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Probabilistic decoding techniques have been used successfully to infer
time-evolving physical state, such as arm trajectory or the path of a
foraging rat, from neural data. A vital element of such decoders is the
trajectory model, expressing knowledge about the statistical regular-
ities of the movements. Unfortunately, trajectory models that both 1)
accurately describe the movement statistics and 2) admit decoders
with relatively low computational demands can be hard to construct.
Simple models are computationally inexpensive, but often inaccurate.
More complex models may gain accuracy, but at the expense of higher
computational cost, hindering their use for real-time decoding. Here,
we present a new general approach to defining trajectory models that
simultaneously meets both requirements. The core idea is to combine
simple trajectory models, each accurate within a limited regime of
movement, in a probabilistic mixture of trajectory models (MTM).
We demonstrate the utility of the approach by using an MTM decoder
to infer goal-directed reaching movements to multiple discrete goals
from multi-electrode neural data recorded in monkey motor and
premotor cortex. Compared with decoders using simpler trajectory
models, the MTM decoder reduced the decoding error by 38 (48)
percent in two monkeys using 98 (99) units, without a necessary
increase in running time. When available, prior information about the
identity of the upcoming reach goal can be incorporated in a princi-
pled way, further reducing the decoding error by 20 (11) percent.
Taken together, these advances should allow prosthetic cursors or
limbs to be moved more accurately toward intended reach goals.

I N T R O D U C T I O N

Neural activity from motor cortical areas has been shown in
a number of studies to be related to various aspects of the
corresponding arm reach, including movement direction (Ashe
and Georgopoulos 1994; Georgopoulos et al. 1986; Moran and
Schwartz 1999; Riehle and Requin 1989; Tanji and Evarts
1976), movement extent (Riehle and Requin 1989), position
(Ashe and Georgopoulos 1994; Paninski et al. 2004), velocity
(Ashe and Georgopoulos 1994; Paninski et al. 2004), acceler-
ation (Ashe and Georgopoulos 1994), posture (Caminiti et al.
1991; Scott and Kalaska 1997), speed (Moran and Schwartz
1999), joint angular velocity (Reina et al. 2001), force (Evarts
1968; Sergio and Kalaska 1998), and intended reach goal

(Messier and Kalaska 2000; Shen and Alexander 1997). Al-
though the coding scheme used by motor cortical areas is still
incompletely understood (Fetz 1992; Moran and Schwartz
2000; Scott 2004), the regularities in the relationship between
neural activity and aspects of the arm reach have enabled the
development of direct brain-controlled prosthetic devices (Car-
mena et al. 2003; Chapin et al. 1999; Hochberg et al. 2006;
Kennedy and Bakay 1998; Musallam et al. 2004; Santhanam et
al. 2006; Serruya et al. 2002; Taylor et al. 2002). These devices
are designed to allow disabled patients to regain motor function
through the use of prosthetic limbs, or computer cursors, that
are controlled by neural activity.

One of the key components of a neural prosthetic device is
its decoding algorithm, which translates neural activity into
desired movements. Examples of decoding algorithms that
translate neural activity around the time of the movement
(termed peri-movement activity) into continuous arm trajecto-
ries include population vectors (Taylor et al. 2002) and linear
filters (Carmena et al. 2003; Hochberg et al. 2006; Serruya et
al. 2002). Both of these decoding algorithms assume a linear
relationship between the neural activity and arm state. In
general, the arm state may include, but is not limited to, arm
position, velocity, and acceleration.

Although these linear decoding algorithms are effective,
recursive Bayesian decoders have been shown to provide more
accurate trajectory estimates (Brockwell et al. 2004; Brown et
al. 1998; Wu et al. 2004, 2006). Recursive Bayesian decoders
are based on the specification of a probabilistic model com-
prising 1) a trajectory model, which describes how the arm
state changes from one time step to the next, and 2) an
observation model, which describes how the observed neural
activity relates to the time-evolving arm state. If the modeling
assumptions are satisfied, then Bayesian estimation makes
optimal use of the observed data. Unlike the aforementioned
linear decoding algorithms, recursive Bayesian decoders pro-
vide confidence regions for the arm state estimates and allow
for nonlinear relationships between the neural activity and arm
state.

The function of the trajectory model is to build into the
recursive Bayesian decoder prior knowledge about the form of
the reaches. The model may reflect 1) the hard, physical
constraints of the limb (for example, the elbow cannot bend
backward), 2) the soft, control constraints imposed by neural
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mechanisms (for example, the arm is more likely to move
smoothly than in a jerky motion), and 3) the physical surround-
ings of the patient and his/her objectives in that environment.
These statistical regularities and constraints can be learned by
observing the reaching behavior and fitting the trajectory
model to the actual reaches, which is the approach adopted in
this paper. The degree to which the trajectory model reflects
the kinematics of the actual reaches directly affects the accu-
racy with which trajectories can be decoded from neural data.
A commonly used trajectory model is the random-walk model
(Brockwell et al. 2004; Brown et al. 1998), which captures the
fact that arm trajectories tend to be smooth. In other words,
small changes in arm state from one time step to the next are
more likely than large changes. The random-walk model is part
of a family of trajectory models based on linear dynamics
perturbed by Gaussian noise, which we refer to collectively as
linear-Gaussian models. Linear-Gaussian models have been
successfully applied to decoding the path of a foraging rat
(Brown et al. 1998; Zhang et al. 1998), as well as arm
trajectories in ellipse tracing (Brockwell et al. 2004), pursuit
tracking (Shoham et al. 2005; Wu et al. 2004, 2006), and
“pinball” tasks (Wu et al. 2004, 2006).

When selecting a trajectory model, one is typically faced
with a trade-off between how accurately the trajectory model
captures the movement statistics and the computational de-
mands of its corresponding decoder. For example, for real-time
applications, we may decide to use a relatively simple trajec-
tory model because of its low computational cost, even if it
fails to capture some of the salient properties of the observed
movements. Even though we may be able to identify a more
complex trajectory model that could yield more accurate de-
coded trajectories, the computational demands of the corre-
sponding decoder may be prohibitive in a real-time setting. In
this work, we present a general approach to constructing
trajectory models that can exhibit rather complex dynamical
behaviors, whose decoder can be implemented to have the
same running time as simpler trajectory models. The core idea
is to combine simple trajectory models, each accurate within a
limited regime of movement, in a probabilistic mixture of
trajectory models (MTM) (Kemere et al. 2003, 2004a,b).

We demonstrate the utility of this approach by developing a
mixture of trajectory models suitable for goal-directed move-
ments in settings with multiple goals. A common usage mode
of real-time prosthetic systems involves guiding a computer
cursor to acquire discrete goals in the subject’s virtual work-
space. This design approach was adopted in studies using
multi-electrode neural recordings in monkeys (Carmena et al.
2003; Serruya et al. 2002; Taylor et al. 2002) and humans
(Hochberg et al. 2006) and both electroencephalographic
(EEG) (Wolpaw and McFarland 2004) and electrocortico-
graphic (ECoG) (Leuthardt et al. 2004) recordings in humans.
As shown by Donoghue and colleagues (Hochberg et al. 2006),
the goal-directed cursor control design can allow a paralyzed
patient to operate a computer interface controlling a variety of
useful functions, including television and simulated email, thus
illustrating its immediate clinical benefits. Because of the
prevalence of goal-directed reaching in everyday life, this
goal-directed design is likely to continue to be fruitful in
systems involving prosthetic limbs, in addition to computer
cursors, that are driven by the brain’s activity. Indeed, many of
the basic movements a paralyzed patient would desire are goal

directed, such as reaching for a cup, picking up the phone, and
feeding oneself. The utility of prosthetic systems based on
goal-directed movements has fueled the development of statis-
tical models and decoding algorithms tailored for goal-directed
movements (Cowan and Taylor 2005; Kemere and Meng 2005;
Kemere et al. 2002, 2003, 2004a,b; Srinivasan and Brown
2006; Srinivasan et al. 2005, 2006; Yu et al. 2005).

Goal-directed movements can be characterized by the fol-
lowing three properties. First, each movement is typically
directed toward one of a (possibly large) number of discrete
goals available in the subject’s workspace. These goals may be
visual targets presented on a computer screen or physical
objects located near the subject. Second, repeated movements
to the same goal are not identical. For example, there may be
variability in movement speed or curvature. Third, the trajec-
tories generally start at rest, proceed out to the desired goal,
and end at rest. Previous studies considered goal-directed
movements toward a single stationary (Kemere and Meng
2005; Srinivasan et al. 2005, 2006) or dynamic (Srinivasan and
Brown 2006) goal with a known arrival time or stereotyped
movements to multiple goals (Kemere et al. 2002, 2004b). In
this work, we develop a mixture of trajectory models that
captures all three properties of goal-directed movements and
show how it can be used to decode movements from neural
activity.

While the peri-movement neural activity is informative of
the moment-by-moment details of the desired movement, there
may be additional information available about the identity of
the desired reach goal well before the desired time of move-
ment onset. For example, if the phone rings, there is a greater
chance that the goal of the upcoming reach will be the phone
rather than the light switch. Even without such an external clue,
the upcoming goal identity can often be inferred from neural
activity related to motor preparation (termed delay activity
because motor preparation is typically studied using a delayed-
reach behavioral task) (e.g., Churchland et al. 2006b,c; Kurata
1993; Messier and Kalaska 2000; Riehle and Requin 1989;
Shen and Alexander 1997; Weinrich and Wise 1982). The type
of information conveyed by delay activity is categorically
different from that provided by peri-movement activity.
Whereas peri-movement activity specifies the moment-by-
moment details of the arm trajectory (e.g., Ashe and Georgo-
poulos 1994; Moran and Schwartz 1999; Paninski et al. 2004;
Schwartz 1992), delay activity has been shown to indicate the
upcoming reach goal (Hatsopoulos et al. 2004; Musallam et al.
2004; Santhanam et al. 2006; Shenoy et al. 2003; Yu et al.
2004). It should be possible to use this goal information, when
available, to improve the accuracy of the decoded trajectory.
Brown and colleagues (Srinivasan et al. 2005, 2006) showed
how to constrain free movement trajectories, given goal infor-
mation that takes the form of a continuous distribution around
a single goal. For multiple goals, the information usually takes
the form of a discrete distribution across the possible goals. As
with decoders we previously proposed (Kemere et al. 2002,
2003, 2004a,b), the MTM framework can naturally incorporate
this goal information across multiple goals to improve the
accuracy of the decoded trajectory. In contrast to a decoder that
selects among a set of canonical trajectories (Kemere et al.
2002, 2004b), the MTM decoder can take into account behav-
ioral variability across reaches to the same goal. Furthermore,
the MTM decoder does not require the use of a linear filter,
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which was used in tandem with a mixture of hidden Markov
models (Kemere et al. 2003) and a set of canonical trajectories
with independent Gaussian noise at each time point (Kemere et
al. 2004a).

We first present the MTM framework in its general form.
Then, we construct an MTM that is appropriate for goal-
directed reaches in settings with multiple goals and show how
it can be used to decode arm trajectories from neural data.
Next, we detail the behavioral task and neural recordings,
along with how goal information can be extracted from delay
activity. Finally, we compare the decoding accuracy of the
MTM decoder with that using simpler trajectory models.

