). Finally, we will
consider future directions for further improving decoding performance and
increasing the clinical viability of neural prosthetic systems.

7.2 PLAN AND MOVEMENT NEURAL ACTIVITY
Two types of neural activity are commonly used for driving prosthetic systems:
plan and movement activity. Plan activity is present before arm movements
begin, or even without ultimate arm movement, and is believed to reflect
preparatory processing required for the fast and accurate generation of move-
ment (e.g., Churchland et al., 2006a,b,c; Churchland and Shenoy, 2007a). This
activity is readily observed before movement initiation in a “delayed reach
task” (Figure 7.2). In this task, a trial begins when the subject touches and visu-
ally fixates a central target. After a randomized delay period (typically 0–1000
ms), a “go cue” indicates that a reach (and saccade) may begin. Figure 7.2
illustrates that plan activity in a premotor cortex (PMd) unit of a monkey
performing this task is tuned for the direction of the upcoming movement,
with plan activity arising soon after target onset and persisting throughout the
delay period. Plan activity has also been shown to reflect movement extent
(e.g., Messier and Kalaska, 2000; Churchland et al., 2006b), peak velocity
(Churchland et al., 2006b), eye position (Batista et al., 2007), and attention
(e.g., Boussaoud and Wise, 1993). Movement activity follows plan activity in
a delayed reach task, being present 100–200 ms before and during the move-
ment. It is tuned for both the direction (as shown in Figure 7.2) and speed
of arm movement (e.g., Moran and Schwartz, 1999a). PMd neurons typically
exhibit strong plan activity, as well as some movement activity; neurons in
primary motor cortex (M1) typically exhibit the opposite pattern (e.g., Shen
and Alexander, 1997a,b).

Neural activity was recorded using a 96-channel silicon electrode array
(Blackrock Micosystems, Salt Lake City, UT) implanted in two rhesus
macaque monkeys (monkeys G and H). Several different data sets are used
in this chapter. A typical data set comprises 1000–2000 trials and 100–200
simultaneously recorded units. Of these units, 30–40% are typically single-
neuron and 60–70% are multi-neuron. For more details about the data sets
used, see Yu et al. (2007) and Santhanam et al. (2009).

Until recently, both motor and communication prostheses have focused pri-
marily on movement activity. As depicted in Figure 7.3(a), movement activity
can be elicited merely by “thinking” about moving the arm and, surprisingly,
it has been found that no movement or electromyographic (EMG) activity
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FIGURE 7.2

Plan and movement activity from a single PMd neuron in a delayed reach task. (a) Spike
histograms showing average plan (medium gray bar) and movement (dark gray bar) activity
associated with center-out reaches to peripheral targets. Fifty representative reach
trajectories to the upward-right target are shown in light gray (mean trajectory in black).
(b) Top panel: same 50 representative reach trajectories as in (a) shown as a function of
time (horizontal component only); middle panel: spike times associated with each of these
50 reaches—each row corresponds to a trial, black tick marks indicate spike times, light
bar indicates movement onset; bottom panel: a histogram of the average response.

need result (e.g., Taylor et al., 2002). With animal models, such as monkeys,
neural activity that can be generated in the absence of arm movements (or
presumably even with arm movements when descending nerves are intact and
without nerve block (Moritz et al., 2008)) is currently considered to be an
adequate proxy for neural signals from paralyzed subjects (e.g., Taylor et al.,
2002; Velliste et al., 2008). Movement activity is then decoded to generate
instantaneous direction and speed signals, which are used to guide a computer
cursor (e.g., Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003) or
a robotic arm (e.g., Velliste et al., 2008) to a target. Motor prostheses incorpo-
rate movement activity because the goal is to recreate the desired movement
path and speed. Although largely reflecting movement target, plan activity
can play an important role in full trajectory estimation by providing an esti-
mate of where the movement will end, and thereby helping to constrain the
instantaneous movement estimates (Yu et al., 2007). This will be detailed in
Section 7.3.
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FIGURE 7.3

Differences between motor and communication prostheses. (a) For motor prostheses,
movement activity that is generated by “thinking” about moving to the desired target is
processed with a trajectory estimator, which guides a cursor (dark gray circle) along the
desired path at the desired speed. (b) For communication prostheses, plan activity that is
generated by “intending” to move to the desired target is then processed with a target
estimator, which directly positions a cursor (medium gray circle) on the desired target.

In contrast, communication prostheses are not obliged to move along a
continuous path in order to strike a target, such as a key on an onscreen key-
board (Figure 7.3(b)). Instead, if target location can be estimated directly
from neural plan activity, the cursor can be positioned immediately on the
desired key. Recent reports suggest that there may be a considerable perfor-
mance benefit in using plan activity and direct-positional prosthesis control
(e.g., Musallam et al., 2004; Santhanam et al., 2006). Figure 7.3(b) illustrates
that plan activity can be elicited merely by “intending” to move the arm to
a target/key location, and it is well established that it does not necessarily
produce movements or EMG activity. Plan activity is then decoded to yield
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the desired key; the prosthetic cursor then immediately appears and selects it.
In this way, communication prostheses can rely on plan activity alone.

7.3 CONTINUOUS DECODING FOR MOTOR PROSTHESES
In the late 1960 and early 1970, Fetz and colleagues discovered that non-
human primates could learn to regulate the firing rate of individual cortical
neurons (Fetz, 1969; Fetz and Finocchio, 1971; Fetz and Baker, 1972). These
pioneering experiments relied on straightforward forms of real-time feedback,
but clearly demonstrated that firing rates could be brought to requested lev-
els without accompanying muscle contraction, even in M1. In the 1970 and
early 1980, Schmidt, Humphrey, and colleagues proposed that neural activity
could be used to directly control prostheses (Humphrey et al., 1970). By the
late 1990, technological advances and a much better understanding of how
cortical neurons contribute to limb movement (e.g., Georgopoulos et al., 1986;
Schwartz, 1994) sparked renewed interest in developing clinically viable sys-
tems. This required an ongoing series of experiments with animal models
and disabled human patients with the goal of learning fundamental design
principles and quantifying performance.

Nicolelis and colleagues investigated one-dimensional (1D) control of a
motor prosthesis by training rats to press a lever to receive a liquid reward
(Chapin et al., 1999). The apparatus was then altered such that the lever was
controlled by movement activity across a population of cortical neurons. In
particular, the lever movement was estimated using a combination of prin-
cipal components analysis and an artificial neural network. The researchers
found that rats could still control the lever to receive their reward. Animals
soon learned that actual forelimb movement was not needed and stopped
movements altogether while continuing to move the lever with brain-derived
activity. This proved the basic feasibility of motor prostheses.

Meanwhile, investigations of 2D and full 3D control essential for
re-creating natural arm movements were underway. Schwartz and colleagues
demonstrated that 2D and 3D hand location could be reconstructed fairly
accurately from the movement activity of a population of simultaneously
recorded M1 neurons in rhesus monkeys (Isaacs et al., 2000), and Nicolelis
and colleagues reported similarly encouraging reconstructions using simul-
taneous recordings from parietal cortex, PMd, and M1 (Wessberg et al.,
2000). Together with similar recording studies from Donoghue and colleagues
(Maynard et al., 1999), the stage was set for the first “closed-loop” 2D and
3D motor prosthesis experiments.
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Schwartz and colleagues pursued 3D cursor control with rhesus monkeys
(Taylor et al., 2002). A few tens of M1 neurons were recorded with a
chronically implanted electrode array, and the monkeys made 3D reaching
movements to visual targets appearing in a 3D virtual reality environment.
Neural responses were characterized in terms of the movement direction elic-
iting maximal response (also known as the preferred direction) and were
combined to form a modified population vector. Let vi ∈ Rp×1 be a vector
pointing in the preferred direction of neural unit i, where p is the number of
dimensions of the workspace (in this case, three). In its simplest form, the
population vector x̂t ∈ Rp×1 at time t is defined as

x̂t =
∑q

i=1 yi
t vi

∑q
i=1 yi

t
, (7.1)

where yi
t ∈ R is the activity of unit i ∈ {1, . . . ,q} at time t. The population

vector indicates the instantaneous movement of the hand or, in prosthesis
mode, the prosthetic cursor.

Monkeys then entered “brain-control” mode, wherein the 3D prosthetic
cursor was controlled by the neural population vector, as opposed to the loca-
tion of the hand. This group has since gone on to demonstrate that monkeys
can use these 3D control signals to feed themselves with an anthropomorphic
robotic arm, and open and close a hand-like gripper (Velliste et al., 2008).

The fitting procedure for the preferred directions vi and more sophisti-
cated variants of the population vector are described elsewhere (Zhang et al.,
1998; Moran and Schwartz, 1999b; Taylor et al., 2002). The population vector
assumes a uniform distribution of preferred directions; when this assumption
is not satisfied, the population vector is biased and an optimal linear estimator
(OLE) may be preferred (Salinas and Abbott, 1994). The OLE takes the same
form as Eq. (7.1); the only difference is how the parameters vi are obtained.
It was recently shown that, in a closed-loop setting, the subject could compen-
sate for a bias in the population vector arising from a nonuniform distribution
of preferred directions (Chase et al., 2009).

