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Abstract

Modern recording techniques now allow us to record from distinct neuronal popu-
lations in different brain networks. However, especially as we consider multiple
(more than two) populations, new conceptual and statistical frameworks are needed
to characterize the multi-dimensional, concurrent flow of signals among these
populations. Here, we develop a dimensionality reduction framework that deter-
mines (1) the subset of populations described by each latent dimension, (2) the
direction of signal flow among those populations, and (3) how those signals evolve
over time within and across experimental trials. We illustrate these features in
simulation, and further validate the method by applying it to previously studied
recordings from neuronal populations in macaque visual areas V1 and V2. Then
we study interactions across select laminar compartments of areas V1, V2, and
V3d, recorded simultaneously with multiple Neuropixels probes. Our approach
uncovered signatures of selective communication across these three areas that
related to their retinotopic alignment. This work advances the study of concurrent
signaling across multiple neuronal populations.

1 Introduction

Cortical circuits functionally involve feedforward, feedback, and horizontal interactions between
many neuronal populations that span distinct areas and layers. Recording techniques now allow us to
record from many neurons across these populations [1–3] (Fig. 1a). To capitalize on the scientific
opportunities presented by these recordings, however, new conceptual and statistical frameworks are
needed, particularly as we consider communication across multiple (more than two) populations.

Characterizing interactions between just two populations is a challenging high-dimensional problem.
Dimensionality reduction techniques have therefore been increasingly used for this purpose [4–7].
Methods like canonical correlation analysis (CCA) [8] and its probabilistic variants [9], in particular,
identify a low-dimensional set of latent variables that parsimoniously describe the interactions
between two populations. This cross-population shared-latent model has inspired several extensions
targeted toward neural recordings [10–14].

Communication between two populations, however, occurs bidirectionally and likely concurrently,
and disentangling this concurrent communication is a substantial challenge in neuroscience. A
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Figure 1: Challenges in studying concurrent signaling across multiple populations of neurons. (a)
High-dimensional, simultaneous recordings across multiple neuronal populations. (b) Disentangling
concurrent signal flow. (c) Distinguishing network-level interactions.

recently developed dimensionality reduction approach, delayed latents across groups (DLAG) [15],
addresses this challenge by leveraging two insights: (1) communication between two populations is
not instantaneous, and (2) while concurrently relayed signals might be difficult to tease apart from
the raw neural activity (Fig. 1b, black trajectories in each population space), they could be pinpointed
along certain dimensions or axes (Fig. 1b, “latent activity” measured along the magenta and gray
dimensions; note how activity in one population leads activity in the other population).

Pairwise methods are ill-equipped, however, to analyze communication across three or more recorded
populations. Suppose, for example, that we wish to study the interactions of three recorded popu-
lations, A, B, and C (Fig. 1c). One could consider applying one of the aforementioned methods to
each pair of populations. However, we would encounter the following interpretational ambiguity.
Suppose that populations A and B exhibit shared activity fluctuations, and populations A and C also
exhibit shared fluctuations. Do populations A, B, and C all co-fluctuate together (Fig. 1c, right; black
arrows: direction of influence)? Or do A and B co-fluctuate in a way that is uncorrelated with the
way in which A and C co-fluctuate (Fig. 1c, left)? Only by analyzing all populations together can
we differentiate these possibilities. Multi-population dimensionality reduction approaches, such as
group factor analysis (GFA) [16], could be applied toward that end, but the challenge of disentangling
concurrent, bidirectional signaling remains. New approaches are needed to jointly characterize the
multi-dimensional, concurrent flow of signals among multiple populations.

We therefore propose multi-population DLAG (mDLAG), a dimensionality reduction framework
that determines (1) the subset of populations described by each latent dimension, (2) the direction
of signal flow among those populations, and (3) how those signals evolve over time within and
across experimental trials. We illustrate these features in simulation, and further validate mDLAG
by applying it to previously studied recordings from neuronal populations in macaque visual areas
V1 and V2. Then we study interactions across select laminar compartments of areas V1, V2, and
V3d, recorded simultaneously with multiple Neuropixels probes. mDLAG uncovered signatures
of selective communication across these three areas that related to their retinotopic alignment.
Throughout the analyses of simulated data and neural recordings, mDLAG provided improved
interpretation and quantitative performance relative to alternative approaches. This work advances
the study of concurrent signaling across multiple neuronal populations and its role in brain function.