M E T H O D S

Mixture of trajectory models framework

Recursive Bayesian decoders require the specification of a trajec-
tory model that describes the statistics of arm trajectories we expect to
observe. Ideally, we seek to construct a complete model of neural
motor control that captures the hard physical constraints of the limb
(Chan and Moran 2006), the soft control constraints imposed by
neural mechanisms, and the physical surroundings and context. One
way to approximate such a complete model is to probabilistically
combine trajectory models each of which is accurate within a limited
regime of movement (Kemere et al. 2002, 2003, 2004a,b). Examples
of movement regimes include different parts of the workspace, dif-
ferent reach speeds, and different reach curvatures. For the particular
implementation tested here, each movement regime will correspond to
movements heading toward a particular reach goal. At the onset of a
new movement, the movement regime is unknown, or imperfectly
known, and so the full trajectory model is composed of a mixture of
the individual, regime-specific trajectory models. Here, we develop a
recursive Bayesian decoder based on a mixture of trajectory models.

The task of decoding a continuous arm trajectory involves finding
the likely sequences of arm states corresponding to the observed
neural activity. At each time step t, we seek to compute the distribu-
tion of the arm state xt given the peri-movement neural activity y1,
y2, . . . , yt (denoted by {y}1

t ) observed up to that time. This distribu-
tion is written P(xt � {y}1

t ) and termed the state posterior. Here, yt is
a vector of binned spike counts across the neural population at time
step t, and t � 1 corresponds to the time at which we begin to decode
movement. If the actual movement regime m� is perfectly known
before the reach begins, then we can compute the state posterior based
only on the individual trajectory model corresponding to that regime.
This distribution is written P(xt � {y}1

t , m�) and termed the conditional
state posterior. However, in general, the actual movement regime is
unknown or imperfectly known, so we need to compute P(xt � {y}1

t , m)
for each m � {1, . . . , M}, where M is the number of movement
regimes (also referred to as mixture components).

To combine the M conditional state posteriors, we can simply
expand P(xt � {y}1

t ) by conditioning on the movement regime m

P�xt ��y�1
t � � �

m�1

M

P�xt ��y�1
t , m�P�m��y�1

t � (1)

In other words, the state posterior is a weighted sum of the conditional
state posteriors. The weights P(m � {y}1

t ) represent the probability that
the actual movement regime is m, given the observed spike counts up
to time t. Bayes’ rule can then be applied to these weights in Eq. 1,
yielding the key equation for the MTM framework

P(xt��y�1
t ) � �

m�1

M

P�xt ��y�1
t , m�

P��y�1
t �m�P�m�

P��y�1
t �

(2)

The conditional state posteriors P(xt � {y}1
t , m) and likelihood terms

P({y}1
t � m) in Eq. 2 can be computed or approximated using any of a

number of different recursive Bayesian decoding techniques, includ-
ing Bayes’ filter (Brown et al. 1998), particle filters (Brockwell et al.
2004; Shoham et al. 2005), and Kalman filter variants (Wu et al. 2004,
2006). If available, prior information about the identity of the move-
ment regime can be incorporated naturally into the MTM framework
using P(m) in Eq. 2. This information must be available before the
reach begins and may differ from trial to trial. If no such information
is available, the same P(m) (e.g., a uniform distribution) can be used
across all trials.

The computational complexity of the MTM decoder is M times that
of computing P(xt � {y}1

t , m) and P({y}1
t � m) for a particular mixture

component m. Because the computations for each mixture component
can theoretically be carried out in parallel, it is possible to set up the
MTM decoder so that its running time remains constant, regardless of
the number of mixture components M. In other words, the MTM
approach enables the use of more flexible—and potentially more
accurate—trajectory models without a necessary penalty in decoder
running time. Furthermore, the MTM decoder preserves the real-time
properties of its constituent estimators and is thus suitable for real-
time prosthetic applications.

MIXTURE OF TRAJECTORY MODELS FOR GOAL-DIRECTED REACHES.
The particular probabilistic model explored in this work is

xt �xt�1, m � ��Amxt�1 � bm, Qm� (3)

x1 �m � ���m, Vm� (4)

st�lagi

i �xt � Poisson �exp�c�ixt � di�	
 (5)

where m � {1, . . . , M} indexes the reach goal and M is the number
of reach goals. The dynamical arm state at time step t � {1, . . . , T}
is xt � �p�1, which includes position, velocity, and acceleration
terms, as specified in the APPENDIX. The corresponding observation,
st�lagi

i � {0, 1, 2, . . .}, is a peri-movement spike count for unit i �
{1, . . . , q} taken in a time bin of width 	, where lagi is the time lag
(in time steps) between the neural firing of the ith unit and the
associated arm state. For notational convenience, the spike counts
across the q simultaneously recorded units are assembled into a q �
1 vector yt, whose ith element is st�lagi

i . This is the yt that appears
in Eqs. 1 and 2. The parameters Am � �p�p, bm � �p�1, Qm �
�p�p, �m � �p�1, Vm � �p�p, lagi � �, ci � �p�1, di � � do not
depend on time and are fit to training data, as subsequently described.

Equations 3 and 4 define the trajectory model, which describes how
the arm state xt changes from one time step to the next. In this case,
the full trajectory model is a mixture of linear-Gaussian trajectory
models, each describing the trajectories toward a particular reach goal
indexed by m. By this definition, each movement regime corresponds
to movements heading toward a particular reach goal. Conditioned on
the reach goal m, the trajectory model is a linear-Gaussian dynamical
model.1 Although the MTM framework will be illustrated in this work
using Eqs. 3 and 4, mixtures of other trajectory models can also be
used. For example, it is possible to define, for each reach goal, a
linear-Gaussian model with a time-varying forcing term (Kemere and
Meng 2005; Srinivasan et al. 2005, 2006) or a canonical trajectory
(Kemere et al. 2002, 2004b).

Equation 5 defines the observation model, which describes how the
observed peri-movement spike counts st�lagi

i relate to the arm state xt.

1 The family of linear-Gaussian models includes the dynamic model defined
by Eqs. 3 and 4 (conditioned on m) as well as numerous variants, including the
random-walk model (Brockwell et al. 2004; Brown et al. 1998), those without
a forcing term bm (Wu et al. 2004, 2006), those with a time-varying forcing
term (Kemere and Meng 2005; Srinivasan et al. 2005, 2006), and those with
higher-order Markov dependencies (Shoham et al. 2005). In the rest of this
paper, we will refer to Eqs. 3 and 4 as a “linear-Gaussian model,” meaning that
it is part of the linear-Gaussian family.
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In Eq. 5, the linear mapping c�ixt � di is a cosine tuning model
(Georgopoulos et al. 1982), where ci is the “preferred state vector.”
This linear mapping is then passed through an exponential to ensure
that the mean firing rate of the ith unit at time t � lagi, exp(c�ixt � di),
is non-negative. Note that, whereas each mixture component indexed
by m in the trajectory model (Eqs. 3 and 4) can have different
parameters leading to different arm state dynamics, the observation
model (Eq. 5) is the same for all m.

Although the neural activity is known to be physically driving the
trajectories, the probabilistic model Eqs. 3–5 specifies that the neural
activity yt is dependent on the arm state xt. This model incorrectly
implies, for example, that noise arising from the mechanical proper-
ties of the muscles that corrupts the arm trajectory should also show
up in the neural activity in motor cortical areas. Nevertheless, models
with this “inverted” structure have been shown to effectively decode
arm trajectories (Brockwell et al. 2004; Shoham et al. 2005; Wu et al.
2004, 2006). The primary motivation for adopting such a structure is
that there are established techniques for efficiently estimating an
unobserved time series with known dynamics (in this case, the arm
trajectory) from noisy observations (in this case, the neural spike
counts). These techniques are detailed in the next section.

RECURSIVE BAYESIAN DECODING. Arm trajectories can be decoded
from neural activity by applying Bayes’ rule to the statistical relation-
ships of Eqs. 3–5. Having observed the neural data, we seek the likely
sequences of arm states that could have led to those neural observa-
tions. For each m and t, we need to compute the following two terms
that appear in Eq. 2: the conditional state posteriors P(xt � {y}1

t , m) and
the likelihood terms P({y}1

t � m).
The conditional state posteriors can be obtained by iterating the

following two updates. First, the one-step prediction is found by applying
Eq. 3 to the conditional state posterior at the previous time step

P�xt ��y�1
t�1, m� �� P�xt �xt�1, m�P�xt�1 ��y�1

t�1, m�dxt�1 (6)

Second, the conditional state posterior at the current time step is
computed using Bayes’ rule

P�xt��y�1
t , m� �

P�yt �xt�P�xt ��y�1
t�1, m�

P�yt ��y�1
t�1, m�

(7)

Note that P(yt � xt, {y}1
t�1, m) has been replaced by P(yt � xt) to obtain

Eq. 7 because, given the current arm state xt, the current observation
yt does not depend on the previous observations {y}1

t�1 nor the reach
goal m (cf. Eq. 5). The terms in the numerator of Eq. 7 are the
observation model from Eq. 5 and the one-step prediction from Eq. 6.
The denominator of Eq. 7 can be obtained by integrating the numer-
ator over xt, as shown later in Eq. 9.

When the trajectory and observation models are both linear-Gauss-
ian, all of the relevant distributions are Gaussian and the integral in
Eq. 6 can be computed exactly. Taking the iterations defined by Eqs.
6 and 7 is identical to applying the standard Kalman filter.

However, the particular observation model here (Eq. 5) is not
linear-Gaussian. This leads to distributions that are difficult to manip-
ulate and the integral in Eq. 6 cannot be computed analytically. We
instead use a modified Kalman filter that uses a Gaussian approxima-
tion during the measurement update step (Eq. 7). We approximate the
conditional state posterior as a Gaussian matched to the location and
curvature of the mode of P(xt � {y}1

t , m), as detailed in the APPENDIX.
This Gaussian approximation then allows the integral in Eq. 6 to be
computed analytically because each mixture component of the full
trajectory model (Eq. 3) is linear-Gaussian. This yields a Gaussian
one-step prediction, which is fed back into Eq. 7.

The likelihood terms P({y}1
t � m) can be expressed as

P��y�1
t �m� � �

��1

t

P�y� ��y�1
��1, m� (8)

where

P�yt ��y�1
t�1, m� �� P�yt �xt�P�xt ��y�1

t�1, m�dxt (9)

The integral in Eq. 9, which cannot be computed analytically, is
approximated using Laplace’s method (MacKay 2003). Note that this
involves the same Gaussian approximation in xt (i.e., the same mean
and covariance) as made above for P(xt � {y}1

t , m).

EVALUATING PERFORMANCE. The state posterior P(xt � {y}1
t ) in Eq.