Donoghue and colleagues pursued 2D cursor control with rhesus monkeys
(Serruya et al., 2002). A few tens of M1 neurons were recorded simultane-
ously with a chronically implanted electrode array while monkeys moved
a manipulandum to guide the cursor. By recording spike activity while the
monkeys tracked a continuously, pseudorandomly moving target, a linear fil-
ter could be learned to relate neural activity to cursor movement. A linear filter
takes a linear combination of activity from different simultaneously recorded
neurons to estimate physical state variables, such as cursor position or velocity.
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The estimated state variable x̂t ∈ R at time t is

x̂t = b +
q∑

i=1

N−1∑

τ=0

yi
t−τ ai

τ (7.2)

where b ∈ R is an additive constant, yi
t ∈ R is the activity of neural unit

i ∈ {1, . . . ,q} at time t, and {ai
0, . . .ai

N−1} are the N filter weights for unit i.
These filter weights are fit using least squares (Warland et al., 1997). For a
multi-dimensional state variable, a separate set of filter weights and additive
constants is fit for each dimension. Unlike the population vector and OLE, the
linear filter can combine neural activity across multiple time steps and thus
produce smoother trajectory estimates. This linear filter was used in a new
task, where neural activity guided the prosthetic cursor to hit visual targets
appearing at random locations. Together with collaborators and Cyberkinet-
ics Neurotechnology Inc., this group has since gone on to show for the first
time that a population of M1 neurons from tetraplegic patients can be used to
control 2D cursors (Hochberg et al., 2006).

Nicolelis and colleagues pursued 2D cursor control, along with a form of
prosthetic grasping, with rhesus monkeys (Carmena et al., 2003). Hundreds of
M1, PMd, supplementary motor area (SMA), primary sensory area (S1), and
posterior parietal neurons were recorded with chronically implanted electrode
arrays while monkeys performed each of three behavioral tasks. The animals
were trained to move a pole to control the position of an onscreen cursor and
to grip the pole to control the size of the cursor, which indicated grip force.
Linear filters (Eq. (7.2)) were trained to relate neural activity to a variety
of motor parameters including hand position, velocity, and gripping force.
These models were used in “brain control” mode to translate neural activity
into cursor movement and cursor size. This study demonstrates (1) that grip
force may be controlled (as does the more recent Velliste et al. (2008) report),
which is essential once a prosthetic arm arrives as the desired location; and
(2) that combined positioning and gripping are possible.

7.3.1 Recursive Bayesian Decoders
While linear filters and population vectors are effective, recursive Bayesian
decoders have been shown to provide more accurate trajectory estimates
in offline (i.e., open-loop) settings (Brown et al., 1998; Brockwell et al.,
2004; Wu et al., 2004a, 2006) and online (i.e., closed-loop) settings (Wu
et al., 2004b; Kim et al., 2008). In contrast to linear filters and popula-
tion vectors, recursive Bayesian decoders are based on the specification of
an explicit probabilistic model, comprising (1) a trajectory model, which
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describes how the arm state changes from one time step to the next, and
(2) an observation model, which describes how the observed neural activity
relates to the time-evolving arm state. The trajectory and observation models
each include a probabilistic component, which attempts to capture trial-to-
trial differences in the arm trajectory and neural spiking noise, respectively.
These probabilistic relationships provide confidence regions for the arm state
estimates, in contrast to linear filters and population vectors. If the mod-
eling assumptions are satisfied, Bayesian estimation makes optimal use of
the observed data. With an explicit probabilistic model, it is straighforward
to relax the modeling assumptions and propose extensions, whereas such
changes are not easily incorporated in a linear filter or a population vector.
We will exploit this flexibility in the next subsection.

A widely used recursive Bayesian decoder is the Kalman filter, which is
based on a linear Gaussian trajectory model:

xt | xt−1 ∼N (Axt−1, Q) (7.3)

x1 ∼N (π , V) (7.4)

and a linear Gaussian observation model:

yt | xt ∼ N (Cxt , R), (7.5)

where xt ∈Rp×1 is the arm state (which may include terms such as arm posi-
tion, velocity, and acceleration) at time t ∈ {1, . . . ,T}, and yt ∈ Rq×1

+ is the
movement-period activity across the q neural units at time t. The parame-
ters A ∈ Rp×p, Q ∈ Rp×p, π ∈Rp×1, V ∈ Rp×p, C ∈ Rq×p, and R ∈ Rq×q do
not depend on time and are fit to training data using maximum likelihood
(Wu et al., 2006). Linear Gaussian models have been successfully applied to
decoding the path of a foraging rat (Brown et al., 1998; Zhang et al., 1998),
as well as arm trajectories in ellipse-tracing (Brockwell et al., 2004), pursuit-
tracking (Wu et al., 2004a, 2006; Shoham et al., 2005), and “pinball” tasks
(Wu et al., 2004a; Wu et al., 2006).

The task of decoding a continuous arm trajectory involves finding the likely
sequences of arm states corresponding to the observed neural activity. At each
time step t, we seek to compute the distribution of the arm state xt given the
movement neural activity y1, y2, . . . , yt (denoted by {y}t

1) observed up to that
time. This distribution is written P

(
xt | {y}t

1

)
and termed the state posterior.

State posteriors can be obtained by iterating the following two updates. First,
the one-step prediction is found by applying Eq. (7.3) to the state posterior at
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the previous time step:

P
(

xt | {y}t−1
1

)
=

∫
P (xt | xt−1)P

(
xt−1 | {y}t−1

1

)
dxt−1. (7.6)

Second, the state posterior at the current time step is computed using Bayes’
rule

P
(
xt | {y}t

1
)
=

P (yt | xt)P
(

xt | {y}t−1
1

)

P
(

yt | {y}t−1
1

) . (7.7)

Note that P
(
yt | xt ,{y}t−1

1

)
has been replaced by P (yt | xt) to obtain Eq. (7.7)

since, given the current arm state xt , the current observation yt does not depend
on the previous observations {y}t−1

1 (Eq. (7.5)). The terms in the numerator of
Eq. (7.7) are the observation model from Eq. (7.5) and the one-step prediction
from Eq. (7.6). The denominator of Eq. (7.7) can be obtained by integrating
the numerator over xt.

The linear Gaussian trajectory and observation models (Eqs. (7.3) through
(7.5)) can then be substituted into Eqs. (7.6) and (7.7) to obtain the key equa-
tions of the Kalman filter. Because all variables xt and yt defined by Eqs. (7.3)
through (7.5) are jointly Gaussian, the one-step prediction P

(
xt | {y}t−1

1

)
and

state posterior P
(
xt | {y}t

1

)
are also Gaussian in xt. Thus, the distributions are

fully specified by their means and variances. Let E
[
xt | {y}τ1

]
be denoted by

xτ
t and let Var(xt | {y}τ1) be denoted by V τ

t . The mean and variance of the
one-step prediction are

xt−1
t = Axt−1

t−1 (7.8)

V t−1
t = AV t−1

t−1 A′ + Q (7.9)

The mean and variance of the state posterior are

xt
t = xt−1

t + Kt(yt − Cxt−1
t ) (7.10)

V t
t = (I − KtC)V t−1

t , (7.11)

where

Kt = V t−1
t C′ (CV t−1

t C′ + R
)−1

The recursions specified by Eqs. (7.8) through (7.11) start with x0
1 = π and

V 0
1 = V . Thus, the Kalman filter produces an arm trajectory estimate with
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mean x1
1, . . .,xT

T and corresponding variance V 1
1 , . . .,V T

T . The variances define
the confidence intervals corresponding to the estimated mean trajectory. As
shown by Black and colleagues (Wu et al., 2006), the Kalman filter can be
viewed as a linear filter in which (1) all past neural activity is taken into
account, rather than just N − 1 timesteps in the past (Eq. (7.2)), and (2) a
confidence interval is produced to accompany the estimated trajectory.

7.3.2 Mixture of Trajectory Models
The function of the trajectory model is to build into the recursive Bayesian
decoder prior knowledge about the form of the reaches. The model may
reflect (1) the hard, physical constraints of the limb (for example, the elbow
cannot bend backwards), (2) the soft, control constraints imposed by neural
mechanisms (for example, the arm is more likely to move smoothly than in
a jerky motion), and (3) the physical surroundings of the patient and his/her
objectives in that environment. The degree to which the trajectory model
reflects the kinematics of the actual reaches directly affects the accuracy with
which trajectories can be decoded from neural data. When selecting a trajec-
tory model, one is typically faced with a trade-off between how accurately
a model captures the movement statistics and the computational demands of
its corresponding decoder. For example, in real-time applications, we may
decide to use a relatively simple trajectory model because of its low com-
putational cost, even if it fails to capture some of the salient properties of
the observed movements. While we may be able to identify a more com-
plex trajectory model that could yield more accurate decoded trajectories, the
computational demands of the corresponding decoder may be prohibitive in
a real-time setting.

Here, we review a general approach to constructing trajectory models that
can exhibit rather complex dynamical behaviors, whose decoder can be imple-
mented to have the same running time as that of simpler trajectory models.
The core idea was to combine simple trajectory models, each accurate within
a limited regime of movement, in a probabilistic mixture of trajectory models
(MTM) (Kemere et al., 2004; Yu et al., 2007). The development of the mix-
ture framework was made possible by viewing the neural decoding problem
as state estimation based on an explicit probabilistic model. We demonstrated
the utility of this approach by developing a particular mixture of trajectory
models suitable for goal-directed movements in settings with multiple goals.
In the following, we will review (1) how to decode movements from neural
activity under the general MTM framework, (2) the development of a partic-
ular MTM decoder for goal-directed movements, and (3) how this decoder
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can naturally incorporate prior goal information, when available, to improve
the accuracy of the decoded trajectories.