2 Delayed latents across multiple groups (mDLAG)

Observation model and automatic relevance determination For population m (comprising qm
neurons) at time t on trial n, we define a linear relationship between observed activity, ym

n,t ∈ Rqm ,
and latent variables, xm

n,t ∈ Rp (Fig. 2a):

ym
n,t = Cmxm

n,t + dm + εm (1)

εm ∼ N (0, (Φm)−1) (2)
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Figure 2: Delayed latents across multiple groups (mDLAG) (a) mDLAG directed graphical model
representation. Filled circles represent observed variables. Unfilled circles represent probabilistic
latent variables and parameters. Black dots represent point estimates. Arrows indicate conditional
dependence relationships between variables. (b) Example mDLAG loading matrix (here the loading
matrices for individual populations, C1, C2, and C3 have been concatenated vertically). Each
element of the matrix is represented by a square: magnitude is represented by the square’s area, and
sign is represented by the square’s color (red: positive; blue: negative). Note the population-wise
sparsity pattern of each latent variable, which is estimated from the neural activity. (c) Gaussian
process auto-covariance (top) and cross-covariance (bottom) functions in the mDLAG model. Here
we chose the squared exponential covariance function. The width of the auto- and cross-covariances
corresponds to a timescale parameter (τj). The center of the cross-covariance between populations m1

and m2 (e.g., population A and B, respectively) corresponds to the relative time delay Dm2,j−Dm1,j .

where the loading matrix Cm ∈ Rqm×p and mean parameter dm ∈ Rqm are model parameters.1 εm

is a zero-mean Gaussian random variable with noise precision matrix Φm ∈ Sqm×qm (Sqm×qm is
the set of qm × qm symmetric matrices). As we will describe, at time point t, latent variables xm

n,t,
m = 1, . . . ,M are coupled across populations, and thus each population has the same number of
latents, p. Because we seek a low-dimensional description of neural activity, the number of latent
variables is less than the number of neurons, i.e., p < q, where q =

∑
m qm.

A core goal of the mDLAG framework is to identify and distinguish multiple network-level inter-
actions (Fig. 1c). To do so requires identifying the number of latent variables across all recorded
populations, and which subset of populations each latent involves, in a computationally tractable man-
ner. We take a Bayesian approach to this problem (thereby avoiding computationally intensive grid
search, see Discussion), and let dm, Φm, and Cm be probabilistic parameters with prior distributions.

The parameter dm describes the mean firing rate of each neuron. We set a Gaussian prior over dm:
P (dm) = N (dm | 0, β−1Iqm) (3)

where β ∈ R>0 is a hyperparameter, and Iqm is the qm × qm identity matrix. We constrain the
precision matrix Φm = diag(ϕm

1 , . . . , ϕm
qm) to be diagonal to capture variance that is independent

to each neuron. This constraint encourages the latent variables to explain as much of the shared
variance among neurons as possible. We set the conjugate Gamma prior over each ϕm

i , for each
neuron i = 1, . . . , qm:

P (ϕm
i ) = Γ(ϕm

i | aϕ, bϕ) (4)
where aϕ, bϕ ∈ R>0 are hyperparameters.

