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Supplementary Figure 1. DLAG directed graphical model representation, and the use of
Gaussian processes in the DLAG state model. (a) DLAG directed graphical model representa-
tion. Filled circles represent observed variables (i.e., observed neural activity in each area), where
y1,t and y2,t are the observed neural activity in area A and B, respectively, at time t. Unfilled
circles represent latent variables, where xa

t are across-area variables at time t; xw
1,t and xw

2,t are
within-area variables in area A and B, respectively, at time t. D represents the set of relative
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time delay parameters between the two areas. Color indicates a variable’s or parameter’s asso-
ciation with area A (blue), area B (red), or both (magenta). Arrows indicate conditional depen-
dence relationships between variables. In particular, the arrows point from latent variables to
observed neural activity, framing DLAG as a generative model. Thick black lines indicate that
variables are related in time via a Gaussian process. Here two time steps are shown (t− 1 and t),
and time evolves from left to right. (b) Within-area state model. Left column: Within-area time
courses (area A: xw

1,j,:, blue points; area B: xw
2,j,:, red points) can be described as a finite number

of samples drawn from a Gaussian process (GP) for each area and each j. Right column: The
temporal structure of each within-area GP is governed by a covariance function (area A: kw1,j ;
area B: kw2,j). The squared exponential (SE) function, chosen for the present work, is defined by
a timescale parameter (τw1,j , τ

w
2,j), which controls the width of the covariance kernel, or equiva-

lently, how quickly the latent variable changes over time. (c) An example set of within-area GP
covariance matrices (Kw

j ). The banded structure emerges from the choice of squared exponential
function and stationarity of the GP covariance. Note the independence of within-area latent vari-
ables across areas: each latent variable has its own characteristic timescale, and cross-covariance
terms are all zero. (d) Across-area state model. Left column: Like within-area time courses,
across-area time courses can also be described as a finite number of samples drawn from a GP.
In contrast to the within-area time courses, which are independent across areas, across-area time
courses are coupled across areas, drawn from a common GP (xa

j,:). The sampling grid of area A
(blue) is shifted by a time delay (Dj) relative to that of area B (red). Right column: The tem-
poral structure of the common GP is governed by a SE covariance function. The width of the
auto- and cross-covariances (kai,i,j and ka1,2,j , respectively) is controlled by a timescale parameter
(τaj ). The center of the cross-covariance is controlled by the delay parameter Dj (positive delays:
A leads B; negative delays: B leads A). (e) An example across-area GP covariance matrix (Ka

j ).
The banded structure emerges from the choice of squared exponential function and stationarity
of the GP covariance. Note the non-zero cross-covariance terms in the off-diagonal blocks of Ka

j :
the banded structure is shifted from the diagonal of each off-diagonal block by the delay parame-
ter Dj .
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Supplementary Figure 2. DLAG performance as a function of number of trials, number of
neurons, latent dimensionality, and signal-to-noise ratio. We sought to characterize DLAG’s per-
formance as a function of several data characteristics. For each analysis (panels (a)–(d)), we syn-
thesized 25 datasets (via the DLAG generative model). Unless specified otherwise, the datasets
used for each analysis had the following fixed characteristics: N = 100 trials; q1 = q2 = 50
neurons per area; 500 ms trial lengths with 20 ms sampling period (for T = 25 samples per
trial); latent dimensionalities pa = pw1 = pw2 = 5; signal-to-noise ratios tr(C1C

⊤
1 )/tr(R1) =

tr(C2C
⊤
2 )/tr(R2) = 0.3; GP timescales τa, τw1 , τw2 ∈ [10, 150] ms; and delays D ∈ [−30, 30] ms.