1 is a multimodal distribution. To compare the performance of
different decoders and to control a prosthetic cursor or arm, we need
to collapse this multimodal distribution into a single decoded trajec-
tory. In other words, we need to summarize the belief embodied in the
state posterior with a single value x̂t at each time point. This can be
done by first defining a loss function L, which specifies the loss
incurred by the summary x̂t for each possible value of xt. The single
decoded trajectory is then the x̂t that minimizes the average loss under
the state posterior

Average loss �x̂t� �� L�xt, x̂t�P�xt ��y�1
t �dxt (10)

Here, we choose to use the instantaneous sum of squared distance loss
function

L�xt, x̂t� � �xt � x̂t�2 (11)

in which case the x̂t that minimizes the average loss (Eq. 10) is the
mean of the state posterior

x̂t � E �xt ��y�1
t 
 (12)

In particular, the mean of the state elements corresponding to arm
position is taken to be the decoded position trajectory. To compare
different decoders, we first compute the root-mean-square position
error (Erms) between the actual and decoded trajectories on a per-
trajectory basis. This yields a distribution of Erms values for a given
decoder. The Erms distribution of different decoders can then be
compared and statistics of each distribution (such as mean and SE)
can be computed.

The expectation in Eq. 12 can be expanded by conditioning on the
reach goal m as in Eq. 1, yielding

x̂t � �
m�1

M

E �xt ��y�1
t , m
P�m��y�1

t � (13)

The interpretation of Eq. 13 is similar to that of Eq. 1. If the desired
reach goal m� is perfectly known before the reach begins, the decoded
trajectory (x̂t) is computed based only on the individual trajectory
model (i.e., the mixture component) corresponding to that reach goal.
The decoded trajectory, in this case, is simply the mean of the
conditional state posterior corresponding to the known reach goal,
written E [xt � {y}1

t , m�] and termed the component trajectory estimate
for m�. However, in general, the desired reach goal is unknown or
imperfectly known, so we need to compute a component trajectory
estimate E [xt � {y}1

t , m] for each m � {1, . . . , M}. The final decoded
trajectory (x̂t) is a weighted sum of these component trajectory
estimates, as shown in Eq. 13. As in Eq. 1, the weights P(m � {y}1

t )
represent the probability that the desired reach goal is m, given the
observed spike counts up to time t.

In this work, we compare the performance of four decoders. The
first is a state-of-the-art decoder presented by Kass and colleagues
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(Brockwell et al. 2004) based on a random-walk trajectory model
(RWM) in acceleration. The trajectory (Eqs. A7 and A8) and obser-
vation (Eq. A9) models are defined in the APPENDIX. The second
decoder is based on a single linear-Gaussian trajectory model (STM)
shared across reaches to all goals. It is defined by Eqs. 3 and 4 for the
special case of M � 1. The STM decoder uses the observation model
shown in Eq. 5. The RWM and STM decoders provide points of
comparison for the following two MTM decoders, both of which are
based on Eqs. 3–5. Whereas the MTMM decoder uses only peri-
movement activity, the MTMDM decoder uses both delay and peri-
movement activity. In Eq. 2, the same P(m) (in this case, a uniform
distribution) is used across all trials for MTMM. In contrast, a different
P(m) is used on each trial for MTMDM based on the prior goal
information extracted from delay activity.

Goal-directed reach task and neural recordings

Animal protocols were approved by the Stanford University Insti-
tutional Animal Care and Use Committee. We trained two adult male
monkeys (Macaca mulatta, monkeys G and H) to perform delayed
center-out reaches for juice rewards. As illustrated in Fig. 1A, visual
targets were back-projected onto a frontoparallel screen 30 cm in front
of the monkey. The monkey touched a central target and fixated his
eyes on a crosshair at the upper right corner of the central target. After
a center hold period of 500 (monkey G) or 400–600 ms (monkey H,
selected randomly and uniformly in this range), a pseudorandomly

chosen reach goal was presented at one of eight possible radial
locations (30, 70, 110, 150, 190, 230, 310, 350°)2 10 cm away. After
a pseudorandomly chosen instructed delay period of 200, 750, or
1,000 ms, the “go” cue (signaled by both the enlargement of the reach
goal and the disappearance of the central target) was given and the
monkey reached to the goal. After a hold time of 250 (monkey G) or
200 ms (monkey H) at the reach goal, the monkey received a liquid
reward. The next trial started 200 (monkey G) or 100 ms (monkey H)
later.

Eye fixation at the crosshair was enforced throughout the delay
period. Reaction times (defined as the time between the “go” cue and
movement onset) were enforced to be 80 ms and �600 (monkey G)
or �400 ms (monkey H). The following are the statistics for the actual
reaction times (mean � SD in milliseconds): 237 � 23 for monkey G
and 248 � 22 for monkey H. The trials with 200-ms delay periods
were used as catch trials to encourage the monkey to “plan” through-
out the delay period. Without these 200-ms delays, the monkeys could
learn that it is not necessary to plan during the first few hundred
milliseconds of the delay period. These catch trials were not used in
subsequent analyses.

During experiments, monkeys sat in a custom chair (Crist Instru-
ments, Hagerstown, MD) with the head braced and the nonreaching

2Reach goals were not presented directly below (230–310°) the central
target because they would be occluded by the monkey’s hand while he is
touching the central target.

FIG. 1. Delayed reach task and neural recordings. A:
task timeline (top), simultaneously recorded spike trains
(middle), and arm and eye position traces (bottom) are
shown for a single trial. Blue and red lines correspond to
horizontal and vertical position, respectively. Full range
of scale for the arm and eye position is �15 cm from the
center target. Trial from experiment H20041106.1. B:
spatial arrangement of the 8 reach goals and correspond-
ing spike histograms for one representative unit (Unit
H20041217.23.0). Bars below histograms indicate delay
(hatched) and peri-movement (gray) activity. Dotted lines
denote reach goal onset and movement onset.
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arm strapped to the chair. The presentation of the visual targets was
controlled using the Tempo software package (Reflective Computing,
St. Louis, MO). A custom photodetector recorded the timing of the
video frames with 1-ms resolution. The position of the hand was
measured in three dimensions using the Polaris optical tracking
system (Northern Digital, Waterloo, Ontario, Canada; 60 Hz,
0.35-mm accuracy), whereby a passive marker taped to the monkey’s
fingertip reflected infrared light back to the position sensor. Eye
position was tracked using an overhead infrared camera (Iscan,
Burlington, MA; 240 Hz, estimated accuracy of 1°).

A 96-channel silicon electrode array (Cyberkinetics, Foxborough,
MA) was implanted straddling dorsal premotor (PMd) and motor
(M1) cortex (monkey G, right hemisphere; monkey H, left hemi-
sphere), as estimated visually from local landmarks, contralateral to
the reaching arm. Surgical procedures were described previously
(Churchland et al. 2006c; Santhanam et al. 2006). Spike sorting was
performed off-line using techniques described in detail elsewhere
(Sahani 1999; Santhanam et al. 2004; Zumsteg et al. 2005). Briefly,
neural signals were monitored on each channel during a 2-min period
at the start of each recording session while the monkey performed the
behavioral task. Data were high-pass filtered and a threshold level of
three times the RMS voltage was established for each channel. The
portions of the signals that did not exceed threshold were used to
characterize the noise on each channel. During experiments, snippets
of the voltage waveform containing threshold crossings (0.3 ms
precrossing to 1.3 ms postcrossing) were saved with 30-kHz sam-
pling. After each experiment, the snippets were clustered as follows.
First, they were noise-whitened using the noise estimate made at the
start of the experiment. Second, the snippets were trough-aligned and
projected into a four-dimensional space using a modified principal
components analysis. Next, unsupervised techniques determined the
optimal number and locations of the clusters in the principal compo-
nents space. We then visually inspected each cluster, along with the
distribution of waveforms assigned to it, and assigned a score based
on how well separated it was from the other clusters. This score
determined whether a cluster was labeled a single-neuron unit or a
multineuron unit.

Figure 1A shows the delayed reach task timeline, along with neural
and behavioral data for a single trial with a lower-right reach goal. We
later refer to the time between reach goal onset and the “go” cue as the
delay period. Figure 1B illustrates the spatial arrangement of the eight
reach goals, as well as the corresponding spike histograms for one
representative unit across the eight reach goals. Each spike histogram
was obtained by averaging the spike trains across multiple trials with
the same reach goal. In broad terms, delay activity occurs during the
delay period (always before movement onset), whereas peri-move-
ment activity occurs around the time of the reach. The precise
windows of delay and peri-movement activity used in this work are
defined in later sections.

The monkeys were trained over several months and multiple data
sets of the same behavioral task were collected. Each data set was
collected in one day’s recording session. For each monkey, we chose
to analyze a data set with a large number of successful trials. The
selected data sets consisted of 1,456 successful trials for monkey G
(experiment G20040508) and 1,072 successful trials for monkey H
(experiment H20041217), not including trials with 200-ms delay
periods. The data set for monkey G (H) included 30 (56) single-
neuron units and 68 (143) multineuron units, for a total of 98 (199)
units.

The results reported in this work are cross-validated by randomly
splitting the entire data set by trials into J roughly equal-sized parts.
For each j � {1, . . . , J}, the jth part served as test data for a model
trained on the other J � 1 parts. We used J � 9 (11) for the data set
for monkey G (H). To evaluate decoder performance at different
numbers of neural units, we further randomly split each part by units
into K equal subparts. Each subpart contained the same number of
trials and identical behavioral data as its parent, but with only 1/K of

the neural data. To meaningfully compare the two data sets, we
roughly equalized the number of units in each subpart. Unless other-
wise specified, the results presented here assume K � 1 (98 units) for
monkey G and K � 2 (99 units) for monkey H.

Incorporating goal information from delay activity

Up to this point, the neural activity discussed has been peri-
movement activity, which takes place around the time of movement
and specifies the moment-by-moment details of the arm trajectory. In
the delayed-reach task, there is also neural activity present during an
instructed delay period that directly precedes the “go” cue (termed
delay activity). As shown in Crammond and Kalaska (2000) and
Churchland et al. (2006c), neurons with delay activity are typically
also active in the absence of an instructed delay during the reaction
time period. Rather than specifying the moment-by-moment details of
the trajectory, delay activity has been shown to reliably indicate the
upcoming reach goal (Hatsopoulos et al. 2004; Musallam et al. 2004;
Santhanam et al. 2006; Shenoy et al. 2003; Yu et al. 2004). The data
sets for both monkeys G and H contain both delay and peri-movement
activity on each trial. Furthermore, both types of activity may be
emitted by the same unit on a single trial, as can be seen in Fig. 1.

The following describes how the reach goal can be decoded from
delay activity by applying Bayes’ rule. Let z be a q � 1 vector of spike
counts across the q simultaneously recorded units in a prespecified
time window during the delay period on a single trial. The distribution
of spike counts (from training data) for each reach goal m can be fit
to either a product of Gaussians (Maynard et al. 1999; Yu et al. 2004)

z�m � �
i�1

q

��zi; �i,m, �i,m
2 � (14)

or a product of Poissons (Hatsopoulos et al. 2004; Shenoy et al. 2003)

z�m � �
i�1

q

Poisson �zi; �i,m� (15)

where �i,m, �i,m
2 , and �i,m are the parameters of the ith unit for the mth

reach goal. The zi notation in Eqs. 14 and 15 specifies that the
distribution is describing the ith element of the vector z. In both
models, the units are assumed to be independent given the reach goal.
It would be natural to introduce conditional dependencies between the
units using a general multivariate Gaussian, but there are often
difficulties in estimating an invertible covariance matrix for tens to
hundreds of units with a limited number of training trials (Maynard et
al. 1999).