The loading matrix Cm linearly combines latent variables and maps them to observed neural activity.
In particular, the jth column of Cm, cmj ∈ Rqm , maps the jth latent variable xm

n,j,t to population m.
To determine which subset of populations is described by each latent, we employ automatic relevance
determination (ARD), which has been used successfully in a variety of contexts [17, 18]. Specifically,
we define the following prior over the columns of each Cm:

P (cmj | αm
j ) = N (cmj | 0, (αm

j )−1Iqm) (5)

P (αm
j ) = Γ(αm

j | aα, bα) (6)

1We will define all variables as they appear, but see Supplementary Section S1 for more complete notation.
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where αm
j ∈ R>0 is the ARD parameter for latent variable j and population m, and aα, bα ∈ R>0

are hyperparameters. As αm
j becomes large, the magnitude of cmj becomes concentrated around 0,

and hence the jth latent variable xm
n,j,t will have a vanishing influence on population m. The ARD

prior encourages population-wise sparsity for each latent variable during model fitting (see below),
where the loading matrix coefficients will be pushed toward zero for latent variables that explain an
insignificant amount of shared variance within a population, and remain non-zero otherwise (Fig. 2b).

The parameter Cm also has an intuitive geometric interpretation. Each element of ym
n,t, the activity of

each neuron in population m, can be represented as an axis in a high-dimensional population activity
space (Fig. 1b). Then each column of Cm defines a dimension in population m’s activity space
(Fig. 1b, “activity pattern”). Dimensions that appear in two or more populations represent patterns of
activity that are correlated across populations. Note that the columns of Cm are linearly independent;
but they are not, in general, orthogonal. The ordering of these columns, and of the corresponding
latent variables, is arbitrary.

State model For each latent variable, we seek to characterize the direction of signal flow among
the involved populations (determined by ARD) and how those signals evolve over time within and
across trials. We therefore employ Gaussian processes (GPs) [19], and define a GP over all time
points t = 1, . . . , T for each latent variable j = 1, . . . , p as follows (Fig. 2c):x

1
n,j,:
...

xM
n,j,:

 ∼ N

0,

K1,1,j · · · K1,M,j

...
. . .

...
KM,1,j · · · KM,M,j


 (7)

Under equation 7, latents are independent and identically distributed across trials. The diagonal
blocks K1,1,j = · · · = KM,M,j ∈ ST×T describe the autocovariance of each latent, and each T -by-T
off-diagonal block describes the cross-covariance that couples two populations.

To define these matrices, we introduce additional notation. Specifically, we indicate populations with
two subscripts, m1 = 1, . . . ,M and m2 = 1, . . . ,M . Then, we define Km1,m2,j ∈ RT×T to be
either the auto- or cross-covariance matrix between latent variable xm1

n,j,: ∈ RT in population m1 and
latent variable xm2

n,j,: ∈ RT in population m2 on trial n. We choose to use the squared exponential
function for GP covariances (Fig. 2c). Therefore, element (t1, t2) of each Km1,m2,j can be computed
as follows [15, 20]:

km1,m2,j(t1, t2) =
(
1− σ2

j

)
exp

(
− (∆t)

2

2τ2j

)
+ σ2

j · δ∆t (8)

∆t = (t2 −Dm2,j)− (t1 −Dm1,j) (9)

where the characteristic timescale, τj ∈ R>0, and the GP noise variance, σ2
j ∈ (0, 1), are deterministic

model parameters to be estimated from neural activity. δ∆t is the kronecker delta, which is 1 for
∆t = 0 and 0 otherwise.

We also introduce two new parameters: the time delay to population m1, Dm1,j ∈ R, and the time
delay to population m2, Dm2,j ∈ R. Notice that, when computing the auto-covariance for population
m (i.e., when m1 = m2 = m; Fig. 2c, top), the time delay parameters Dm1,j and Dm2,j are equal,
and so ∆t (equation 9) reduces simply to the time difference (t2 − t1). Time delays are therefore
only relevant when computing the cross-covariance between distinct populations m1 and m2. The
time delay to population m1, Dm1,j , and the time delay to population m2, Dm2,j , by themselves
have no physically meaningful interpretation. Their difference Dm2,j −Dm1,j , however, represents
a well-defined, continuous-valued time delay from population m1 to population m2 (Fig. 2c, bottom).
The sign of the relative time delay indicates the directionality of the lead-lag relationship between
populations captured by latent variable j (positive: population m1 leads population m2; negative:
population m2 leads population m1), which we interpret as a description of signal flow. Note that
time delays need not be integer multiples of the sampling period or spike count bin width of the
neural activity.