7.3.2.1 Mixture of Trajectory Models Framework
Ideally, we wanted to construct a complete model of neural motor control
that captures the hard physical constraints of the limb (Chan and Moran,
2006), the soft control constraints imposed by neural mechanisms, and the
physical surroundings and context. One way to approximate such a complete
model is to probabilistically combine trajectory models that are each accu-
rate within a limited regime of movement. Examples of movement regimes
include different parts of the workspace, different reach speeds, and different
reach curvatures. At the onset of a new movement, the movement regime is
unknown, or imperfectly known, so the full trajectory model is composed
of a mixture of the individual, regime-specific trajectory models. Here, we
review the development of a recursive Bayesian decoder based on a mixture
of trajectory models (Yu et al., 2007).

As with the Kalman filter, we sought to compute the state posteriors
P

(
xt | {y}t

1

)
, which define the decoded trajectory. If the actual movement

regime m" is perfectly known before the reach begins, then we can compute
the state posterior based only on the individual trajectory model correspond-
ing to that regime. This distribution is written P

(
xt | {y}t

1,m"
)

and termed the
conditional state posterior. However, in general the actual movement regime
is unknown or imperfectly known, so we needed to compute P

(
xt | {y}t

1,m
)

for each m ∈ {1, . . . ,M}, where M is the number of movement regimes (also
referred to as mixture components).

To combine the M conditional state posteriors, we simply expanded
P

(
xt | {y}t

1

)
by conditioning on the movement regime m:

P
(
xt | {y}t

1
) =

M∑

m=1

P
(
xt | {y}t

1,m
)

P
(
m | {y}t

1
)

(7.12)

In other words, the state posterior is a weighted sum of the conditional state
posteriors. The weights P

(
m | {y}t

1
)

represent the probability that the actual
movement regime is m, given the observed spike counts up to time t. Bayes’
rule was then applied to these weights in Eq. (7.12), yielding the key equation
for the MTM framework:

P
(
xt | {y}t

1
)
=

M∑

m=1

P
(
xt | {y}t

1,m
) P

({y}t
1 | m

)
P(m)

P
(
{y}t

1
) (7.13)
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The conditional state posteriors P
(
xt | {y}t

1,m
)

in Eq. (7.13) can be
computed or approximated using any of a number of different recursive
Bayesian decoding techniques, including the Kalman filter (Wu et al., 2006),
Bayes’ filter (Brown et al., 1998), and particle filters (Brockwell et al., 2004;
Shoham et al., 2005). This is usually based on the recursions Eqs. (7.6) and
(7.7). The likelihood terms P

({y}t
1 | m

)
in Eq. (7.13) can be expressed as

P
(
{y}t

1 | m
)
=

t∏

τ=1

P
(

yτ | {y}τ−1
1 ,m

)
(7.14)

where

P
(

yt | {y}t−1
1 ,m

)
=

∫
P (yt | xt)P

(
xt | {y}t−1

1 ,m
)

dxt (7.15)

The integral in Eq. (7.15) includes the observation model P (yt | xt) and the
one-step prediction P

(
xt | {y}t−1

1 ,m
)

(Eq. (7.6)) using the parameters of mix-
ture component m. If available, prior information about the identity of the
movement regime can be incorporated naturally into the MTM framework
via P(m) in Eq. (7.13). This information must be available before the reach
begins and may differ from trial to trial. If no such information is available,
the same P(m) (e.g., a uniform distribution) can be used across all trials.

The computational complexity of the MTM decoder is M times that of com-
puting P

(
xt | {y}t

1,m
)

and P
(
{y}t

1 | m
)

for a particular mixture component m.
Because the computations for each mixture component can theoretically be
carried out in parallel, it is possible to set up the MTM decoder so that its
running time remains constant, regardless of the number of mixture compo-
nents M. In other words, the MTM approach enables the use of more flexible,
and potentially more accurate, trajectory models without a necessary penalty
in decoder running time. Furthermore, the MTM decoder preserves the real-
time properties of its constituent estimators and thus is suitable for real-time
prosthetic applications.

7.3.2.2 Mixture of Trajectory Models for Goal-Directed Movements
For goal-directed movements, we proposed using the following mixture of
linear Gaussian trajectory models

xt | xt−1,m ∼ N (Amxt−1 + bm, Qm) (7.16)

x1 | m ∼ N (πm, Vm) (7.17)
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where m ∈ {1, . . . ,M} indexes reach target and M is the number of reach targets
(Yu et al., 2007). In other words, each movement regime corresponds to move-
ments heading toward a particular reach goal. As before, xt ∈ Rp×1 is the
arm state at time t ∈ {1, . . . ,T} containing position, velocity, and acceleration
terms. We used the observation model

yi
t | xt ∼ Poisson

(
ec′

ixt+di#
)

(7.18)

where yi
t ∈ {0,1,2, . . .} is the movement-period spike count for unit i ∈

{1, . . . ,q} taken in a time bin of width #. For notational convenience, the spike
counts across the q simultaneouslyrecorded units were assembled into a q × 1
vector yt, whose ith element is yi

t. The parameters Am ∈ Rp×p, bm ∈ Rp×1,
Qm ∈ Rp×p, πm ∈ Rp×1, Vm ∈ Rp×p, ci ∈ Rp×1, di ∈ R do not depend on time
and are fit to training data (for details, see Yu et al. (2007)). Note that, whereas
each mixture component indexed by m in the trajectory model (Eqs. (7.16) and
(7.17)) can have different parameters leading to different arm state dynamics,
the observation model (Eq. (7.18)) is the same for all m. It is also possible to
probabilistically mix other related trajectory models, in which trajectories are
directed toward a particular target location (Srinivasan et al., 2006; Kulkarni
and Paninski, 2008).

For this model, the conditional state posteriors can be obtained using the
recursions in Eqs. (7.6) and (7.7). Unlike for the Kalman filter, the observation
model (Eq. (7.18)) is not linear Gaussian. This leads to distributions that are
difficult to manipulate, and the integral in Eq. (7.6) cannot be computed ana-
lytically. We instead employed a modified Kalman filter that uses a Gaussian
approximation during the measurement update step (Eq. (7.7)). We approxi-
mated the conditional state posterior as a Gaussian matched to the location
and curvature of the mode of P

(
xt | {y}t

1,m
)

(MacKay, 2003). This Gaussian
approximation allows the integral in Eq. (7.6) to be computed analytically,
since each mixture component of the full trajectory model (Eq. (7.16)) is lin-
ear Gaussian. This yields a Gaussian one-step prediction, which is fed back
into Eq. (7.7).

7.3.2.3 Incorporating Target Information from Plan Activity
Up to this point, the neural activity discussed has been movement activity,
which takes place around the time of movement and specifies the moment-
by-moment details of the arm trajectory. In the delayed reach task, there is also
neural activity present during an instructed delay period that directly precedes
the “go cue” (termed plan activity). Neurons with plan activity are typically
also active in the absence of an instructed delay during the reaction time
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period (Crammond and Kalaska, 2000; Churchland et al., 2006c). Rather than
specifying the moment-by-moment details of the trajectory, plan activity has
been shown to reliably indicate the upcoming reach target (Shenoy et al., 2003;
Hatsopoulos et al., 2004; Musallam et al., 2004; Yu et al., 2004; Santhanam
et al., 2006). Both types of activity may be emitted by the same unit on a
single trial, as can be seen in Figure 7.2.

The following describes how the reach target can be decoded from plan
activity by applying Bayes’ rule. Let z be a q × 1 vector of spike counts across
the q simultaneously recorded units in a prespecified time window during the
delay period on a single trial. The distribution of spike counts (from training
data) for each reach target m are fit to a Gaussian (Maynard et al., 1999; Yu
et al., 2004):

z | m ∼ N (µm, Rm) (7.19)

where µm ∈ Rq×1 is a vector of mean counts for reach target m ∈ {1, . . . ,M},
and the covariance matrix Rm ∈ Rq×q is assumed to be diagonal. In other
words, the units are assumed to be independent given the reach target m.
In Section 7.4, we will describe how to relax this conditional independence
assumption.

For any test trial, the probability that the upcoming reach target is m given
the plan activity z can be computed by applying Bayes’ rule:

P(m | z) = P(z | m)P(m)

P(z)
= P(z | m)∑

m′
P (z | m′)

(7.20)

where P(m) in Eq. (7.20) is assumed to be uniform. The target informa-
tion from the plan activity, P(m | z), can be incorporated naturally in the
MTM framework in the place of P(m) in Eq. (7.13). The distribution P(m) in
Eq. (7.13) represents the prior knowledge (i.e., prior to movement onset) that
the upcoming reach target is m. Because the plan activity entirely precedes
movement onset and provides information about the upcoming reach target,
it can be used to set P(m) in Eq. (7.13) on a per-trial basis.

It is important to note that the most likely target from Eq. (7.20) is not
simply assumed here to be the target of the upcoming reach. On a given trial,
the plan activity may not definitively indicate the target of the upcoming reach
(e.g., two different reach targets may have significant probability), or it may
indicate an incorrect target for the upcoming reach. In this case, you want to
allow the subsequent movement activity, to determine the target of the reach,
or even correct the mistake, “in flight”. Instead of making a hard target decode
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based on plan activity, the entire distribution P(m | z) is retained and passed
to the MTM framework.