For any test trial, the probability that the upcoming reach goal is m
given the delay activity z can be computed by applying Bayes’ rule

P�m�z� �
P�z�m�P�m�

P�z�
�

P�z�m�

�
m�

P�z�m� �
(16)

where P(m) in Eq. 16 is assumed to be uniform. The most likely reach
goal [i.e., the one with the largest P(m � z)] is usually taken to be the
decoded reach goal (Hatsopoulos et al. 2004; Musallam et al. 2004;
Santhanam et al. 2006; Shenoy et al. 2003; Yu et al. 2004).

The accuracy of the goal decoder (Eq. 16) varies with the duration
and placement of the time window in which spikes are counted, as
well as the precise spike count model P(z � m) that is used (Hatsopou-
los et al. 2004; Santhanam et al. 2006). Optimizing the goal decoder
is beyond the scope of this work and is treated in detail in the
aforementioned references. Instead, we focus here on how to incor-
porate this goal information, if available, when decoding continuous
arm trajectories. For this purpose, we choose to use the Gaussian
model (Eq. 14) with a 200-ms spike count window starting 150 ms
after the appearance of the reach goal.
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The goal information from delay activity, P(m � z), can be incorpo-
rated naturally in the MTM framework in the place of P(m) in Eq. 2.
The distribution P(m) in Eq. 2 represents the prior knowledge (i.e.,
before movement onset) that the upcoming reach goal is m. Because
the delay activity entirely precedes movement onset and provides
information about the upcoming reach goal, it can be used to set P(m)
in Eq. 2 on a per-trial basis.

It is important to note that the most likely goal from Eq. 16 is not
simply assumed here to be the goal of the upcoming reach. On a given
trial, the delay activity may not definitively indicate the goal of the
upcoming reach (e.g., two different reach goals may have significant
probability) or it may indicate an incorrect goal for the upcoming
reach. In this case, we would like to allow the subsequent peri-
movement activity to determine the goal of the reach, or even correct
the mistake, “in-flight.” Instead of making a hard goal decode based
on delay activity, the entire distribution P(m � z) is retained and passed
to the MTM framework. For simplicity, we make the approximation
that delay activity is informative only of the upcoming reach goal and
is independent of the peri-movement activity; in other words, we
assume that z is not directly coupled with xt or yt.

R E S U L T S

In this section, we evaluate and compare the performance of
decoding goal-directed movements using the RWM, STM,
MTMM, and MTMDM decoders. For all decoders, we first fit
the model parameters to training data, as detailed in the
APPENDIX. The test data for a single trial consisted of 1) the arm
trajectory, taken from 50 ms before movement onset to 50 ms
after movement end at dt � 10-ms time steps; 2) the peri-
movement spike counts, taken in nonoverlapping 	 � 10-ms
bins and temporally offset from the arm trajectory by the
optimal lag found for each unit; and 3) the delay-period spike
counts, taken in a single 200-ms bin starting 150 ms after the
appearance of the reach goal. Arm trajectories in the test phase
were used to evaluate the accuracy of the trajectories estimated
from neural data. Because neural data collection ended shortly
after movement end, the arm trajectories were not padded as in
the training phase.

Figure 2 details, for a particular test trial (monkey G, 98
units), how the MTM decoded trajectory was obtained and

compares the trajectory estimates produced by the different
decoders. From Eq. 13, the MTM decoded trajectory is a
weighted sum of component trajectory estimates E [xt � {y}1

t ,
m], one for each reach goal indexed by m � {1, . . . , 8}. In Fig.
2, B and C, the component trajectory estimates are plotted in
the top panels, whereas the middle panels show how the
corresponding weights P(m � {y}1

t ) evolved during the course
of the trial.

The values of the weights at time zero (t � 0) represent the
probability that the upcoming reach goal is m, before any
peri-movement neural activity is observed. The distribution of
weights at t � 0 is precisely P(m) in Eq. 2. In Fig. 2B, we
assumed that there was no information available about the
identity of the upcoming reach goal before the reach began
(i.e., no delay activity), so all eight goals were equiprobable
[i.e., P(m) � 1/8 for m � {1, . . . , 8}]. As time proceeded,
these weights were updated as more and more peri-movement
activity was observed. Recall that P(m � {y}1

t ) represents the
probability that the actual reach goal is m, given the observed
neural activity up to time t. During the first 200 ms, the actual
reach goal (cyan) was more likely than the other seven reach
goals at nearly every time step; however, there was some
competition with the neighboring reach goals (blue and ma-
genta). It was only after about 200 ms that the decoder became
certain of the actual reach goal [i.e., P(m � {y}1

t ) approached
one] and remained certain for the rest of the trial. A weighted
sum of the eight component trajectory estimates (top) using
these weights (middle) yields the MTM decoded trajectory
(top, red; Erms: 10.9 mm).

If delay activity is available, it can be used to set a nonuni-
form P(m) in Eq. 2 on a per-trial basis, as previously discussed.
The only difference between B and C in Fig. 2 is that the MTM
decoder used delay activity in the latter, but not the former. In
Fig. 2C (middle), the weights at t � 0 represent the probabil-
ities of each reach goal based only on delay activity, before any
peri-movement activity was observed. In this case, the delay
activity indicated that the actual reach goal (cyan) was more
probable than the other goals. This prior knowledge of the
identity of the upcoming reach goal was then taken into

FIG. 2. A representative test trial in which the use of delay
activity improved the mixture of trajectory models (MTM)
decoded trajectory. Top panels compare the actual trajectory (all
panels, black) with the decoded trajectories for the (A) random-
walk trajectory model (RWM, dark green) and single linear-
Gaussian trajectory model (STM, light green); and a mixture of
linear-Gaussian trajectory models, (B) one that uses only peri-
movement activity (MTMM, red), and (C) one that uses both
delay and peri-movement activity (MTMDM, orange). Ellipses
denote 95% confidence intervals at 3 different time steps. Yellow
squares represent the visual reach goals presented to the monkey
in actual dimensions. Top panels in B and C also show the 8
component trajectory estimates for the MTM (cyan, blue, and
magenta for the 3 components with the largest weights; gray for
the other 5 components). Their corresponding weights, as they
evolve during the trial, are plotted in the middle panels. Bottom
panels compare the actual and estimated single-trial speed pro-
files using the same color conventions as in the top panels. Time
zero corresponds to 60 ms before movement onset (i.e., one time
step before we begin to decode movement). Note that the red and
orange traces in the top panels are overlaid with the cyan trace.
For this trial, root-mean-square position error (Erms) was 11.8,
26.9, 10.9, and 10.5 mm for the RWM, STM, MTMM, and
MTMDM, respectively. Monkey G, 98 units (Experiment
G20040508, trial ID 474).
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account when updating the weights P(m � {y}1
t ) during the

course of the trial as more and more peri-movement activity
was observed. Note that using delay activity affected only P(m)
in Eq. 2; the conditional state posteriors P(xt � {y}1

t , m) and the
likelihood terms P({y}1

t � m) remained unchanged. As the
means of the conditional state posteriors, the component tra-
jectory estimates therefore also remained unchanged, as can be
verified by comparing Fig. 2, B and C (top). For the trial shown
in Fig. 2, the use of delay activity reduced the competition
between the actual reach goal (cyan) and the neighboring goals
(blue and magenta). Compared with Fig. 2B (middle), the
weight for the actual reach goal (cyan) in Fig. 2C (middle) was
higher at every time point, the clearest effect seen during the
first 200 ms. In other words, by using delay activity, the
decoder was more certain of the actual reach goal throughout
the trial. In Fig. 2C, a weighted sum of the eight component
trajectory estimates (top) using these weights (middle) yields
the MTM decoded trajectory (top, orange; Erms: 10.5 mm).

By comparing the MTM decoded trajectories with the actual
trajectory in Fig. 2, B and C (top), we see that the use of delay
activity decreased the decoding error and tightened the confi-
dence ellipses for this trial. The derivation of the MTM
confidence intervals are given in the APPENDIX. Both MTM
decoded trajectories had lower decoding error than the RWM
(Erms: 11.8 mm) and STM (Erms: 26.9 mm), whose decoded
trajectories are plotted in Fig. 2A (top). On this trial, the RWM
decoder produced a reasonably accurate decoded trajectory,
whereas the STM decoded trajectory proceeded slowly out-
ward with wide confidence intervals.

These decoders can also be used to estimate the bell-shaped
speed profile of the actual reach (Fig. 2, bottom). For the STM
and MTM, we computed speed using its exact nonlinear
relationship with the velocity elements in the state vector,
rather than directly taking the speed element in the state vector,
which involves a linear approximation. Compared with the
speed profiles estimated by the RWM (dark green) and STM
(light green) decoders, those estimated by the MTM decoders
(red and orange) seem to better track the actual bell-shaped
speed profile (black); this observation is shown even more
clearly in the subsequent example trials.

In contrast to Fig. 2, Fig. 3 shows a trial (monkey G, 98
units) where the peri-movement activity alone was able to
quickly determine the actual reach goal without much compe-
tition from neighboring goals. This can be seen in Fig. 3B
(middle), where the weight corresponding to the actual reach
goal (cyan) rose to unity after about 100 ms and stayed there
for the remainder of the trial. As a result, the resulting MTM
decoded trajectory (top, red; Erms: 11.2 mm) was quite accu-
rate. As in Fig. 2, we can incorporate delay activity if available;
however, in this case, the dominant weight at t � 0 (blue) did
not correspond to the actual reach goal (cyan), as seen in Fig.
3C (middle). In other words, the delay activity incorrectly
indicated the identity of the upcoming reach goal. However, as
these weights were updated by the observation of peri-move-
ment activity, this “error” was soon corrected (within about
100 ms). From that point on, the weight corresponding to the
actual reach goal dominated. Despite this error at the beginning
of the trial, the MTM decoded trajectory in Fig. 3C (top,
orange; Erms: 13.0 mm) still headed to the correct goal and
provided a reasonably accurate estimate of the arm trajectory.
The larger confidence ellipses for MTMDM compared with
MTMM reflect the competition between the actual (cyan) and
neighboring (blue) reach goals. The decoded trajectories for
the RWM (dark green) and STM (light green) are shown in
Fig. 3A for comparison. As in Fig. 2, both MTM decoded
trajectories yielded lower decoding error than the RWM (Erms:
27.7 mm) and STM (Erms: 24.2 mm). Furthermore, as shown in
the bottom panels, the speed profiles estimated by the MTM
decoders (red and orange) tracked the actual bell-shaped speed
profile (black) more closely than those estimated by the RWM
(dark green) and STM (light green) decoders.