Without loss of generality, we designate population m = 1 as the reference area, and fix the delays
for population 1 at 0 (i.e., D1,j = 0 for all latent variables j = 1, . . . , p). We follow the same
conventions as in [15, 21], and fix σ2

j to a small value (10−3). Furthermore, the GP is normalized so
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that km1,m2,j(t1, t2) = 1 if ∆t = 0, thereby removing model redundancy in the scaling of the latent
variables and loading matrices Cm.

Posterior inference and fitting the mDLAG model Let Y and X be collections of all observed
neural activity and latent variables, respectively, across all time points and trials. Similarly, let d,
ϕ, C, A, and D be collections of the mean parameters, noise precisions, loading matrices, ARD
parameters, and time delays, respectively. From the neural activity, we seek to estimate posterior
distributions over the probabilistic model components θ = {X, d, ϕ, C, A} and point estimates of
the deterministic GP parameters Ω =

{
D, {τj}pj=1

}
.

We do so by employing a variational inference scheme [16, 22], in which we maximize the evidence
lower bound (ELBO), L(Q,Ω), with respect to the approximate posterior distribution Q(θ) and the
deterministic parameters Ω, where

logP (Y ) ≥ L(Q,Ω) = EQ[logP (Y, θ|Ω)]− EQ[logQ(θ)] (10)

We constrain Q(θ) so that it factorizes over the elements of θ:

Q(θ) = Qx(X)Qd(d)Qϕ(ϕ)Qc(C)QA(A) (11)

This factorization enables closed-form updates during optimization. The ELBO can then be itera-
tively maximized via coordinate ascent of the factors of Q(θ) and the deterministic parameters Ω.
Here all hyperparameters were fixed to a very small value, β, aϕ, bϕ, aα, bα = 10−12, to produce
noninformative priors [16]. Throughout this work, we take estimates of the latent variables and model
parameters to be the corresponding means of the posterior distributions comprising equation 11. Full
details are provided in Supplementary Section S2.

mDLAG special cases Finally, we consider some special cases of the mDLAG model that illustrate
its relationship to other dimensionality reduction methods. In the case of two populations (M = 2),
mDLAG is equivalent to a Bayesian formulation of DLAG [15]. In the case of one population
(M = 1), and when all time delays are fixed to zero (Dm,j = 0), mDLAG becomes equivalent to a
Bayesian formulation of Gaussian process factor analysis [23]. By removing temporal smoothing
(i.e., in the limit as all GP noise parameters σj approach 1) mDLAG becomes equivalent to GFA [16].

3 Validation in simulation and on neural recordings

Simulation 1: Uncovering directed interactions across multiple populations We first sought
to demonstrate the ability of mDLAG to infer the structure of multi-population interactions. We
therefore generated simulated neural activity from three populations (M = 3) according to the
mDLAG generative model (equations 1–9). For the sake of illustration, we set 10 neurons in each
population (qm = 10). Importantly, we designed the loading matrices Cm so that all types of inter-
population interactions were represented (Fig. 3a, left, ground truth): interactions shared globally,
unique to each pair of populations, and local to one population. We also scaled the observation noise
precision matrices Φm so that noise levels were representative of realistic neural activity. Specifically,
activity due to single-neuron observation noise was 10 times stronger than activity due to latents (the
“signal-to-noise ratio” tr(CmCm⊤)/tr((Φm)−1) = 0.1 for each population). We selected Gaussian
process timescales and (relative) time delays that ranged between 20 ms to 150 ms and between
5 ms and 50 ms, respectively. With all model parameters specified, we then generated N = 100
independent and identically distributed trials. Each trial was 500 ms in length, comprising T = 25
time points with a sampling period of 20 ms, to mimick the 20 ms spike count time bins used to
analyze the neural recordings in Section 4.