7.3.3 Results
Here, we review the performance comparison of four decoders. The first is a
state-of-the-art decoder presented by Kass and colleagues (Brockwell et al.,
2004) based on a random-walk trajectory model (RWM) in acceleration. The
second decoder is based on a single linear Gaussian trajectory model (STM)
shared across reaches to all targets. It is defined by Eqs. (7.16) and (7.17) for
special case of M = 1. The STM decoder uses the observation model shown
in Eq. (7.18). The RWM and STM decoders provided points of comparison
for the following two MTM decoders, both of which are based on Eqs. (7.16)
and (7.18). Whereas the MTMM decoder uses only movement activity, the
MTMDM decoder uses plan activity as well. In Eq. (7.13), the same P(m)
(in this case, a uniform distribution) is used across all trials for MTMM. A
different P(m) is used on each trial for MTMDM based on the prior target
information extracted from plan activity.

For each of the four decoders, we first fit the model parameters to training
data, as detailed in Yu et al. (2007). The test data for a single trial consisted
of (1) the arm trajectory, taken from 50 ms before movement onset to 50 ms
after movement end at dt = 10 ms time steps; (2) the movement period spike
counts, taken in non-overlapping # = 10 ms bins and temporally offset from
the arm trajectory by an optimal lag found for each unit; and (3) the plan period
spike counts, taken in a single 200 ms bin starting 150 ms after the appearance
of the reach target. Arm trajectories in the test phase were used to evaluate
offline the accuracy of the trajectories estimated from neural data. Note that
natural arm movements accompanied the recorded movement activity (as is
typical in offline studies), in contrast to most online closed-loop studies in
which few or no arm movements are produced.

Figure 7.4 details, for a particular test trial, how the MTM-decoded tra-
jectory was obtained and compares the trajectory estimates produced by the
different decoders. From Eq. (7.12), the MTM-decoded trajectory E

[
xt | {y}t

1

]

is a weighted sum of component trajectory estimates E
[
xt | {y}t

1,m
]
, one for

each reach target indexed by m ∈ {1, . . . ,8}. In Figure 7.4(b) and (c), the com-
ponent trajectory estimates are plotted in the upper panels, while the middle
panels show how the corresponding weights P

(
m | {y}t

1

)
evolved during the

course of the trial.
The values of the weights at time zero (t = 0) represent the probability

that the upcoming reach target is m, before any movement neural activity is
observed. The distribution of weights at t = 0 is precisely P(m) in Eq. (7.13).
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FIGURE 7.4

A representative test trial in which the use of plan activity improved the MTM-decoded
trajectory. The upper panels compare the actual trajectory (all panels, black) with the
decoded trajectories for (a) RWM (dark green) and STM (light green), (b) MTMM (red), and
(c) MTMDM (orange). Ellipses denote 95% confidence intervals at three different time
steps. Yellow squares represent the visual reach targets presented to the monkey in actual
dimensions. The upper panels in (b) and (c) also show the eight component trajectory
estimates for the MTM (cyan, blue, magenta for the three components with the largest
weights; gray for the other five components). Their corresponding weights, as they evolve
during the trial, are plotted in the middle panels. The lower panels compare the actual and
estimated single-trial speed profiles using the same color conventions as in the upper
panels. Time zero corresponds to 60 ms before movement onset (i.e., one time step before
we begin to decode movement). Note that the red and orange traces in the upper panels
are overlaid with the cyan trace. For this trial, Erms was 11.8, 26.9, 10.9, and 10.5 mm for
the RWM, STM, MTMM, and MTMDM, respectively. Monkey G, 98 units. (Experiment
G20040508, trial ID 474). Please see this figure in color at the companion web site
www.elsevierdirect.com/companions/9780123750273.
Source: Reproduced with permission from Yu et al., 2007.

In Figure 7.4(b), we assumed that there was no information available about the
identity of the upcoming reach target before the reach began (i.e., no plan activ-
ity), so all eight targets wereequiprobable (i.e., P(m) = 1/8 for m ∈ {1, . . . ,8}).
As time proceeded, these weights were updated as more and more movement
activity was observed. Recall that P

(
m | {y}t

1

)
represents the probability that

the actual reach target is m, given the observed neural activity up to time t.
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During the first 200 ms, the actual reach target (cyan) was more likely than the
other seven reach targets at nearly every time step; however, there was some
competition with the neighboring reach targets (blue and magenta). It was
only after approximately 200 ms that the decoder became certain of the actual
reach target (i.e., P

(
m | {y}t

1
)

approached unity) and remained certain for the
rest of the trial. A weighted sum of the eight component trajectory estimates
(upper panel) using these weights (middle panel) yields the MTM-decoded
trajectory (upper panel, red; Erms: 10.9 mm). To measure decoding perfor-
mance, we computed the root mean square position error (Erms) between the
actual and decoded trajectories.

If plan activity is available, it can be used to set a nonuniform P(m) in
Eq. (7.13) on a per-trial basis, as previously discussed. The only difference
between Figure 7.4(b) and (c) is that the MTM decoder used plan activity in the
latter but not the former. In Figure 7.4(c) (middle panel), the weights at t = 0
represent the probabilities of each reach target based only on plan activity,
before any movement activity was observed. In this case, the plan activity
indicated that the actual reach target (cyan) was more probable than the other
targets. This prior knowledge of the identity of the upcoming reach target
was then taken into account when updating the weights P

(
m | {y}t

1

)
during

the course of the trial as more and more movement activity was observed.
Note that using plan activity only affected P(m) in Eq. (7.13); the conditional
state posteriors P

(
xt | {y}t

1,m
)

and the likelihood terms P
(
{y}t

1 | m
)

remained
unchanged. As the means of the conditional state posteriors, the component
trajectory estimates therefore also remained unchanged, as can be verified
by comparing Figure 7.4(b) and (c) (upper panels). For the trial shown in
Figure 7.4, the use of plan activity reduced the competition between the actual
reach target (cyan) and the neighboring targets (blue and magenta). Compared
to Figure 7.4(b) (middle panel), the weight for the actual reach target (cyan)
in Figure 7.4(c) (middle panel) was higher at every time point, the clearest
effect seen during the first 200 ms. In other words, by using plan activity,
the decoder was more certain of the actual reach target throughout the trial.
In Figure 7.4(c), a weighted sum of the eight component trajectory estimates
(upper panel) using these weights (middle panel) yields the MTM-decoded
trajectory (upper panel, orange; Erms: 10.5 mm).

By comparing the MTM-decoded trajectories with the actual trajectory
in Figure 7.4(b) and (c) (upper panels), we see that the use of plan activ-
ity decreased the decoding error and tightened the confidence ellipses for
this trial. Both MTM-decoded trajectories had lower decoding error than the
RWM (Erms: 11.8 mm) and STM (Erms: 26.9 mm), whose decoded trajecto-
ries are plotted in Figure 7.4(a) (upper panel). On this trial, the RWM decoder
produced a reasonably accurate decoded trajectory, while the STM-decoded
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FIGURE 7.5

A representative test trial in which the movement activity corrected an incorrect target
identification from the plan activity. Figure conventions are identical to those in Figure 7.4.
For this trial, Erms was 27.7, 24.2, 11.2, and 13.0 mm for RWM, STM, MTMM, and
MTMDM, respectively. Monkey G, 98 units. (Experiment G20040508, trial ID 676). Please
see this figure in color at the companion web site www.elsevierdirect.com/companions/
9780123750273.
Source: Reproduced with permission from Yu et al., 2007.

trajectory proceeded slowly outwards with wide confidence intervals. These
decoders can also be used to estimate the bell-shaped speed profile of the
actual reach (Figure 7.4, lower panels).

In contrast to Figure 7.4, Figure 7.5 shows a trial where movement activ-
ity alone was able to quickly determine the actual reach target without much
competition from neighboring targets. This can be seen in Figure 7.5(b) (mid-
dle panel), where the weight corresponding to the actual reach target (cyan)
rose to unity after approximately 100 ms and stayed there for the remainder of
the trial. As a result, the resulting MTM-decoded trajectory (upper panel, red;
Erms: 11.2 mm) was quite accurate. As in Figure 7.4, we can incorporate plan
activity if available; however, in this case, the dominant weight at t = 0 (blue)
did not correspond to the actual reach target (cyan), as seen in Figure 7.5(c)
(middle panel). In other words, the plan activity incorrectly indicated the iden-
tity of the upcoming reach target. However, as these weights were updated by
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the observation of movement activity, this “error” was soon corrected (within
approximately 100 ms). From that point on, the weight corresponding to the
actual reach target dominated. Despite this error at the beginning of the trial,
the MTM decoded trajectory in Figure 7.5(c) (upper panel, orange; Erms:
13.0 mm) still headed to the correct target and provided a reasonably accurate
estimate of the arm trajectory. The larger confidence ellipses for MTMDM
compared to MTMM reflect the competition between the actual (cyan) and
neighboring (blue) reach targets. The decoded trajectories for the RWM (dark
green) and STM (light green) are shown in Figure 7.5(a) for comparison. As
in Figure 7.4, both MTM-decoded trajectories yielded lower decoding error
than the RWM (Erms: 27.7 mm) and STM (Erms: 24.2 mm). Furthermore, as
shown in the lower panels, the speed profiles estimated by the MTM decoders
(red and orange) tracked the actual bell-shaped speed profile (black) more
closely than those estimated by the RWM (dark green) and STM (light green)
decoders.