Figures 2 and 3 together illustrate the benefits of the joint use
of peri-movement and delay activity. When one type of activity
is unable to definitively identify (or incorrectly identifies) the
actual reach goal, the MTM framework allows the other type of
activity to strengthen (or overturn) the goal identification in a
probabilistic manner. In Fig. 2, the peri-movement activity
alone was unable to definitively identify the actual reach goal
during the first 200 ms because there was competition with a
neighboring goal. When prior goal information from delay

FIG. 3. Representative test trial in which the peri-move-
ment activity corrected an incorrect goal identification from
delay activity. Figure conventions are identical to those in
Fig. 2. For this trial, Erms was 27.7, 24.2, 11.2, and 13.0 mm
for RWM, STM, MTMM, and MTMDM, respectively. Mon-
key G, 98 units (Experiment G20040508, trial ID 676).

Innovative Methodology

3770 YU ET AL.

J Neurophysiol • VOL 97 • MAY 2007 • www.jn.org

 on A
pril 7, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


activity was incorporated, the decoder was more certain of the
actual reach goal throughout the trial. In Fig. 3, the delay
activity incorrectly indicated the identity of the upcoming
reach goal. However, the peri-movement activity overturned
this incorrect goal identification early on and rescued the
decoder from incurring a large Erms on this trial.

Having demonstrated how the MTM framework produces
trajectory estimates on individual trials, we can quantify and
compare the average performance of the various decoders
(RWM, STM, MTMM, MTMDM) across entire data sets. Figure
4 illustrates the following two main results, which hold true
across both monkeys. First, a mixture of linear-Gaussian tra-
jectory models (MTMM) provides lower decoding error than
either of the nonmixture trajectory models (RWM and STM)
(Wilcoxon paired-sample test, P � 0.01). Compared with the
STM decoder, the MTMM decoder reduced Erms from 22.5 to
13.9 mm (22.8 to 11.8 mm) in monkey G (H). Second, the use
of prior goal information P(m) in the MTM framework (MT-
MDM) can further decrease decoding error (Wilcoxon paired-
sample test, P � 0.01). Compared with the MTMM decoder,
the MTMDM decoder reduced Erms from 13.9 to 11.1 mm (11.8
to 10.5 mm) in monkey G (H). Because the MTM decoder is
inherently parallelizable (as described in METHODS), these per-
formance gains can be obtained without an associated increase
in decoder running time. The superior performance of the
MTMM compared with the RWM and STM can be explained
by the fact that the MTM better captures the kinematics of
goal-directed reaches. This can be seen in both the generative
(prior) speed profiles (Fig. A1, bottom panels), as well as the
decoded (posterior) speed profiles (Figs. 2 and 3, bottom
panels). If delay activity is available, this additional source of

information can be naturally incorporated in the MTM frame-
work to further improve decoding performance (MTMDM).
The relative performance of the RWM and STM decoders is
subsequently addressed in the context of Fig. 8.

To compare decoders on a trial-by-trial basis, we con-
structed two-dimensional histograms of Erms differences be-
tween pairs of decoders, shown in Fig. 5. The MTMM per-
formed better than the STM for any trial lying to the left of the
vertical zero axis, whereas the MTMDM performed better than
the STM for any trial lying below the horizontal zero axis. We
can also directly compare the MTMM and MTMDM using this
two-dimensional histogram. By construction of the histogram,
the MTMDM performed better than the MTMM for any trial
lying below the diagonal axis. For both monkeys, all three
mean differences (dotted lines) differ from zero (Wilcoxon
paired-sample test, P � 0.01). The values of these means show
that, on average, the MTMM performed better than the STM,
the MTMDM performed better than the STM, and the MTMDM
performed better than the MTMM. The same mean differences
can be obtained by taking pairwise differences in bar heights in
Fig. 4.

The letters a and b in Fig. 5A indicate where the trials shown
in Figs. 2 and 3 lie on the histogram. Both trials are taken from
the dominant central region of the histogram and are thus
considered to be representative trials. However, there are also
outlying trials for which the STM performed better than the
MTMM and/or the MTMDM. We consider two of these trials
(labeled c and d in Fig. 5A) in detail in Figs. 6 and 7.

Figure 6 shows an outlying test trial (monkey G, 98 units)
for which the MTMM performed worse than the STM. This
occurred for 15.9% (11.7%) of the trials for monkey G (H).
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FIG. 4. Erms (mean � SE) comparison for the RWM,
STM, MTMM, and MTMDM decoders. A: monkey G (98
units). B: monkey H (99 units).

FIG. 5. Two-dimensional histogram of Erms differences be-
tween pairs of decoders for (A) monkey G (98 units) and (B)
monkey H (99 units). Horizontal axis: Erms difference between
MTMM and STM; vertical axis: Erms difference between MT-
MDM and STM; diagonal axis: Erms difference between MT-
MDM and MTMM. Grayscale intensity (log scale) indicates the
number of trials lying in each bin. Dotted lines represent the
means of the Erms differences along each axis. Letters a, b, c,
and d show where the trials in Figs. 2, 3, 6, and 7 lie on the
histogram, respectively.
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Although the MTM framework allows for soft weighting
between the mixture components, the MTM decoded trajecto-
ries often transitioned rather abruptly from one component
trajectory estimate to another (referred to as the snap-to-
component effect). This effect is seen in Fig. 6B (top), where
the MTM decoded trajectory (red; Erms: 37.1 mm) moved back
and forth between the cyan and blue component trajectory
estimates, rather than taking an in-between path as did the
STM in Fig. 6A (top, light green; Erms: 18.0 mm). From the
perspective of weights, the snap-to-component effect corre-
sponds to rapid weight changes with only a single dominant
weight at most time points, as seen in Fig. 6B (middle). At a
given time point, the presence of a single dominant weight is
related to the variability of the neural responses specified by
the fitted model. The effect tends to arise if the neural vari-
ability across multiple reaches to a given goal (the “within-
class scatter”) is small relative to the differences in mean
neural responses across goals (the “between-class scatter”).3

When delay activity was incorporated in the MTM decoder, the
competition between the two neighboring reach goals (cyan
and blue) was suppressed and the weight corresponding to the
actual reach goal (cyan) dominated throughout the reach, as
shown in Fig. 6C (middle). Notice that the delay activity
strongly favored the actual reach goal (cyan), as indicated by
the distribution of weights at t � 0. Thus the incorporation of
delay activity biased the choice of models toward the correct
goal sufficiently strongly to avoid the “snap” to the competing
component trajectory. The resulting MTM decoded trajectory
(orange; Erms: 10.4 mm) is shown in Fig. 6C (top). It is
interesting to note that the RWM and STM decoded trajectories
are both pulled by the neural observations toward the same
neighboring goal as the MTMM decoded trajectory.

Figure 7 shows an outlying test trial (monkey G, 98 units)
for which the MTMDM performed worse than the STM. This
occurred for 10.6% (12.2%) of the trials for monkey G (H).
Without delay activity, the weight for the actual reach goal
(cyan) rapidly rose from 1/8 to unity and remained there for the
rest of the trial, as seen in Fig. 7B (middle). This led to a fairly
accurate MTM decoded trajectory (top, red; Erms: 10.8 mm).
As in Fig. 3, the delay activity incorrectly indicated the identity
of the upcoming reach goal, as shown in Fig. 7C (middle). The
dominant weight (blue) at t � 0 did not correspond to the
actual reach goal (cyan). However, unlike the trial shown in
Fig. 3, the observed peri-movement activity was not able to
correct the error in this case and the resulting decoded trajec-
tory (top, orange; Erms: 49.2 mm) headed to a neighboring goal.

The weights represent a probabilistic compromise between
the reach goal indicated by the peri-movement activity and that
indicated by the delay activity. This can be seen by comparing
Eqs. 1 and 2, where the weights P(m � {y}1

t ) are computed by
multiplying a term P({y}1

t � m) that depends only on peri-
movement activity with a term P(m) that depends only on delay
activity (if delay activity is available). The relative influence of
the two types of neural activity is dependent not only on the
observed neural data, but also on the particular forms of
parametric models used (Eqs. 3–5 and 14). Figure 7 suggests
that, for this particular trial, the relative influence of the delay
activity was too strong relative to that of the peri-movement
activity.

Because the number of units available on an implant gener-
ally decreases over time as a result of biological processes
(Polikov et al. 2005), we are interested in how the different
decoders perform as the number of units varies, shown in Fig.
8. The following two main results from Fig. 4 were preserved
across the range of unit counts tested for both monkeys. First,
a mixture of linear-Gaussian trajectory models (MTMM)
yielded lower decoding error than either of the non-mixture
trajectory models (RWM and STM). Second, the use of prior
goal information P(m) in the MTM framework (MTMDM)
further decreased decoding error. Except in one case (MTMM
vs. MTMDM for monkey H at 198 units, where so much neural

3 The idea can be simply illustrated by considering a mixture of two
Gaussians in one dimension. Let the mixture of Gaussians be defined by
P(y � m�1) � �(�1, �2) and P(y � m � 2) � �(�2, �2) with equal priors. We
are interested in the posterior P(m � ynew) for a new data point ynew. The smaller
�2 (the “within-class scatter”) is relative to � �1 � �2 � (the “between-class
scatter”), the more strongly one of the mixture components will dominate the
other in the posterior for all values of ynew, except ynew � (�1 � �2)/2.

FIG. 6. Outlying test trial in which the MTMM decoded
trajectory exhibited a snap-to-component effect. Figure con-
ventions are identical to those in Fig. 2. For this trial, Erms

was 45.3, 18.0, 37.1, and 10.4 mm for RWM, STM, MTMM,
and MTMDM, respectively. Monkey G, 98 units (Experiment
G20040508, trial ID 1921).
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information was available that both decoders performed well),
all pairwise comparisons between decoders for a particular
monkey and unit count were statistically significant (Wilcoxon
paired-sample test, P � 0.01). As expected, in all cases, the
error decreased as more units were used. Although directly
comparing the performance of the RWM and STM decoders is
beyond the scope of this work, Fig. 8 explains why the STM
decoder outperformed the RWM decoder for monkey G, but
the opposite was true for monkey H. Because the RWM
decoder was more robust to a loss of units than the STM
decoder, there was a crossover point at which the relative
performance ordering of the two decoders switched. For each
monkey, this crossover point occurred at a different unit count.
Because the unit count used in Fig. 4 lay to the right of the
crossover point for monkey G and to the left of the crossover
point for monkey H, the relative ordering of the RWM and
STM differed for the two monkeys in Fig. 4.