We then fit an mDLAG model to the simulated neural activity. We set the initial number of latents
(p = 10) to be greater than the ground truth number (p = 7), to verify that these additional latents
would be pruned during fitting. In addition, to demonstrate the benefit of ARD in the mDLAG
model, we also fit a modified mDLAG model that did not use ARD. Specifically, we fit (via an exact
EM algorithm) a modified model with state model defined by equations 7–9 and observation model
defined by equations 1 and 2, but with no prior distributions over the parameters Cm, dm, and Φm

(i.e., we obtained point estimates). The number of latents for this modified model was selected via
4-fold cross-validation, considering model candidates with p = 1 to p = 10 latents. Cross-validation
is not needed for the mDLAG model with ARD, a key computational advantage of the approach.
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Figure 3: Automatic relevance determination encourages population-wise sparsity. (a) Loading
matrix estimates. Left: Ground truth loading matrix. Center: mDLAG estimate. Right: mDLAG
estimate where automatic relevance determination (ARD) was not used, i.e., no population-wise
sparsity priors were placed on the loading matrix. Same conventions as in Fig. 2b. Note that the sign
and ordering of each loading matrix column is, in general, arbitrary. We have therefore reordered and
flipped the signs of the columns of the estimates to facilitate comparison with the ground truth. (b)
Single-trial latent time course estimates. Each panel corresponds to the ground truth and estimated
time course of a single latent variable. For concision, we show only latents corresponding to one
population (xm

n,j,:); the remaining latents are time-shifted versions of those shown here. Inset above
each latent are the involved populations along with the signal flow and magnitude of time delays
between populations (in ms). Magenta: mDLAG estimates; black: ground truth. a.u.: arbitrary units.

We were able to identify the total number of latent variables (p = 7) with both approaches. The
mDLAG model with ARD additionally recovered the population-wise sparsity structure with high
accuracy (Fig. 3a, center). The mDLAG model without ARD, however, produced an estimate of the
loading matrix with mostly non-zero elements (Fig. 3a, right): had we not known the ground truth in
advance, it would be difficult to interpret which population subsets are involved in which interactions.
The mDLAG model with ARD also estimated the latent variable time courses and time delays (along
with their implied signal flow) with high accuracy (Fig. 3b; R2 between ground truth and estimated
time courses: 0.936; mean delay error: 1.14 ms).

Simulation 2: Disentangling concurrent, bidirectional signaling We next considered a simulated
scenario that illustrates mDLAG’s ability to distinguish concurrent, bidirectional signaling across
populations, particularly in contrast with static multi-population methods like group factor analysis
(GFA).2 We again simulated activity from three populations, each with qm = 10 neurons. These
populations interacted through two latent processes, one that propagated from population A to B to
C (Fig. 4a, Latent 1) and one that propagated in the opposite direction, from population C to B to
A (Fig. 4a, Latent 2). Each latent incurred a 15 ms time delay propagating from one population to
the next. For the sake of visual demonstration, we generated latent signals with a simple transient
peak of activity (Fig. 4a, black traces), and generated the same latent signals on each trial. We then
generated observed neural activity according to the mDLAG observation model (equations 1 and
2). Importantly, we scaled the columns of the loading matrices Cm (for each area m) so that both
columns had equal magnitude, and thus both latent interactions exhibited equal strength in each
population: such a communication scheme is difficult to disentangle [15]. Finally, to isolate the
consequences of model structure from issues like overfitting, we simulated a low-noise, data-rich
scenario by generating N = 1, 000 independent trials, each 500 ms in length (comprising T = 25
time points), with high signal-to-noise ratios tr(CmCm⊤)/tr((Φm)−1) = 10.0 for each population.

We fit both an mDLAG model and a GFA model (see Supplementary Section S3) to this simulated
neural activity, assuming for each model the correct number of latent variables, p = 2. mDLAG
latent variable and time delay estimates accurately reflected the distinct signaling pathways across

2See also Supplementary Fig. S2b for performance comparisons between GFA and mDLAG on the neural
recordings analyzed in Section 4.