Figures 7.4 and 7.5 together illustrate the benefits of the joint use of plan and
movement activity. When one type of activity is unable to definitively identify
(or incorrectly identifies) the actual reach target, the MTM framework allows
the other type of activity to strengthen (or overturn) the target identification in a
probabilistic manner. In Figure 7.4, the movement activity alone was unable to
definitively identify the actual reach target during the first 200 ms, as there was
competition with a neighboring target. When prior target information from
plan activity was incorporated, the decoder was more certain of the actual
reach target throughout the trial. In Figure 7.5, the plan activity incorrectly
indicated the identity of the upcoming reach target. However, the movement
activity overturned this incorrect target identification early on and rescued the
decoder from incurring a large Erms on this trial.

Having demonstrated how the MTM framework produces trajectory
estimates in individual trials, we now review the quantification and compari-
son of the average performance of the four decoders (RWM, STM, MTMM,
MTMDM) across entire data sets. Figure 7.6 illustrates the following two main
results, which hold true across both monkeys. First, a mixture of linear Gaus-
sian trajectory models (MTMM) provides lower decoding error than either
of the nonmixture trajectory models (RWM and STM) (Wilcoxon paired-
sample test, p < 0.01). Compared to the STM decoder, the MTMM decoder
reduced Erms from 22.5 to 13.9 mm (22.8 to 11.8 mm) in monkey G (H).
Second, the use of prior target information P(m) in the MTM framework
(MTMDM) can further decrease decoding error (Wilcoxon paired-sample test,
p < 0.01). Compared to the MTMM decoder, the MTMDM decoder reduced
Erms from 13.9 to 11.1 mm (11.8 to 10.5 mm) in monkey G (H). Because the
MTM decoder is inherently parallelizable (as described in Section 7.3.2.1),
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FIGURE 7.6

Erms (mean ± SE) comparison for the RWM, STM, MTMM, and MTMDM decoders.
(a) Monkey G (98 units). (b) Monkey H (99 units).
Source: Reproduced with permission from Yu et al., 2007.

these performance gains can be obtained without an associated increase in
decoder running time. The superior performance of the MTMM compared
to the RWM and STM can be attributed to the fact that the MTM better
captures the kinematics of goal-directed reaches (see Figure A2 in Yu et al.
(2007)). If plan activity is available, this additional source of information can
be naturally incorporated in the MTM framework to further improve decoding
performance (MTMDM).

7.4 DISCRETE DECODING FOR COMMUNICATION
PROSTHESES

There has been considerable research on cortically controlled communica-
tions prostheses since at least the 1980s. This interest has been especially
prevalent among the noninvasive community, and the intra-cortical commu-
nity has recently begun to explore this domain as well. Using noninvasive
EEG recordings, researchers have explored several approaches for engi-
neering prostheses that allow discrete target selection. Some commonly
studied categories of EEG signals include slow cortical potentials (SCPs)
(Hinterberger et al., 2004), sensorimotor (µ and β) rhythms (McFarland
et al., 2003; Wolpaw and McFarland, 2004a), and evoked potentials (P300)
(Serby et al., 2005). More recently, minimally invasive communication
prostheses relying on subdural electrocorticographic (ECoG) surface arrays
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(Leuthardt et al., 2004; Schalk et al., 2008) and extra-cortical local field
potentials (Kennedy et al., 2004) have been developed.

In the invasive intra-cortical electrode domain, Kennedy and colleagues
demonstrated that just one or two neurons from the motor cortex of locked-in
ALS patients could be used to move a cursor across a virtual keyboard to type
out messages (Kennedy and Bakay, 1998; Kennedy et al., 2000b). Patients
reported simply “imagining” or “thinking” about moving various parts of their
bodies, and eventually the computer cursor itself, to guide the cursor.

In this section, we focus on decoding algorithms for communication
prostheses based on large populations of neurons, typically recorded using
intra-cortical electrode arrays. One possibility is to adapt a motor prosthesis
from Section 7.3 for use as a communication prosthesis. Schwartz and col-
leagues demonstrated that the continuous trajectory output from a prosthetic
system designed to reach to discrete targets could be processed by an algo-
rithm that chooses the most likely target location (Taylor et al., 2003). If only
a very early portion of the trajectory is needed to make the discrete classifi-
cation, the system can simply cut the trial short and prepare to decode a new
target.

More recent studies have shown that directly classifying the neural activity
(rather than taking a two-stage approach of first estimating cursor position,
then classifying) can lead to greater speed and accuracy of target selection
(Shenoy et al., 2003; Musallam et al., 2004; Santhanam et al., 2006). These
studies were performed using plan activity in medial intraparietal area (MIP),
area 5 and PMd in rhesus monkeys. In these studies, the authors computed
the most likely target m̂ given the observed neural activity z:

m̂ = argmax
m

P(m | z) (7.21)

where P(m | z) is given in Eq. (7.20). The performance of the decoder (mea-
sured in terms of speed and accuracy of target selection) depends on many
factors, including the duration and placement of the time window in which the
spikes z are counted, the arrangement of targets in the monkey’s workspace,
and the spike count model P(z | m) (Eq. (7.20)) (Santhanam et al., 2006). The
choice of P(z | m) is the topic of this section.

7.4.1 Independent Gaussian and Poisson Models
The most commonly used probabilistic models for spike counts are Gaussian
(Eq. (7.19)) (Maynard et al., 1999; Hatsopoulos et al., 2004; Santhanam et al.,
2006; Yu et al., 2007) and Poisson (Shenoy et al., 2003; Hatsopoulos et al.,
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2004; Santhanam et al., 2006)

P(z | m) =
q∏

i=1

P(zi | m) (7.22)

zi | m ∼ Poisson(λi,m)

where zi ∈ {0,1,2, . . .} is the spike count for neural unit i ∈ {1, . . . ,q}, and
λi,m ∈ R+ is the mean spike count for unit i and reach target m ∈ {1, . . . ,M}.
By construction, the units in Eq. (7.22) are assumed to be independent given
the reach target. For the Gaussian model, it is common to make the same
conditional independence assumption by constraining Rm in Eq. (7.19) to be
diagonal.

The assumption of conditional independence in both the Gaussian
(Eq. (7.19)) and Poisson (Eq. (7.22)) cases is largely for practical reasons.
In the Gaussian case, there are typically too few training trials to fit a full
covariance matrix, especially with a large number of units (many tens to
hundreds). In other words, a full covariance matrix is underconstrained; this
leads to overfitting of the training data, thereby reducing decoding perfor-
mance for the test data. Furthermore, the full covariance that is fit is often
not invertible, which is problematic when used for decoding in Eq. (7.21)
(Maynard et al., 1999). In the Poisson case, there is no standard multivariate
generalization.

Historically, Poisson-based algorithms have been found to perform better
than Gaussian-based algorithms in decoding applications (Hatsopoulos et al.,
2004; Santhanam et al., 2006). The observed spike counts are, by definition,
non-negative integers and can be relatively small in some cases (e.g., <5
spikes). In this regime, a Poisson distribution is typically a better fit to the
data than a Gaussian distribution. One might suspect that the data are not well
suited for a Gaussian distribution, especially since a Gaussian distribution has
nonzero probability density for noninteger values, as well as negative values.
It has been shown that taking the square root of the counts can improve
the Gaussian fit (Thacker and Bromiley, 2001). We employ this square root
transform when using Gaussian-based decoding algorithms here.

7.4.2 Factor Analysis MethodsAQ:1
While the assumption of conditional independence provides a simple and
effective decoder, we found that its performance began to deteriorate in
a closed-loop setting where monkeys planned to different targets in rapid
succession (Santhanam et al., 2006). Upon inspection of the neural activity
recorded across multiple trials while the monkey planned to the same target,
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we observed that the firing rates across the neural population fluctuated
together in a systematic way that was dependent on chain position (i.e., the
number of targets that had already been planned in rapid succession) (Gilja
et al., 2005; Kalmar et al., 2005). In other words, it appeared that the activ-
ity of the units was not conditionally independent, which suggested that the
conditional independence assumption may have been limiting the accuracy of
the decoder. This provided the motivation for introducing conditional depen-
dencies into the spike count model. However, as described above, using a
fully dependent Gaussian distribution (i.e., a Gaussian distribution with a
full covariance matrix) is problematic due to practical considerations. In this
section, we explore a compromise by parameterizing the covariance matrix so
as to introduce conditional dependencies without having to fit a full covariance
matrix.

In addition to chain position, there is evidence that other factors may mod-
ulate PMd plan activity from trial to trial (for the same reach target) in a
systematic way across the neural population. These factors include reach cur-
vature (Hocherman and Wise, 1991), reach speed (Churchland et al., 2006b),
force (Riehle and Requin, 1994), the required accuracy (Gomez et al., 2000),
and the type of grasp (Godschalk et al., 1985). There may also be unobserved
influences, including attentional states (Musallam et al., 2004; Chestek et al.,
2007) that further modulate cortical activity, even when observable behavior
is held fixed. These various influences may inadvertently mask the signal of
interest (i.e., reach target) and thereby reduce decoding accuracy.