We have previously demonstrated two effective decoding
strategies for acquiring discrete goals in the subject’s work-
space. The first involves estimating only the goal identity and
simply placing a computer cursor on the decoded goal (Mus-
allam et al. 2004; Santhanam et al. 2006; Shenoy et al. 2003).
Although this strategy allows for rapid goal selections on a
computer display, controlling a physical prosthetic arm re-
quires knowing more than the identity of the intended reach
goal—it requires the specification of a path to the goal. The
MTM decoder is an extension of this cursor positioning sys-
tem, whereby an estimated path is produced that incorporates
the same goal information. The second decoding strategy
involves defining a canonical trajectory to each goal and
selecting among them based on neural activity (Kemere et al.
2002, 2004b). This can be seen as a special case of the MTM,
where the trajectory model is a mixture of canonical trajecto-
ries. A limitation of this approach is that, if the subject attempts
to perform multiple reaches to a particular goal, the decoded
trajectory will be identical each time. This poses difficulties if
there are obstacles in the workspace (e.g., Hochberg et al.
2006) whose locations may not be fixed. Furthermore, natural
reaching movements can exhibit significant variability (for
example, in reach speed or curvature) across reaches to the
same goal (cf. Fig. A1A), even in highly trained subjects
(Churchland et al. 2006a,b,c). Recent evidence has shown that
much of this behavioral variability arises from variability in
motor planning, which is manifested in delay activity (Church-
land et al. 2006b). Because the planned (or “intended”) move-
ment is not identical each time, the use of a canonical trajectory
could lead the subject to attempt to bring the canonical trajec-
tory toward the intended trajectory, which could compromise
the decoder’s effectiveness.

In contrast, the MTM decoder is capable of producing
different trajectory estimates to the same goal and capturing
trial-by-trial behavioral variability. For example, if the reach
speed is faster than usual on a particular trial, this fact should
also be reflected in the decoded trajectory. To verify that
trial-by-trial behavioral variability was captured by the MTM
decoder, we shuffled the decoded trajectories across trials with

FIG. 7. Outlying test trial in which the peri-movement
activity was not able to correct an incorrect reach goal
identified by the delay activity. Figure conventions are iden-
tical to those in Fig. 2. For this trial, Erms was 27.9, 25.1, 10.8,
and 49.2 mm for RWM, STM, MTMM, and MTMDM, respec-
tively. Monkey G, 98 units (Experiment G20040508, trial ID
1608).

FIG. 8. Erms (mean � SE) comparison of RWM (dark green), STM (light
green), MTMM (red), and MTMDM (orange) decoders at different numbers of
units. Dashed curves: monkey G, solid curves: monkey H. Vertical gray bar
indicates the number of units used for the performance reported in Fig. 4.
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the same reach goal. If the decoded trajectories reflect the
trial-by-trial variability of the actual reaches, then we expect
the Erms of the shuffled trajectories to be higher than that of the
unshuffled trajectories. In cases where the duration of the
actual and decoded trajectories differed because of shuffling,
Erms was computed by either truncating or padding the decoded
trajectory. Table 1 compares the Erms of the unshuffled and
shuffled trajectories. For the MTMM and MTMDM in both
monkeys, the shuffled trajectories yielded higher Erms than that
of the unshuffled trajectories (Wilcoxon paired-sample test,
P � 0.01). The effect of shuffling for the STM was largely
washed out by the higher overall Erms for both monkeys. These
results show that the MTM decoder indeed captured trial-by-
trial behavioral variability. The absolute differences in means
between the unshuffled and shuffled cases were rather modest
because of the stereotypy of the actual reaches in the present
data sets (cf. Fig. A1A). In general, repeated reaches to the
same goal may exhibit greater variability, leading to a larger
absolute Erms difference between the unshuffled and shuffled
cases.

Although beyond the scope of the present report, we have
also begun to explore how the MTM framework performs for
larger numbers of reach goals. A data set with 16 reach goals
was collected from monkey H. The goals were arranged in two
rings of eight goals at radii of 70 and 120 mm. A total of 189
single- and multineuron units were isolated and 63 trials per
reach goal were analyzed. To use roughly the same number of
units as in Fig. 4, we randomly split the data set into two halves
by units, as described in METHODS. Using 94 units, the mean
Erms values for the RWM, STM, MTMM, and MTMDM decod-
ers were 22.4, 22.4, 20.6, and 17.8 mm, respectively. The two
main results from Fig. 4 for eight reach goals were also true for
16 reach goals. First, the mixture of trajectory models (MTMM)
gave lower decoding error than either of the nonmixture
trajectory models (RWM and STM) (Wilcoxon paired-sample
test, P � 0.01). Second, the use of prior goal information P(m)
in the MTM framework (MTMDM) further decreased decoding
error (Wilcoxon paired-sample test, P � 0.01).

D I S C U S S I O N

We have presented a general approach to constructing tra-
jectory models that can exhibit rather complex dynamical
behaviors, whose decoder can be implemented to have the
same running time as that of simpler trajectory models. The
core idea is to combine simple trajectory models, each accurate
within a limited regime of movement, in a probabilistic mix-
ture of trajectory models. We showed how trajectories can be
decoded from neural activity using the MTM framework and

how prior information about the identity of the upcoming
movement regime can be incorporated in a principled way.

The following are two considerations that should guide the
construction of a mixture of trajectory models. First, each
mixture component, when considered individually, should ad-
equately capture the kinematics within a particular regime of
movement. Second, the number of mixture components (i.e.,
the number of defined movement regimes) should be large
enough so that each mixture component is relatively simple
and can be efficiently decoded. In this work, each mixture
component was a linear-Gaussian model, whose corresponding
decoder was a modified Kalman filter. In general, the compo-
nent-specific decoder may be one of a number of state-of-the-
art probabilistic decoders, including the Bayes filter (Brown et
al. 1998), particle filter (Brockwell et al. 2004; Shoham et al.
2005), and Kalman filter variants (Wu et al. 2004, 2006).

Although the primary aim of this paper was to lay out the
MTM methodology, its application to goal-directed reach tra-
jectories and neural data recorded in PMd and M1 illustrate
several key properties of the MTM approach. First, probabi-
listically mixing simple trajectory models is a powerful ap-
proach to create relatively complex dynamic behaviors. As
shown in Fig. A1, the salient properties of goal-directed
reaches produced under neural motor control can be captured
exceedingly well by mixing a set of basic linear-Gaussian
models. In particular, the generative trajectories of the MTM
(Fig. A1D) are each directed toward one of the eight goals,
their across-trial variability is realistic, and their single-trial
speed profiles are bell-shaped. Second, the MTM framework
provides a natural way to combine delay and peri-movement
activity in settings with multiple goals. The middle panels in
Figs. 2 and 3 illustrate how prior goal information extracted
from delay activity is updated as more and more peri-move-
ment activity is observed over time. These two representative
trials demonstrate how one type of activity can compensate if
the other type of activity provides ambiguous or incorrect
information about the current reach. Overall, we found that the
MTM decoder yielded more accurate trajectory estimates than
did decoders that do not take into account the goal-directed
nature of the reaches. The Erms for the RWM, STM, MTMM,
and MTMDM decoders were, respectively, 25.7, 22.5, 13.9, and
11.1 mm (19.8, 22.8, 11.8, and 10.5 mm) for monkey G (H).
These results suggest that the MTM framework can provide
substantial performance benefits for prosthetic systems that
involve guiding a computer cursor or prosthetic arm to acquire
discrete goals in the subject’s workspace (Carmena et al. 2003;
Hochberg et al. 2006; Serruya et al. 2002; Taylor et al. 2002;
Wolpaw and McFarland 2004).

For goal-directed reaches, the observed neural activity pro-
vides two categorically different types of information about the
arm trajectory to be estimated. One type is informative of the
moment-by-moment details of the arm trajectory (dynamic),
whereas the other is informative of the identity of the upcom-
ing reach goal (static). The former is typically extracted from
neural activity from motor cortical areas, such as M1 and PMd,
during movement (e.g., Hatsopoulos et al. 2004; Moran and
Schwartz 1999). The latter may be obtained from several
possible sources. In the present work, the goal information was
extracted from “planning” activity present in motor and pre-
motor cortical areas preceding the reach. The posterior parietal
cortex was also previously shown to encode reach goals and

TABLE 1. Erms comparison of unshuffled and shuffled trajectories

STM MTMM MTMDM

Monkey G
Unshuffled 22.5 � 0.20 13.9 � 0.23 11.1 � 0.17
Shuffled 22.9 � 0.21 14.7 � 0.24 11.9 � 0.18

Monkey H
Unshuffled 22.8 � 0.22 11.8 � 0.18 10.5 � 0.16
Shuffled 23.0 � 0.22 12.5 � 0.18 11.3 � 0.17

Values are means � SE (in millimeters). The Erms values for the unshuffled
case are identical to those appearing in Fig. 4.
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could serve as a source of goal information (Batista et al. 1999;
Shenoy et al. 2003). In addition, there may be events in a
patient’s surroundings that could be indicative of the upcoming
reach goal. For example, if the phone rings, the upcoming
reach goal is likely to be the phone.

If the moment-by-moment details of the arm trajectory can
be decoded perfectly using only neural activity present during
movement, then there would be no need for goal information.
However, the moment-by-moment details of the arm trajectory
and the goal identity are each decoded with varying levels of
uncertainty. When both types of information are available, it is
desirable to combine them in a way that takes into account their
relative uncertainty and yields a coherent arm trajectory esti-
mate (Kemere et al. 2003, 2004a). Previous approaches either
assumed that there was no across-trial variability in the mo-
ment-by-moment details of reaches to a given goal (Kemere et
al. 2002, 2004b), used a switching scheme between the two
types of information (Tkach et al. 2005), or considered the case
of a single goal with known arrival time (Kemere and Meng
2005; Srinivasan et al. 2005, 2006). The MTM framework
presented here unifies our previous work (Kemere et al. 2002,
2003, 2004a,b) and provides a principled way to combine the
two types of information in settings with multiple goals.

To date, the field of cortical prosthetics has largely been split
based on which of the two types of information is being used
(Pesaran et al. 2006). Whereas motor prosthetics attempt to
decode the moment-by-moment details of a trajectory (Car-
mena et al. 2003; Serruya et al. 2002; Taylor et al. 2002),
communication (or cognitive) prosthetics seek to decode the
intended reach goal (Musallam et al. 2004; Santhanam et al.
2006; Shenoy et al. 2003). By combining the two types of
information, the MTM decoder can be viewed as a way to
bridge differences in the design approach of cortical pros-
thetics.

Based on previous studies, both types of information can
likely be extracted from neural activity present in paralyzed
patients. First, motor cortical units can be activated (i.e., emit
peri-movement activity) without physical movement and be
used to control prosthetic cursors or limbs (Carmena et al.
2003; Serruya et al. 2002; Taylor et al. 2002). Recently, motor
cortical recordings in tetraplegic patients were used to control
a prosthetic cursor (Hochberg et al. 2006). In all of these
studies, moment-by-moment details of the trajectory were
estimated from the available neural activity. Second, it was
shown in PMd (Hatsopoulos et al. 2004; Musallam et al. 2004;
Santhanam et al. 2006) and parietal areas (Musallam et al.
2004; Shenoy et al. 2003) that goal information can be reliably
decoded from neural activity without physical movement. In
addition, functional magnetic resonance imaging studies re-
vealed that motor cortical areas activate similarly in tetraple-
gics and in healthy humans (Glidden et al. 2006; Shoham et al.
2001). In this work, we extracted both types of information
from the same cortical areas—PMd and M1. The type of
information being decoded depends on when the neural activity
occurs relative to the reach, which we assumed to be known. In
settings where the subject is free to decide when to reach, it
will be necessary to implement a state machine (Afshar et al.
2005; Kemere et al. 2006; Shenoy et al. 2003) that determines
the type of information being conveyed by the neural activity
at each time point.