6



2

0

2.2

-2.2

a.
u.

Latent 1

c GFA estimatea

15 ms

15 ms15 ms

15 ms

Latent 1 Latent 2

Time

A

B

C

b mDLAG estimate

0

2.7

-2.7

a.
u.

100 ms
Time

One trial

Latent 1 2
A B C

14.7 15.0 14.8 14.9
ABC
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propagates from A to B to C. Latent 2 (right) propagates from C to B to A. (b) mDLAG estimates
disentangle the two interactions. Each panel corresponds to a single latent variable. Each black
trace represents one trial (10 representative trials shown). For concision, we show only latents
corresponding to one population (xm

n,j,:); the remaining latents are time-shifted versions of those
shown here. Inset above each latent are the involved populations along with the signal flow and
magnitude of time delays between populations (in ms). a.u.: arbitrary units. (c) Group factor analysis
(GFA) estimates represent mixtures of the two interactions. Same conventions as in (b).

the three populations (Fig. 4b; R2 between ground truth and estimated time courses: 0.989; mean
delay error: 0.16 ms). Each latent estimated by GFA, however, notably reflected a mixture of both
interactions (Fig. 4c, each latent time course exhibits two peaks). With no description of signal flow,
static methods like GFA struggle to distinguish concurrent, bidirectional signaling.

Validating mDLAG on recordings from V1 and V2 To further validate mDLAG, we turned to
neural recordings from two areas in the macaque visual cortex, V1 and V2 [24]. These recordings have
been studied extensively [15, 25–27], and therefore provide an excellent testbed for our framework.
We applied mDLAG to the simultaneously recorded activity of neuronal populations in the superficial
(output) layers of V1 (61 to 122 neurons; mean 86.3), and the middle (input) layers of V2 (15
to 32 neurons; mean 19.6) in three anesthetized animals (Supplementary Fig. S1a). We analyzed
neuronal responses measured during the 1.28 second presentation of drifting sinusoidal gratings
of different orientations, and counted spikes in 20 ms time bins. Because we were interested in
V1-V2 interactions on timescales within a trial, we subtracted the mean across time bins within
each trial from each neuron. This step removed activity that fluctuated on slow timescales from one
stimulus presentation to the next [28]. In total, we analyzed separately 40 “datasets,” corresponding
to five recording sessions, each with eight different orientations. Each dataset included 400 trials: we
allocated at random 300 trials as a training set and 100 trials as a test set on which to measure model
performance (we employed a leave-group-out prediction metric; see Supplementary Section S4).

Given prior work on these V1-V2 recordings, we reasoned that mDLAG ought to qualitatively
recover several hallmarks of the V1-V2 activity: (1) a significant number of latent variables local to
each area, indicative of selective V1-V2 communication (Supplementary Fig. S1b, ‘V1’ and ‘V2’;
Supplementary Fig. S1c, latents 4 and 5), (2) the presence of periodic structure representative of the
drifting grating stimulus (Supplementary Fig. S1c, latents 3 and 4), and (3) bidirectional interactions
(Supplementary Fig. S1c, latents 1–3). Indeed, mDLAG detected all of these hallmarks.

These recordings were also previously studied with DLAG [15], which was designed to study
concurrent signaling between two neuronal populations. Since DLAG is a special case of the
mDLAG framework, we reasoned that mDLAG ought to exhibit similar quantitative performance
and extract qualitatively similar features of V1-V2 communication. Indeed, the latent time courses
estimated by mDLAG (Supplementary Fig. S1c) were qualitatively similar to those estimated by
DLAG [29] (Supplementary Fig. S1d). Interestingly, mDLAG outperformed DLAG across all datasets
(Supplementary Fig. S2a, points above the diagonal), suggesting that ARD provides an improved
method of model selection over the constrained grid search method used for DLAG, while also
avoiding grid search’s computational drawbacks (see Supplementary Section S5). Collectively, the
results across our simulations and the V1-V2 recordings indicate that mDLAG is well-equipped to
study concurrent signaling across multiple simultaneously recorded neuronal populations.
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4 Interactions across laminar compartments of V1, V2, and V3d

We next used mDLAG to study interactions across V1, V2, and V3d of anesthetized macaques
recorded using multiple Neuropixels probes (Fig. 5a). These recordings included hundreds of neurons
across different layers in each area (Fig. 5b, superficial (S), middle (M), and deep (D) compartments)
allowing us to investigate longstanding questions about functional cortical organization.