Figure 7.7(a) provides an example of the trial-to-trial variability present in
the activity of two recorded neural units. For each unit and reach target, the dis-
tribution of plan activity across many trials is shown. Note the large variability
in spike counts across trials for each target, which results in overlap between
the ranges of spike counts for the reach target. Part of this variability can be
attributed to the multitude of potential factors described above. These factors
presumably affect the activity of each unit in a different,yet reliable, way (e.g.,
as the intended reach speed increases, the firing rate for unit 1 increases while
that for unit 2 decreases) and are thus shared across the neural population. The
other part of this variability, which will simply be termed “spiking noise,” can
arise from various sources, including channel noise in the spiking process,
variability in active dendritic integration, synaptic failure, general quantal
(in the vesicle sense) release variation, and axonal failure in incoming spikes
(Faisal et al., 2008). These sources of variability presumably yield nonsystem-
atic, and therefore independent, perturbations across the neural population.
The challenge for the decoder is to avoid mistaking these variations (both
shared and independent) as being the signature for an entirely different reach
target.
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Figure 7.7(b) shows simulated data for two neurons that exhibit indepen-
dent variability and no shared variability for a particular reach target. The
spike counts for each neuron are different in each trial, but there is no inherent
correlation between the observations with regard to the magnitude or polarity
of these perturbations. In contrast, Figure 7.7(c) shows simulated data from
two neurons that exhibit shared variability and independent variability. The
inset shows a hypothetical factor, such as intended reach speed, undergoing
modulation across trials for the same reach target (dark gray points correspond
to fast reaches; medium gray dots, to slow reaches). In this construction, when
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(a) Schematic of delayed reach task where subject reaches to one of eight reach targets.
Data from two real neural units are shown where spikes were counted in a 200-ms window
after target presentation for each trial. Trials were segregated by reach target, and a box
plot was generated denoting the median spike count (white circles), the 25th to 75th

percentile of the spike counts (dark gray rectangles), and the ranges of the outliers (thin
“whiskers”) for each target. (b) Simulation of two neurons whose trial-to-trial spike counts
were perturbed independently of one another. (c) Simulation of two neurons whose spike
counts were primarily perturbed by a shared latent factor (see inset). The diagonal
orientation relative to the main axes is a tell-tale sign of a correlated relationship between
these two neurons. Please see this figure in color at the companion web site
www.elsevierdirect.com/companions/9780123750273.
Source: Reproduced with permission from Santhanam et al., 2009.
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the speed is greater than average, neuron 1 emits slightly more spikes than
average and neuron 2 emits slightly fewer than average. When the factor is
below average, the reverse is true. By assuming conditional independence
(Eqs. (7.19) and (7.22)), both the shared and independent sources of variabil-
ity are treated as independent across the neural population. However, if we
explicitly account for this shared component of variability, we can potentially
increase decoding accuracy, as discussed below.

In reality, we do not have direct access to the inset in Figure 7.7(c), since
many different uncontrollable factors may be involved and many of them
are simply unobservable (e.g., cognitive attentiveness to the task). Although
we cannot explicitly identify these factors, we attempted to infer a set of
shared underlying factors for each trial, along with the mapping between these
factors and the observed data. By “mapping,” we mean the precise polarity
and magnitude by which a factor perturbs the response of a particular neuron.
Such mapping defines the systematic relationship between the latent factors
and the observed neural activity, providing a model of how the spike counts
of a population of neurons are expected to covary.

7.4.2.1 Modeling Shared Variability Using Factor Analysis
For a particular reach target, the independent Gaussian (Eq. (7.19)) and
Poisson (Eq. (7.22)) models treat all trial-to-trial variability as independent
between neural units. A model that could successfully capture spike count
correlations across the population might well yield a more accurate decoding
algorithm. As discussed above, fitting a Gaussian model with a full covariance
matrix to a large number of units would require an impractically large number
of trials. Instead, we recently proposed to use a parametrized form of covari-
ance matrix (Santhanam et al., 2009), which models correlations in a limited
number of principal directions. This is the central topic of this section. The
form we used derives from a standard statistical technique called factor analy-
sis (FA) (Everitt, 1984), where the observed quantities are modeled as a linear
function of unobserved, shared factors.

For our prosthetic system, the observed variables are the neural spiking data
that we recorded from the electrode array. The underlying factors represent
the physical, cognitive, or cortical network states of the subject that are uncon-
trolled or effectively uncontrollable. We used the larger number of observed
variables to help triangulate the smaller number of unobserved factors in the
system. FA is a well-established technique of multivariate statistics, and we
review the method here in the context of our prosthetic decoding application.

For each experimental trial, as before, we collected the (square root of the)
number of spikes observed from each neural unit within the neural integration
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window into the q-dimensional vector z. We also considered an abstract set of
latent factors, which were assumed to be Gaussian-distributed and assembled
into a vector x ∈ Rp×1. Without loss of generality, we took these p factors to
be independent and to have unit variance around 0.1 The observation z was
also taken to be Gaussian-distributed, but with a mean that depended on the
latent factors x. The complete model is as follows:

x ∼N (0, I) (7.23)

z | x,m ∼N (Cmx + µm, Rm) (7.24)

As in Eq. (7.19), µm ∈ Rq×1 contains the number of spikes that each neural
unit would produce for target m ∈ {1, . . .,M} if there were only target-related
variability in the system, and Rm ∈ Rq×q is a diagonal matrix that captures
the independent variability present in z from trial to trial. However, there is
now an additional mechanism by which trial-to-trial variability can emerge in
the neural observations: specifically, the neural data vector z is perturbed by
a linear function of the underlying factors. The matrix Cm ∈ Rq×p defines the
mapping between the factors and the observations. Given that the underlying
factors are shared between the observed neural units, there is a predefined
correlation structure between the neural units built into the model. Integrating
over all possible x, we obtained the likelihood of the data z for a reach target m:

z | m ∼ N
(
µm, CmC′

m + Rm
)

(7.25)

Equation (7.25) shows that FA effectively partitions the data covariance matrix
into two components. The first term in the covariance, CmC′

m, captures the
shared variability across the neural population. The second term, Rm, captures
the remaining unexplained variability, which is assumed to be independent
across units. It may include biophysical spiking noise and other nonshared
sources of variability. Note that FA can be viewed as a generalization of
principal component analysis (PCA).As the diagonal elements ofRm approach
zero, the space spanned by the columns of Cm will be equivalent to the space
found by PCA (Roweis and Ghahramani, 1999).

1The following is why there is no loss of generality when assuming x ∼ N (0, I). Suppose that
x ∼ N (0, V ) for some V '= I . In other words, suppose that the latent factors are dependent and have
nonunit variance. This model is formally equivalent to one in which x ∼ N (0, I) and z | x,m ∼
N

(
CmV

1
2 x + µm, Rm

)
, in the sense that both models would give the same decoded target m̂ and

data likelihood P(z).
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7.4.2.2 Decoding Reach Targets Using Factor Analysis
The model parameters (µm, Cm, Rm for each target m) are fit by maximum
likelihood using the neural data z and the reach target m across all trials in the
training data set. Although P(z | m) is Gaussian (Eq. (7.25)), the parametric
form of the covariance makes direct calculation of the parameters difficult.
Instead, we applied the expectation-maximization (EM) algorithm (Dempster
et al., 1977), which iteratively updates the model parameters and latent factors
until convergence is reached. The update equations for fitting FA using EM
can be found elsewhere (Roweis and Ghahramani, 1999; Santhanam et al.,
2009).

When decoding test trials, we used the maximum likelihood estimator
previously described (cf. Eqs. (7.20) and (7.21)), where P(z | m) is given in
Eq. (7.25). We refer to this approach as FAsep since there is a separate Cm and
Rm per reach target m.2 To reiterate, the FA model provides a method by which
we can approximate the covariance structure of our observed variables without
fitting a full covariance matrix. Once we have fit the model, the decoding
procedure does not rely on finding the underlying factor vector x, but rather
operates solely with the distribution P(z | m).

An important question is how to select p, the number of underlying factors.
With too many factors in the model, the model parameters will be fit to any
idiosyncratic correlation structure in the training data and these features may
not appear in the test data. If p is too small (i.e., too few factors), the model
will be unable to capture all underlying correlation present in the training
data. One must ensure that the model is not overfit to the training data and
that it generalizes well for test data. Selecting the optimal p, or p∗, is part
of the process of model selection. It is important to keep in mind that the
underlying factors identified for each model are abstract. They are a vehicle
by which we are able to describe shared variability—the exact number of
factors selected does not necessarily have physical significance. The model
selection procedure is a simple, necessary step to ensure that a model fit with
the training trials will perform well when decoding the test data.

We used the standard approach of partitioning data into training and vali-
dation sets to find the value of p beyond which overfitting became a problem
(Hastie et al., 2003). Each data set was split approximately into two equal
halves, one to serve as a training set and the other as a test set. The trials in
the training set were further divided in order to perform a 5-fold or 10-fold
cross-validation. For example, in 5-fold cross-validation, roughly four-fifths

2Note that the overall model for z is very similar to the “mixture of factor analyzers” proposed by
Ghahramani and Hinton (1997), except that FAsep allows for a separate covariance Rm per mixture
component.
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of the training trials would be used to train the FA model and one-fifth to
validate the model’s prediction error. This would be repeated five times until
all of the original training set was used for validation. A series of models, each
with a different number of underlying factors p, were tested using this cross-
validation method. The p∗ was selected by identifying the model with the
lowest decoding error. The performance of this one model was then assessed
on the test data to compare the classification performance of the optimal FA
model against the independent Gaussian and Poisson models.