Although activity in M1 and PMd generally precedes or
coincides with movement, a minority of units show activity
trailing the associated arm movement (e.g., Paninski et al.
2004). The optimal lags of 36.7 (41.4) percent of the 98 (99)
units for monkey G (H) were indeed negative (i.e., neural
activity trails movement). These acausal units cannot be used
for real-time prosthetic applications without incurring a decod-
ing delay. If their activity is related to proprioception, the
activity may altogether be unavailable in disabled patients. We
thus excluded the units with acausal lags from our analyses and
found the same trends as in Fig. 4 across both monkeys. For
monkey G (62 causal units), the mean Erms values for the
RWM, STM, MTMM, and MTMDM decoders were 26.1, 26.0,
14.9, and 10.9 mm, respectively. For monkey H (58 causal
units), the mean Erms values for the corresponding decoders
were 21.3, 25.6, 12.9, and 11.5 mm. These results provide
further support for the suitability of the MTM framework for
real-time prosthetic applications.

The MTM framework is more general than indicated by its
application to the specific data sets shown in this work. We
recognize that numerous additional experiments will be nec-
essary to experimentally verify all aspects and benefits of the
MTM framework. Of particular interest is the ability to decode
trajectories to novel goals and trajectories that are less stereo-
typed than those in the present data sets. First, accurately
decoding trajectories to novel goals (i.e., those that do not
appear in the training set) will require a denser arrangement of
goals than the relatively sparse arrangement of eight goals in
the present data sets. For example, reaches to a 10 � 10 grid
of goals can be collected for the training set. Then, if an
off-grid goal is desired, a relatively accurate trajectory estimate
can be formed by weighting the component trajectory estimates
corresponding to neighboring goals. With a sparse goal ar-
rangement, there tends to be a single dominant weight at most
time points, resulting in the snap-to-component effect de-
scribed in RESULTS. Second, the flexibility of the MTM frame-
work was not fully used by the present data sets because of the
stereotypy of the trajectories. We envision the MTM decoder
being applied in settings where repeated reaches to the same
goal may exhibit significant variability in, for example, reach
curvature or reach speed. This may arise in settings where the
subject must avoid obstacles along the path to the goal (e.g.,
Hochberg et al. 2006). In contrast to a decoder that selects
among a set of canonical trajectories (Kemere et al. 2002,
2004b), the MTM framework can be used to capture the
trial-by-trial behavioral variability and reconstruct the desired
trajectory for each trial individually.

As the number of goals is increased, we expect the MTM
decoder to continue to outperform the STM decoder. The
reason is that the MTM will continue to better capture the
kinematics of goal-directed reaches, in particular the bell-
shaped speed profile. Our preliminary results based on 16 reach
goals, as described in RESULTS, are encouraging. Our work with
16 reach goals also suggests that, when larger numbers of goals
are used, more sophisticated firing rate models may need to be
developed to capture the firing rate profiles (cf. Fig. A2) across
an increased number of reach goals. The MTM framework can
ultimately be extended from M discrete reach goals to a
continuum of goal locations.

Although we have focused on goal-directed movements in
this work, the MTM framework can potentially be applied in
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settings where movements are not goal directed, such as
foraging (Brown et al. 1998), ellipse tracing (Brockwell et al.
2004), and pursuit tracking (Shoham et al. 2005; Wu et al.
2004, 2006). As in the goal-directed case, the MTM framework
can be used to probabilistically mix simple trajectory models to
create relatively complex dynamic behaviors. For example, a
rat may be observed to forage more rapidly at the beginning
than at the end of an experimental session as the result of
changes in motivation. In this case, a single random-walk
covariance may not be sufficient to model both rapid and
sluggish movements. The decoded path based on a single
random-walk covariance may have difficulty either keeping up
with rapid movements or holding still during sluggish move-
ments (Santhanam and Shenoy 2003). It may be desirable to
use a mixture of random-walk models, where each mixture
component has a different random-walk covariance (and pos-
sibly a different drift). Similar ideas could apply to arm
movements that are not goal directed, whereby different modes
of movement could be modeled separately by simple dynamic
models then probabilistically mixed. It may even be possible to
augment the particular MTM decoder presented in this work
with a random-walk mixture component so that it is able to
decode both goal-directed and non-goal-directed movements.

A P P E N D I X

Modal Gaussian approximation for measurement update

We first show that the conditional state posterior P(xt � {y}1
t , m)

is strictly log-concave given a Gaussian one-step prediction
P(xt � {y}1

t�1, m). Then, we describe how to find a modal Gaussian
approximation of P(xt � {y}1

t , m) during the measurement update step
(Eq. 7).

Assuming that the one-step prediction P(xt � {y}1
t�1, m) is Gaussian

with mean xt
t�1 and covariance V t

t�1

L�xt� � log P�xt ��y�1
t , m�

� log P�yt �xt� � log P�xt ��y�1
t�1, m� � . . .

� �
i�1

q

� � 	 � exp�c�ixt � di� � st�lagi

i �c�ixt � di�


�
1

2
�xt � xt

t�1���V t
t�1��1�xt � xt

t�1� � . . . (A1)

where the ellipses denote all terms that do not involve xt. Taking the
gradient and Hessian with respect to xt

�L�xt� � �
i�1

q

� � 	 � exp�c�ixt � di� � st�lagi

i 
 � ci � �V t
t�1��1�xt � xt

t�1� (A2)

�2L�xt� � �
i�1

q

� � 	 � exp�c�ixt � di�
 � cic�i � �V t
t�1��1 (A3)

Because �2L(xt) is negative definite for all xt, P(xt � {y}1
t , m) is strictly

log-concave.
During the measurement update step, we approximate the condi-

tional state posterior as a Gaussian matched to the location and
curvature of the mode of P(xt � {y}1

t , m), as in Laplace’s method
(MacKay 2003). Because P(xt � {y}1

t , m) is strictly log-concave, its
unique mode x*t,m can easily be found by Newton’s method. The
modal Gaussian approximation is thus

P�xt ��y�1
t , m� � ��x*t,m, � �2L�x*t,m��1� (A4)

In other words, we approximate the mean and covariance of the
conditional state posterior as

E �xt ��y�1
t , m
 � x*t,m (A5)

cov�xt ��y�1
t , m� � � �2L�x*t,m��1 (A6)

This approximation works best when P(xt � {y}1
t , m) is unimodal,

which we know to be the case here because P(xt � {y}1
t , m) is strictly

log-concave.

Random-walk trajectory model

To compare the proposed decoders to a state-of-the-art decoder in
the field, we also implemented the random-walk trajectory model with
Poisson observations presented by Kass and colleagues (Brockwell et
al. 2004)

vt � vt�1 � vt�1 � vt�2 � �t (A7)

� v2

v1
	 � ���, V� (A8)

st�lagi

i �vt � Poisson �exp�c�i ṽt � di�	
 (A9)

where �t � � (0, Q) in Eq. A7, vt � �p�1 is the arm velocity at time
t, ṽt is defined to be [v�t � vt �]� in Eq. A9, and � vt � is the arm speed at
time t. As in Eq. 5, st�lagi

i is the peri-movement spike count of the ith
unit at time t � lagi, where lagi is the time lag between the neural
firing of unit i � {1, . . . , q} and the associated arm velocity. Spike
counts are taken in time bins of width 	. The parameters Q � �p�p,
� � �2p�1, V � �2p�2p, lagi � �, ci � �(p�1)�1, di � � are fit to
training data, as subsequently described. Note that the random-walk
trajectory model is a special case of the linear-Gaussian trajectory
model with appropriately chosen parameters in Eqs. 3 and 4.

Equations A7 and A8 define the random-walk trajectory model that
imposes smoothness in acceleration; Eq. A9 defines the Poisson
observation model. To decode arm trajectories using this probabilistic
model, we followed Kass and colleagues (Brockwell et al. 2004) and
implemented particle filtering with 2,500 particles at each time step.
This yielded a velocity estimate at each time step. To obtain a single
decoded position trajectory, the means of these velocity estimates
were integrated over time. Because the arm state does not include
positional variables in this model, we assumed the actual initial arm
position was known. Thus the decoder based on the random-walk
trajectory model was given a slight advantage over the other decoders.

Model fitting

TRAJECTORY MODEL. This section describes how to fit the following
three trajectory models: a random-walk model (RWM, Eqs. A7 and
A8) in acceleration, a single linear-Gaussian trajectory model (STM,
Eqs. 3 and 4 for special case of M � 1), and a mixture of linear-
Gaussian trajectory models (MTM, Eqs. 3 and 4). Arm position data
were taken from 50 ms before movement onset to the end of the trial.
The data were then padded with the final arm position up to 1,000 ms
after movement end to emphasize the importance of stopping at the
reach goal. In effect, this penalized trajectory models whose trajecto-
ries simply pass through, rather than come to rest at, the reach goals.
Each of the trajectory models was fitted to the padded arm data with
a time step of dt � 10 ms. Although arm position was tracked in three
dimensions, we only analyzed movement in the plane of the fronto-
parallel screen because there was relatively little movement perpen-
dicular to the screen. Arm velocity and acceleration were obtained by
taking first and second differences of the arm position.

For the STM and MTM, the following physical quantities were
included in the arm state vector xt: position, velocity, acceleration,
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position magnitude, and velocity magnitude. As shown in Eq. A10,
this eight-dimensional state vector included two dimensions each for
position, velocity, and acceleration; and one dimension each for
position magnitude and velocity magnitude. Sample trajectories gen-
erated from the trajectory model were qualitatively similar, regardless
of whether the magnitude terms were included in the state vector.
However, the magnitude terms were critical for fitting the observation
model (Eq. 5) to the neural data, as described later.

The parameters of all three trajectory models were fit using maxi-
mum likelihood. For the RWM, the fitted parameters were {Q, �, V},
where Q was constrained to be diagonal (Brockwell et al. 2004). For
the STM and MTM, the fitted parameters were {Am, bm, Qm, �m, Vm}
(STM: m � 1; MTM: m � {1, . . . , 8}). For the STM, a single
linear-Gaussian trajectory model was shared across all goal locations.
The STM is similar to the trajectory model used by Donoghue and
colleagues (Wu et al. 2004 2006), where it was applied to pursuit-
tracking and “pinball” tasks. In contrast, for the MTM, a separate
linear-Gaussian trajectory model was trained for each reach goal,
based only on reaches to that goal.