First, we sought to quantify the performance of mDLAG models relative to alternative approaches,
and to further demonstrate the empirical benefit of mDLAG’s model components. We therefore
considered three types of models: group factor analysis (GFA); mDLAG, but with time delays
removed (‘mDLAG-0’); and mDLAG. With each model type, we analyzed spike counts (in 20 ms
bins) of neurons in select laminar compartments of each area, measured during the first 1,000 ms after
the onset of a drifting sinusoidal grating (Fig. 5b, trial-averaged responses for an example dataset).
The selected laminar compartments (grouped into three sub-populations for analysis: Fig. 5c, color
shading) were those that likely directly interacted through a combination of feedforward, feedback,
and inter-laminar connections [30] (Fig. 5c, black arrows). As we did for the V1-V2 recordings,
above, we subtracted the mean across time bins within each trial from each neuron, to remove slow
fluctuations beyond the timescale of a trial. We fit GFA, mDLAG-0, and mDLAG separately to 10
datasets, comprising five recording sessions (each with two grating orientations, 90° apart, presented
300 trials each) from two anesthetized animals. For each dataset, we allocated at random 225 trials as
a training set and 75 trials as a test set on which to measure model performance. GFA, mDLAG-0, and
mDLAG exhibited increasingly better leave-group-out prediction (Supplementary Fig. S2b: mDLAG-
0 better than GFA; c: mDLAG better than mDLAG-0), demonstrating the performance benefit of
(1) temporal smoothing and (2) time delays (see also Supplementary Fig. S3 for a demonstration of
mDLAG performance versus number of available training trials, and Supplementary Fig. S4 for a
characterization of GFA and mDLAG runtimes).
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We then focused on one particular set of questions: Do V1, V2, and V3d communicate selectively, and
if so, what aspects of the recorded populations might contribute to this selectivity? One likely aspect
is the alignment of visual receptive fields (RFs): retinotopically aligned neuronal populations might
co-contribute to computations that non-aligned populations would not. This functional organization
would appear as mDLAG latent variables shared exclusively between the aligned populations. We
therefore studied a dataset from a recording session in which the retinotopy of the recorded populations
allowed us to investigate this hypothesis (Fig. 5d). RFs of the V1 and V3d populations were largely
overlapping (Fig. 5d, blue: V1, gold: V3d), whereas the RFs in V2 did not overlap with either V1 or
V3d (Fig. 5d, red: V2).

We quantified the total number of dimensions shared between each pair of populations (Fig. 5e; a
dimension was considered significant in a population if it explained at least 2% of the shared variance,
Supplementary Section S5, equation S52). mDLAG allowed us to distinguish dimensions that were
unique to a pair of populations (e.g., between V1 and V3d, but not V2) from dimensions that also
involved the third population. V1-V3d interactions included unique dimensions (Fig. 5e, ‘V1-V3d’,
light gray) in addition to a dimension shared globally across all three populations (Fig. 5e, ‘V1-V3d’,
dark gray), whereas V1-V2 interactions and V2-V3d interactions could be attributed primarily to the
global dimension (Fig. 5e, ‘V1-V2’ and ‘V2-V3d’, only dark gray). The single-trial time courses of
the global latent evolved according to a long timescale (Fig. 5f, latent 1, 132 ms) relative to the unique
V1-V3d latents (Fig. 5f, latents 2 and 3, 8 ms and 62 ms, respectively). The global latent was also
associated with a direction of signal flow (V3d to V2 to V1) opposite to that of the V1-V3d latents
(V1 to V3d). The time courses of the V1-V3d latents exhibited features of the stimulus response,
including a fast transient response (Fig. 5f, latent 2) and periodic structure with the same period as
the drifting grating stimulus (Fig. 5f, latent 3, 333 ms period). Results were largely insensitive to the
initialization of the mDLAG fitting procedure (Supplementary Fig. S5). These findings are consistent
with the hypothesis that visual cortical populations communicate selectively in a retinotopic manner,
as they perform computations on inputs from localized regions of visual space [31].