7.4.2.3 A Unified Latent Space
The FAsep approach in Eq. (7.25) is a straightforward extension of the inde-
pendent Gaussian model of (Eq. (7.19)). It defines a separate latent space for
each reach target indexed by m (Eq. (7.24)). To visualize the data points across
different reach targets in a unified latent space, we developed a second, novel
approach to FA that defines a single output mapping and incorporates the
separation of reach targets through the shared latent space (Santhanam et al.,
2009). The model is

x | m ∼ N (µm, I) (7.26)

z | x ∼ N (Cx, R) (7.27)

where µm is now a p-dimensional vector that describes the reach target
influence on the neural data within the lower-dimensional space. The map-
ping between the low- and high-dimensional spaces (defined by C ∈ Rq×p)
is shared across reach targets, thereby unifying the effect of target-related
and non-target-related factors on neural data. For each trial, the shared
target-related effect on the neural observations is Cµm, while the shared non-
target-related factors perturb the observations by C(x − µm). As before, R is
diagonal and describes the independent variability. We refer to this model as
FAcmb , since the output mapping is “combined” across reach targets.

We fit the model parameters (µm for each target m, C, R), again using the
EM algorithm. The EM update equations for FAcmb can be found in Santhanam
et al. (2009). To decode the reach target for test trials, we rewrote Eqs. (7.26)
and (7.27) as

z | m ∼ N
(
Cµm, CC′ + R

)
(7.28)

and applied the same maximum likelihood decoder shown in Eqs. (7.20) and
(7.21).
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FIGURE 7.8

Visualization of FAcmb with a three-dimensional latent space. Each point corresponds to the
inferred x for a given trial. Axis scaling is determined by the fitted model. The various
shading of the data points denotes the upcoming reach target. Clusters correspond to
different reach targets. Analysis performed on data set G20040428. Please see this figure
in color at the companion web site www.elsevierdirect.com /companions/9780123750273.
Source: Reproduced with permission from Santhanam et al., 2009.

Figure 7.8 is an example of how these unified factors might manifest
themselves over many trials.3 There are three latent factors that capture both
target and non-target-related influences on the neural data z (which is not
shown and is much higher-dimensional). Each differently shaded cloud of
points corresponds to a different reach target, with trials to a given target
clustered next to one another. Note that even in this three-dimensional instan-
tiation of FAcmb , there is visible separation between the clouds, suggesting
that it is possible to discriminate between targets.

By comparing Eqs. (7.25) and (7.28), we can gain further insight into the
relationship between FAsep and FAcmb. Both models define a mixture of M
Gaussians in the high-dimensional space in which z lies. In both cases, the
Gaussian covariances take the same parameterized form of low-rank plus
diagonal. Whereas FAsep can have a different covariance for each reach tar-
get indexed by m (e.g., each Gaussian cloud can be oriented in a different
direction), they are constrained to be the same in FAcmb. In FAsep, the Gaussians

3We fix the number of factors in this example to be three to allow for convenient plotting of the
data; ordinarily, the number of factors (p) would be optimized using the model selection procedure
described earlier.



250 CHAPTER 7 Neural Decoding for Motor and Communication Prostheses

can be centered anywhere in the high-dimensional space. In FAcmb, however,
they must lie within the lower-dimensional space spanned by the columns of
C, which is also used to describe the shared variability. In other words, the
single, low-dimensional space in FAcmb must be large enough (i.e., have a
high enough dimensionality) to capture both between-class and within-class
spread (where the latter is synonymous with shared variability). In FAsep, each
of the M low-dimensional spaces needs only to be large enough to capture
the within-class spread for that reach target. As will be reviewed in the next
section, we found that the optimal latent dimensionality of FAcmb was typically
larger than that of FAsep.

7.4.3 Results
We first chose the number of latent factors (p) that maximized cross-validated
decoding performance. Conceptually, we had to ensure that we had enough
factors to sufficiently describe the shared variability in the data but not so many
that we overfit the training data. This was a necessary step before we could
compare FA models to the independent Gaussian and Poisson models. We
examined two data sets, G20040401 and H20040916, which comprised 185
and 200 total trials per reach target, respectively. This yielded ∼80 training and
∼20 validation trials per reach target for each cross-validation fold. A spike
count window of 250 ms was used for this particular analysis, although we
saw similar results for smaller spike count windows as well.

Figure 7.9(a) shows the validation performance for these two data sets as
a function of p when fitting the FAsep algorithm. The performance for p = 0
corresponds to an independent Gaussian model where there is no Cm matrix
and only a diagonal covariance matrix, Rm, per reach target. The best validation
performance for FAsep was obtained for low p: p∗ = 1 for G20040401 and
p∗ = 3 for H20040916. The results show that as p was increased beyond p∗,
performance steadily declined. Overfitting was an issue for even relatively
small values of p. Why might this be? There are surely many factors that
influence the upcoming reach—direction, distance, curvature, speed, force,
and so forth. However, for our data set, reach trajectories to the same target
were highly similar. Moreover, the shared variability (captured by trial-to-trial
modulation of the factors) may be small relative to the independent variability.
Given a small number of training trials for each reach target (∼80) relative to
the number of units (∼100), it is likely that we were unable to identify more
latent factors without poorly estimating the model parameters and overfitting.
The penalty for overfitting is evident: by p = 30, all of the benefits from using
FAsep over the independent Gaussian approach ( p = 0) are lost.
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FIGURE 7.9

Model selection for FAsep and FAcmb. The shaded area denotes the 95% confidence
interval (Bernoulli process) around the mean performance (embedded line). (a) Optimal
cross-validated performance for FAsep occurs for a low number of factors. (b) Optimal
cross-validated performance for FAcmb occurs between 10 and 20 factors. Please see this
figure in color at the companion web site www.elsevierdirect.com/companions/
9780123750273.
Source: Reproduced with permission from Santhanam et al., 2009.

We performed the same sweep of p for FAcmb , and the validation
performance is plotted in Figure 7.9(b). The best validation performance for
the combined FA model was obtained for higher p than for FAsep: p∗ = 31 for
G20040401 and p∗ = 12 for H20040916. This makes sense because the latent
space for FAcmb must capture both within-class and between-class spread,
whereas each of the M latent spaces for FAsep need only capture within-class
spread, as previously described. While at first it seems that the optimal num-
ber of factors for G20040401 is substantially higher than that for H20040916,
one can see that the validation performance reached a floor around p∗ = 15
for the G20040401 data set. There was negligible improvement when the
dimensionality was increased past that point. This, combined with the fact
that performance degradation due to overfitting in the H20040916 data set
was relatively minor, demonstrated that FAcmb is less sensitive to the exact
choice of p than is FAsep

Next, we compared the performance of four different decoders grouped
into two pairs. One pair consisted of the independent Gaussian and Poisson
models. The second pair was the FA-based models, FAsep and FAcmb . We
computed decoding accuracy based on a spike count window of 250 ms. For
the independent algorithms, half of the trials in each data set were used to
train the model parameters, and the model was used to predict the reach target
for the other half. For the FA-based algorithms, the training set was first used
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FIGURE 7.10

Comparison of decoding algorithms on two example data sets. Error bars denote the 95%
confidence interval (Bernoulli process) for each measurement. (a) Data set G20040429.
(b) Data set H20040928.
Source: Reproduced with permission from Santhanam et al., 2009.

to select the optimal dimensionality p∗ using 5-fold cross-validation, and the
training set was then used in its entirety to fit a model with p∗ dimensionality.
As with the independent algorithms, the fitted model was finally applied to
the test data to compute the average decoding performance.

Figure 7.10 shows the relative performance of these four algorithms. There
were a grand total of 1024 and 528 test trials for theG20040429 and H20040928
data sets, respectively. For data set G20040429, the independent Gaussian and
Poisson algorithms had roughly the same performance, while for data set
H20040928 the independent Gaussian algorithm had the worst performance,
with ∼5% worse accuracy than that of the independent Poisson algorithm.
The FAsep algorithm reduced the decoding error for monkey G’s data set by
nearly 10%, but showed only a modest improvement for monkey H’s data set.
The FAcmb algorithm showed by far the best performance. Our novel decoder
was able to drastically reduce the decoding error to only ∼5%.

7.5 DISCUSSION
We described two classes of neural prosthetic systems—motor and communic-
ation—that aim to assist disabled patients by translating their thoughts into
actions in the outside world. While many challenges remain (Andersen et al.,
2004; Schwartz et al., 2006; Donoghue, 2008; Ryu and Shenoy, 2009), one
of the major challenges is interpreting, or decoding, the neural signals. In this
chapter, we reviewed current decoding approaches and detailed advances that
we recently published (Yu et al., 2007; Santhanam et al., 2009). For motor
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prostheses, we showed that arm trajectories can be more accurately decoded
by probabilistically mixing trajectory models, each of which is accurate within
a limited regime of movement. The MTM is a general approach to construct-
ing trajectory models that can exhibit rather complex dynamical behaviors,
whose decoder can be implemented to have the same running time as as those
of simpler trajectory models. Furthermore, prior information about the identity
of the upcoming movement regime can be incorporated in a principled way.
For communication prostheses, we showed that the reach target can be more
accurately decoded by taking into account the correlation structure across the
neural population. These correlations arise because of unobserved or uncon-
trolled aspects of the behavioral task, possibly due to the subject being more
attentive or more fatigued. Using factor analysis methods, we exploited this
statistical structure in a maximum likelihood classifier.