For the STM and MTM, the fitted transition matrices Am and
additive constants bm took on the form shown in Eq. A10, where �
denotes a nonzero entry and dt � 10 ms. The elements of the state
vector xt are included for visual reference

Am � 

1 0 dt 0 0 0 0 0
0 1 0 dt 0 0 0 0
0 0 1 0 dt 0 0 0
0 0 0 1 0 dt 0 0
� . . . �

� �

� . . . �

� bm � 

0
0
0
0
�

�

�

� xt � 

horz pos
vert pos
horz vel
vert vel
horz acc
vert acc
mag pos
mag vel

�
(A10)

Although not explicitly constrained as such in the fitting procedure,
the fitted Am and bm took on this form as a result of the physical
relationships of the state vector elements.4

Figure A1A shows position trajectories to each reach goal collected
empirically, along with the corresponding speed profiles. Three prop-
erties of goal-directed reaches are seen in Fig. A1A. First, the
trajectories lead to discrete reach goals rather than taking on arbitrary

paths in the workspace. Second, multiple reaches to the same goal are
not all identical. There is variability in both the position traces and
speed profiles. Third, the trajectories start at rest, proceed out to the
reach goal, and end at rest. The degree to which the trajectory model
captures the kinematics of the empirically collected reaches directly
affects the accuracy with which new trajectories can be decoded from
neural data. We therefore seek a trajectory model that can capture all
three properties of goal-directed reaches.

We can qualitatively assess the fitness of different trajectory models
by generating sample trajectories from the fitted models and compar-
ing them with the empirically collected trajectories. Decoders based
on the different trajectory models are quantitatively compared in
RESULTS. Generative trajectories of the fitted RWM, STM, and MTM
are shown in Fig. A1, B–D. Note that these are sample trajectories of
the trajectory models and are not decoded trajectories; generating
these trajectories did not involve neural data. The RWM (Eq. A7)
provides smoothness in acceleration, where the degree of smoothness
is determined by the random-walk covariance Q. We generated
sample velocity trajectories according to Eqs. A7 and A8 using a Q
matrix fitted to training data, then integrated the velocities over time
to obtain sample position trajectories (Fig. A1B). On the other hand,
the STM favors certain characteristic trajectory patterns in arm state
space. One characteristic pattern that looks similar to Fig. A1A has
trajectories emanating radially outward from the origin (ignoring the
non-position terms in the arm state vector for now). Such trajectories
(not shown) extend outward indefinitely and cannot stop at the reach
goals. To minimize the average mismatch between the trajectory
model and the empirically collected trajectories (Fig. A1A) over the
entire duration of the padded arm data, the STM fitted to the training
data has sample position trajectories (Fig. A1C) that proceed outward
very slowly. Other features seen in the sample trajectories in Fig. A1C
can be explained by the presence of non-position terms in the arm
state vector and the noise covariance Qm in Eqs. 3 and 4.

Although the sample trajectories of the RWM and STM each reflect
some aspects of arm kinematics, they are not flexible enough to
capture the goal-directed nature of the actual reaches. The correspond-
ing speed profiles also do not match those of the actual reaches very
well. In contrast, as shown in Fig. A1D, the sample trajectories of the
MTM exhibit the three properties of goal-directed reaches: 1) the
trajectories are directed toward the eight discrete reach goals, 2) there
is variability among trajectories to the same goal, and 3) the trajec-
tories start and end roughly at rest. Furthermore, these sample trajec-
tories are similar to the empirically collected trajectories in Fig. A1A
in terms of their bell-shaped speed profiles and the across-trial
variability seen in the position traces and speed profiles. In essence,
compared with the RWM and STM, the MTM better captures the
kinematics of goal-directed reaches.

4 Although the position magnitude has an exact nonlinear relationship with
the horizontal and vertical positions, this model assumes an approximate linear
relationship between the position magnitude and all state elements. As a result,
the position magnitude will not necessarily be consistent with the horizontal
and vertical positions in the generative and decoded trajectories. This is also
the case for velocity.
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FIG. A1. Position trajectories (top panels) and speed
profiles (bottom panels). A: collected empirically, B:
generated by the RWM, C: generated by the STM, and
D: generated by the MTM. Only 24 reaches (3 to each
reach goal) are shown in each column for clarity.
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The following is the intuition behind how a model as simple as a
mixture of linear-Gaussian models can capture the essential properties
of goal-directed reaches. For each m, the fitted transition matrix Am

(Eq. 3) defines a convergent linear-Gaussian model. In other words, in
the noiseless case, its sample trajectories converge to a point in state
space. If bm � 0, this stable equilibrium point is the origin of the state
space. For a nonzero bm, the stable equilibrium point (in particular,
those elements corresponding to arm position) can be shifted away
from the origin and, in this case, lie at the mth reach goal. Regardless
of where the sample trajectories start, they are directed by the mth
mixture component toward the mth reach goal, where they come to
rest. These trajectories are further constrained by the fitted �m and Vm

(Eq. 4) to start near the center of the workspace with nearly zero
velocity. Thus one can imagine a point mass, initially at rest at the
center of the workspace, that is released and directed toward the mth
reach goal, where it comes to rest.

This behavior can be confirmed by analyzing the fitted model
parameters in the noiseless case. First, we verified that the absolute
values of the eigenvalues of the fitted Am are all �1. This ensures that
any equilibrium point that is found is stable. Second, based on Eq. 3,
the equilibrium point location can be expressed as (I � Am)�1bm. For
each goal, we verified that this point corresponds not only to the goal
position, but also to zero velocity and acceleration. The position and
velocity magnitudes are roughly 10 cm and zero, respectively.

The trajectory model can be viewed, in the space of all possible
trajectories, as a specification of which trajectories are more likely than
others and by how much. This information is encoded in the parametric
form of the trajectory model (e.g., linear-Gaussian), as well as in the fitted
values of the model parameters. For the trajectory models considered in
this work, there is a nonzero probability of generating any arbitrary
trajectory in Fig. A1, B–D. However, for the MTM fitted to the training
data shown in Fig. A1A, trajectories that do not head toward one of the
eight reach goals or those that do not have a bell-shaped speed profile are
far less likely than those that do. Although it is technically possible to
generate a trajectory in Fig. A1D that looks very different from those
shown, the chances are negligibly small. Thus the MTM can be viewed
as imposing a soft constraint on what trajectories are possible; how
steeply the soft constraint drops off depends on how tightly the training
trajectories are clustered in Fig. A1A.

OBSERVATION MODEL. For each observation model (Eqs. 5 and
A9), we sought the optimal lag for each unit and the parameters
{ci, di}, where i indexes unit. The optimal lag refers to the temporal
relationship between the activity of a neural unit and the arm
trajectory (Moran and Schwartz 1999). For example, if a unit is
causally related to motor execution, the unit’s firing would be
expected to lead the arm movement in time. Donoghue and
colleagues (Wu et al. 2006) used a greedy algorithm to find the set
of lags that minimized the uncertainty of the position estimates. In
contrast, Kass and colleagues (Brockwell et al. 2004) chose the
best-fitting lag for each unit by comparing model deviances. The
optimal lag could be found for each unit separately because the
units were modeled to be independent given the arm state (cf. Eq.
A9). We adopted the latter approach.

We considered a fixed window of peri-movement neural activity
starting 200 ms before movement onset (t1) and ending 150 ms after
movement end (t2). Spike counts were taken in 	 � 10-ms bins. This
was aligned to segments of arm trajectory data of the same duration,
but offset by 31 possible lags ranging from 150 to �150 ms at 10-ms
intervals.5 The convention here is that positive lags are causal (neural
activity leads arm movement), whereas negative lags are acausal.

Acausal lags in the context of prosthetic applications were addressed
earlier in the DISCUSSION.

The following generalized linear model (GLM) fitting procedure
was performed for each of the q units. For notational simplicity,
the unit index i is omitted. Let {x} denote xt at all times, {s}t1

t2

denote the spike counts from time t1 to t2, and the observation
model parameters � � {c, d}. We seek the parameters � and lag
that maximize the likelihood P({s}t1

t2 � �, lag, {x}). First, we used
the built-in glmfit function in Matlab (The MathWorks, Natick,
MA) to find the maximum-likelihood parameters �* for each
possible lag. Next, the likelihood was evaluated at � � �* for each
lag. The maximum-likelihood lag and its corresponding parameters
�* were then used in Eq. 5. The same fitting procedure was used for
Eq. A9. The optimal lag should be interpreted as the best-fitting
temporal alignment between the neural activity and arm trajecto-
ries for the particular parametric observation model used. In
general, different observation models yield different optimal lags.
Thus the optimal lag is model dependent and only roughly reflects
how the unit is temporally related to motor execution.

We included magnitude terms in the arm state vector for the
STM and MTM for the same reason that the velocity magnitude
(i.e., the arm speed) appears in Eq. A9 for the RWM; that is, to
allow the associated firing rate models to capture nondirectional
firing rate modulations. The firing rate models are the exponentials
in Eqs. 5 and A9, where each dimension of xt in Eq. 5 and ṽt in Eq.
A9 is an explanatory variable. The importance of including arm
speed as an explanatory variable for firing rate modulations was
first recognized by Schwartz and colleagues (Schwartz 1992).
Although the focus of this work is not to compare different
parametric firing rate models, we demonstrate this point by com-
paring the firing rate profiles that result from including and
excluding the magnitude terms in the arm state vector xt in Eq. 5
for one illustrative unit (Fig. A2). Using the methods described
earlier, we found the optimal lag and fitted {ci, di} based on the
training data. Then, actual arm trajectories (from test data) were
mapped to mean firing rates using the firing rate model in Eq. 5.
These predicted mean firing rates were aligned on movement onset
and averaged across test trials. Figure A2 shows the resulting firing
rate profiles for this unit when including (blue) and excluding (red)
the magnitude terms in the firing rate model. These firing rate
profiles can be compared with the empirical firing rate histograms
(gray) for the same test trials. In this case, the magnitude terms
allowed firing rate peaks to be present in all reach directions,
considerably improving the model fit for the lower reach goals.
Nondirectional firing rate modulations, like those shown in Fig.
A2, were common across the population of units recorded in both
monkeys and were better captured by including magnitude terms as
explanatory variables.

Deriving confidence intervals for MTM estimates

We seek to express the uncertainty of the overall MTM estimate,
cov (xt � {y}1

t ), in terms of the conditional state posteriors
P(xt � {y}1

t , m) and weights P(m � {y}1
t ). By the definition of co-

variance

cov�xt ��y�1
t � � E �xtx�t ��y�1

t 
 � E �xt ��y�1
t 
 E �xt ��y�1

t 
� (A11)

As shown in Eq. 13, the term E [xt � {y}1
t ] can be expanded by

conditioning on m

E �xt ��y�1
t 
 � �

m�1

M

E �xt ��y�1
t , m
P�m��y�1

t � (A12)

Similarly

5 Based on the task design, we allowed as large a range of possible lags as
possible without violating behavioral epoch boundaries. For example, if a
causal lag is too large, the window of peri-movement activity would overlap
with the delay period. If an acausal lag is too large, the window of peri-
movement activity would overrun the end of the trial.
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E �xtx�t ��y�1
t 
 � �

m�1

M

E �xtx�t ��y�1
t , m
P�m��y�1

t �

� �
m�1

M

�cov�xt ��y�1
t , m� � E �xt ��y�1

t , m
 E �xt ��y�1
t , m
��P�m��y�1

t �

(A13)

Thus the uncertainty of the overall MTM estimate can be expressed
analytically in terms of the mean E [xt � {y}1

t , m] and covariance
cov (xt � {y}1

t , m) of the conditional state posteriors and the weights
P(m � {y}1

t ).
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