For each analysis, we varied one of these characteristics to study how it affected DLAG’s perfor-
mance. All panels follow the same plotting conventions: the left column shows the error of ob-
servation model parameter estimates (Ca

1 : solid magenta; Ca
2 : dashed magenta; Cw

1 : solid blue;
Cw
2 : dashed red; R: light gray; d: dark gray); the center column shows the absolute error (in ms)

of state model parameter estimates (τa: magenta; τw1 : blue; τw2 : red; D: dashed magenta); the
right column shows the error (1−R2) of latent variable time course estimates (xa

1: solid magenta;
xa
2: dashed magenta; xw

1 : solid blue; xw
2 : dashed red). (a) DLAG performance improves with in-

creasing number of trials. We generated datasets that comprised N = 1000 trials. We then took
subsets of trials from these datasets, and fit DLAG to increasingly large subsets (sizes equally
spaced on a log scale from 10 to 1000 trials). Left: Error bars represent SEM across 25 indepen-
dent simulated datasets. Center: Error of within-area timescale estimates (τw2 ) have been omit-
ted for values of 10 trials, where absolute error was 212.1±174.4 ms (mean and SEM across all
within-area timescales). Given insufficient statistical power, some GP timescale estimates (likely
for latent dimensions that explain little shared variance within an area) become large (i.e., larger
than the length of a trial)—to the point where smoothed population activity in the correspond-
ing dimension is effectively constant within a trial. Error bars represent SEM across 125 latent
variables. Right: Error bars represent SEM across 25 independent simulated datasets. (b) DLAG
performance improves with increasing number of neurons (and fixed latent dimensionality). We
generated datasets with q1 = q2 = 100 neurons per area. We then took subsets of neurons from
these datasets, and fit DLAG to increasingly large subsets (11, 25, 50, 75, and 100 neurons in
each area). Left: Error bars represent SEM across 25 independent simulated datasets. Center:
Error of within-area timescale estimates have been omitted for values of 11 neurons per area,
where absolute error was 60.1±39.2 ms for τw1 and 93.7±46.3 ms for τw2 (mean and SEM across
all within-area timescales). Error bars represent SEM across 125 latent variables. Right: Error
bars represent SEM across 25 independent simulated datasets. (c) DLAG performance declines
with increasing latent dimensionality (and fixed number of neurons). We considered four settings
of across- and within-area dimensionalities (pa = pw1 = pw2 = 1, 5, 10, 15). For each setting, we
synthesized 25 independent datasets. Here we define the total latent dimensionality (the horizon-
tal axis in each panel) as 2pa + pw1 + pw2 . Left: Error bars represent SEM across 25 independent
simulated datasets. Center: Error of within-area timescale estimates (τw2 ) have been omitted for
values of 60 total latent dimensions, where absolute error was 171.3±91.7 ms (mean and SEM
across all within-area timescales). Error bars represent SEM across all across- or within-area
latent variables, across all datasets of a given latent dimensionality setting (i.e., across 25, 125,
250, and 375 latent variables for each respective setting). Right: Error bars represent SEM across
25 independent simulated datasets. (d) DLAG performance improves with increasing signal-to-
noise ratio. We considered five settings for the signal-to-noise ratio (signal-to-noise ratios were
the same for both areas; values were spaced equally on a log scale from 0.01 to 1.0). For each
setting, we synthesized 25 independent datasets. Left: Error bars represent SEM across 25 in-
dependent simulated datasets. Center: Error of GP timescale estimates have been omitted for
values of 10−2 and 10−1.5, where absolute errors were greater than 100 ms. Error bars represent
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SEM across 125 latent variables. Right: Error of latent time course estimates have been omitted
for values of 10−2, where average R2 values were less than 0 (and hence error values were greater
than 1). Error bars represent SEM across 25 independent simulated datasets.
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Supplementary Figure 3. Uncertainty of DLAG timescale and delay estimates increases with
increasing latent timescale. (a) Error (in ms; estimate minus ground truth value) of across-area
GP timescale (top) and delay (bottom) estimates for each latent variable shown in Fig. 3c,d.
The variance of both GP timescale and delay estimates increases as the underlying ground truth
GP timescale increases. For intuition, consider the extreme case of a latent variable whose time
course is constant, or equivalently, whose autocovariance function (Supplementary Fig. 1) is flat
(i.e., has a very long timescale). Then, a range of DLAG models with any delay and any suf-
ficiently long GP timescale could explain the data equally well, particularly in the presence of
noise. (b) To verify the trend in (a), we systematically characterized the accuracy of GP timescale
and delay parameter estimates as a function of ground truth GP timescale. We synthesized addi-
tional datasets (via the DLAG generative model) with the following characteristics: N = 100
trials; q1 = q2 = 50 neurons per area; 500 ms trial lengths with 20 ms sampling period (for
T = 25 samples per trial); latent dimensionalities pa = pw1 = pw2 = 5; signal-to-noise ratios
tr(C1C