For goal-directed reaches, the observed neural activity provides two cat-
egorically different types of information about the arm trajectory to be
estimated. One type is informative of the moment-by-moment details of the
arm trajectory (dynamic); the other is informative of the identity of the upcom-
ing reach target (static). If the moment-by-moment details of the arm trajectory
can be decoded perfectly using only the neural activity present during move-
ment, there is no need for target information in motor prostheses. However,
the moment-by-moment details of the arm trajectory and the target identity
are each decoded with varying levels of uncertainty. When both types of infor-
mation are available, it is desirable to combine them in a way that takes into
account their relative uncertainty and yields a coherent arm trajectory esti-
mate. The MTM framework provides a principled way to combine these two
types of information.

In this work, we extracted both types of information from the same cortical
areas: PMd and M1. The type of information being decoded depends on when
the neural activity occurs relative to the reach, which we assumed to be known.
In settings where the subject is free to decide when to reach, it will be necessary
to implement a state machine (Shenoy et al., 2003; Achtman et al., 2007;
Kemere et al., 2008) that determines the type of information being conveyed
by the neural activity at each time point.

The MTM can be viewed as a discrete approximation of a single, uni-
fied trajectory model with nonlinear dynamics. One may consider directly
decoding using a nonlinear trajectory model without discretization. Although
this makes the decoding problem more difficult, there are effective approx-
imate methods that can be applied (Yu et al., 2006b, 2008). In addition to
the MTM and decoding using a nonlinear model, other important extensions
to the basic Kalman filter include a switching state model (Srinivasan et al.,
2007), a switching observation model (Wu et al., 2004a; Srinivasan et al.,
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2007), and an adaptive Kalman filter whose parameters change over time (Wu
and Hatsopoulos, 2008).

The advances presented in Section 7.4 can be applied in a straightfor-
ward way to the MTM. In Section 7.3, we used the independent Gaussian
model (Eq. (7.19), assuming conditional independence across different units)
to obtain the prior target information P(m | z) (Eq. (7.20)). The results from
Section 7.4 suggest that a more accurate target prior can be obtained by using
either a Poisson model (Eq. (7.22)) or a Gaussian model that captures the cor-
related activity across the neural population (Eq. (7.25) or (7.28)). This could
provide performance improvements beyond that shown in Section 7.3.

In Section 7.4, we introduced latent variables to capture unobserved or
uncontrolled aspects of the behavioral task (e.g., the subject’s level of attention
or fatigue) in the context of discrete decoding for communication prostheses.
The same idea can be applied to continuous decoding for motor prostheses.
Paninski and colleagues showed that a Kalman filter with latent variables can
outperform the standard Kalman filter (Wu et al., 2009).

For discrete decoding, we found that the independent Poisson model
yielded similar or better decoding accuracy compared to the independent
Gaussian model (see Figure 7.10). It is natural to ask whether the accuracy of
the independent Poisson model can be improved by if one takes into account
correlated activity across the neural population by replacing Eq. (7.24) or
(7.27) with a Poisson observation model. In Santhanam et al. (2009), we
developed a family of models called “factor analysis with Poisson output”
(FAPO). We found that, while these models often outperformed the indepen-
dent Poisson model, they tended to have higher levels of decoding error than
their Gaussian counterparts (FAsep and FAcmb ). There are several possible
explanations for this result, including the fixed mean–variance relationship
for a Poisson distribution and the approximations required for fitting FAPO
models (Santhanam et al., 2009).

Although we sought to maximize classification performance in Section 7.4,
we trained a generative model by maximizing the likelihood of the observed
data. One would hope for a monotonic relationship between classification
performance and data likelihood, but there is no guarantee that this will be
the case. On the other hand, discriminative classifiers, such as support vector
machines (Vapnik, 1995), directly maximize classification performance. One
advantage of using a generative model is that we can recover and attempt to
interpret the latent variables (see Figure 7.8), whereas discriminative meth-
ods tend to yield a “black box” that is difficult to interrogate. Jordan and
colleagues compared these two types of classifiers and found that generative
classifiers tended to outperform discriminative classifiers in the regime of
small training set sizes, while the reverse was true for larger training set sizes
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(Ng and Jordan, 2002). We leave the exploration of discriminative classifiers
for communication prostheses, and their comparison to generative classifiers,
as a topic of future work.

7.6 FUTURE DIRECTIONS
There has been considerable progress in the development of neural prosthetic
systems in recent years, including FDA-approved clinical trials (Hochberg
et al., 2006; Kim et al., 2008). However, many critical research challenges
remain before invasive, electrode-based systems are ready for “clinical
prime time” (Donoghue et al., 2007; Ryu and Shenoy, 2009). Among
them are increasing decoding performance, minimizing surgical invasiveness,
increasing electrode lifetime and recording stability (Polikov et al., 2005), and
developing fully implantable, low-power electronics (Sodagar et al., 2007;
Chestek et al., 2009; Harrison et al., 2009). In this chapter, we considered
only the first of these challenges, neural decoding.

Within the scope of neural decoding, there remain many challenges, includ-
ing (1) furthering our understanding of the time course of plan and movement
activity and their relationship to arm movement, and (2) designing decoders
that are effective in a closed-loop setting. For the first challenge, in both
Sections 7.3 and 7.4 we collapsed the timecourse of plan activity by tak-
ing spike counts within a large time window. However, from Figure 7.2, it
appears that the time-varying nature of plan activity can, in principle, be
leveraged to improve the prior target information (Section 7.3) and target
classification (Section 7.4). For movement activity, most decoders (includ-
ing population vectors, linear filters, and all recursive Bayesian decoders
mentioned in this work) assume a simple relationship (e.g., linear cosine tun-
ing or some variant thereof) between arm state and neural activity. However,
there is mounting evidence that this relationship is more complex than pre-
viously appreciated (Churchland and Shenoy, 2007b; Scott, 2008), and leads
to model mismatch (see Figure A2 in Yu et al., 2007) in the training phase
and subsequent decoding error in the testing phase. In brief, we need methods
for studying the time course of plan and movement activity across a neural
population that does not collapse neural activity across a large window, or
assume an overly restrictive relationship with arm movement. One possible
approach is to extract a low-dimensional neural trajectory that summarizes
the activity recorded simultaneously from many units (Yu et al., 2006a, 2009;
Churchland et al., 2007, 2010). An advantage with this approach is that neural
trajectories are extracted using neural activity alone, and no assumption needs
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to be made about the relationship between the neural activity and arm move-
ment. Figure 7.11 shows neural trajectories extracted from 61 units in PMd
and M1 during a delayed reach task. Each trace corresponds to a single trial of
planning and executing a reach to the upper-right target (medium gray traces)
or lower-left target (light gray traces). For different reach targets, the trajecto-
ries head off toward different parts of the low-dimensional space in a reliable
fashion. After the neural trajectories are extracted, they can then be related
to the subject’s behavior, such as arm kinematics and muscle activity (Afshar
et al., 2008). Such analyses should provide insight into how the time course of
plan activity should be incorporated and how to better capture the relationship
between movement activity and desired arm movement in prosthetic decoders.

For the second challenge, Kass and colleagues have shown that the open-
loop performance of decoding algorithms does not necessarily reflect their
closed-loop performance (Chase et al., 2009). The reason is that the subject
receives visual (and potentially other sources of) feedback in a closed-loop
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FIGURE 7.11

Neural trajectories extracted by Gaussian-process factor analysis (GPFA). Each trace
corresponds to a single trial of planning and executing a reach to the upper-right target
(dark gray traces) or the lower-left target (light gray traces). Indicated are time of reach
target onset (black dots), go cue (triangles), and movement onset (open circles). Please
see this figure in color at the companion web site www.elsevierdirect.com/companions/
9780123750273.
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setting, which enables the subject to compensate for systematic errors in the
decoded cursor movements. Furthermore, there is increasing evidence that
neurons can change their firing properties between open-loop and closed-
loop settings (Taylor et al., 2002; Carmena et al., 2003), and that the brain can
learn the mapping between neural activity and cursor movement (Jarosiewicz
et al., 2008; Ganguly and Carmena, 2009). This suggests that we not only
should carefully compare existing decoders in a closed-loop setting (Kim et al.,
2008; Chase et al., 2009), but should also design decoding algorithms that are
specifically tailored for closed-loop use. Currently missing from decoding
algorithm development are control theoretic concepts (Scott, 2004), such as
feedback, signal delays (in the nervous system and in the signal processing
machinery of the prosthetic system), and system stability. To design a decoder
that accounts for sensory feedback, we need to develop a deeper understand-
ing of how the subject alters his neural activity based on feedback received to
achieve task success. Because the cursor motion is different from one exper-
imental trial to the next, simply averaging the neural activity across trials
will likely obscure neural signatures of the brain attempting to correct for
errors in cursor motion. Instead, we need statistical methods that can char-
acterize the time course of neural population activity on a single-trial basis
(Yu et al., 2006a, 2009; Churchland et al., 2007, 2010). Such methods will
allow us to study (1) how corrections in cursor motion are brought about by
changes in the pattern of neural population activity, and (2) how the pattern of
neural activity shifts when transitioning from an open-loop to a closed-loop
setting.
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