5 Discussion

Even for two populations, identifying which latents are shared between populations or local to a
population is a challenging computational problem. Existing approaches explicitly designate latents
as shared or local [13–15], and then rely on heuristics to avoid the computational cost of grid search.
Scaling this type of approach to three or more populations (or external experimental variables) would
be prohibitive. mDLAG is thus an advance toward scaling to large-scale multi-population recordings,
and could continue to be improved through the many approaches used to scale Gaussian process
methods in neuroscience [13, 23, 32–36].

mDLAG treats time delays as constant parameters across trials, time, and neurons. The delay
estimated for each latent variable thus represents a summary of inter-population interaction throughout
the course of an experiment. To assess the variability of delay estimates, one could fit mDLAG to
subsets of trials, subsets of neurons, or to separate trial epochs. If additional subpopulation labels are
available (for example, laminar compartments in our Neuropixels recordings, Fig. 5b), one could also
specify these subpopulations to the mDLAG model to better incorporate variability of delays across
neurons.

A latent variable shared across three or more populations is potentially consistent with multiple
signaling schemes. For instance, Latent 1 of Fig. 5f is consistent with a signal relayed from V3d
to V2 (with a delay of 2 ms) and then from V2 to V1 (with a delay of 4 ms). It is also consistent,
however, with a scheme in which V3d is a common input to V2 (with a delay of 2 ms) and to V1 (with
a delay of 6 ms). A third scheme could involve common input to all three areas from an unobserved
source. Still, mDLAG narrows the set of populations that could be involved in any given interaction,
and the sign and magnitude of mDLAG’s time delays narrow the set of signaling schemes consistent
with the data. This hypothesis set can be narrowed further by experimental interventions [37].

The mDLAG model includes assumptions of linearity and temporal smoothness; specifically, we
have employed here the commonly used squared exponential function for mDLAG’s GP covariances.
It might be desirable to incorporate temporal structure more appropriate for certain signals (for
example, the sinusoidal structure of Latent 3, Fig. 5f). Then, an alternative GP covariance function
can be substituted in a straightforward manner into the mDLAG model (equation 8) [19, 32, 33, 38].
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Nonlinearities, for example related to neuronal tuning or receptive fields, could also be incorporated
under a GP framework [39, 40].

For exploratory data analysis, mDLAG’s GP-based description of multi-population temporal structure
is advantageous over an alternative linear dynamical system (LDS)-based description [10, 11] in
two respects: (1) a GP can be useful for exploratory data analyses where an appropriate parametric
dynamical model is unknown a priori, and (2) mDLAG’s continuous-time model enables the discovery
of wide-ranging delays with high precision, which, in contrast to discrete-time LDS approaches, are
not limited to be integer multiples of the sampling period or spike count bin width of the neural
activity. Ultimately, these approaches can be complementary: one can use mDLAG to generate
data-driven hypotheses about motifs of concurrent signaling across populations, and then test these
hypotheses with a dynamical system-based approach.

Finally, while we applied mDLAG to the spiking activity of neuronal populations, mDLAG is
applicable to any high-dimensional time series data, including other neural recording modalities. In
fact, the groups analyzed by mDLAG need not all be neuronal populations, but could include, for
example, a collection of dynamic stimulus or behavioral variables. mDLAG is a general framework
that advances the study of concurrent signaling throughout the brain.

Code availability

A MATLAB (MathWorks) implementation of mDLAG is available on GitHub at http://github.
com/egokcen/mDLAG and on Zenodo at https://doi.org/10.5281/zenodo.10048163 [41].
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