⊤
1 )/tr(R1) = tr(C2C

⊤
2 )/tr(R2) = 0.3; and delays D ∈ [−30, 30] ms. Each dataset’s within-

and across-area latent variables were given the same GP timescale; and across 150 datasets, we
considered six different timescales (25 datasets synthesized for each timescale), ranging in length
from half the sampling period to the length of the trial (10 ms, 20 ms, 50 ms, 100 ms, 200 ms,
500 ms). Top: Absolute error (in ms) of across- and within-area GP timescale estimates increases
as underlying GP timescale increases (τa: magenta; τw1 : blue; τw2 : red). Bottom: Absolute error
(in ms) of delay parameter estimates increases as underlying GP timescale increases. The low-
est error is achieved when GP timescales are equal to the sampling period of observations. For
GP timescales larger than the sampling period, the error increases according to the intuition out-
lined above. For GP timescales less than the sampling period, error increases because a partic-
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ular delay can be difficult to estimate if its magnitude is large relative to the corresponding GP
timescale: the cross-covariance function (Supplementary Fig. 1) decays quickly enough that ob-
served activity appears uncorrelated across areas in that latent dimension. Error bars represent
SEM across 125 latent variables.
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Supplementary Figure 4. DLAG runtime as a function of number of trials, number of neu-
rons, trial length, and latent dimensionality. (a) The average clock time (in seconds) per DLAG
EM iteration scales (approximately) linearly with the number of trials. These runtime analyses
were carried out on synthetic datasets with q1 = q2 = 50 neurons in each area; T = 25 time
steps per trial; and latent dimensionalities pa = pw1 = pw2 = 5 (total number of latent dimensions
2pa + pw1 + pw2 = 20). (b) The average clock time (in seconds) per DLAG EM iteration scales (ap-
proximately) linearly with the number of neurons per area. These runtime analyses were carried
out on synthetic datasets with N = 100 trials; T = 25 time steps per trial; and latent dimen-
sionalities pa = pw1 = pw2 = 5 (total number of latent dimensions 2pa + pw1 + pw2 = 20). (c)
The average clock time (in seconds) per DLAG EM iteration scales (approximately) quadratically
with the number of time steps per trial. Runtime scales quadratically, rather than linearly (as in
(a)), because DLAG describes the temporal structure within each trial via Gaussian processes.
These runtime analyses were carried out on synthetic datasets with N = 100 trials; q1 = q2 = 50
neurons in each area; and latent dimensionalities pa = pw1 = pw2 = 5 (total number of latent di-
mensions 2pa + pw1 + pw2 = 20). (d) The average clock time (in seconds) per DLAG EM iteration
scales (approximately) quadratically with the total number of latent dimensions (2pa + pw1 + pw2 ).
These runtime analyses were carried out on synthetic datasets with N = 100 trials; q1 = q2 = 50
neurons in each area; and T = 25 time steps per trial. In (a)-(d), error bars represent SEM across
25 independent simulated datasets. Results were obtained on a Red Hat Enterprise Linux ma-
chine (release 7.9, 64-bit) with 250GB of RAM running Matlab (R2019a), on an Intel Xeon CPU
(E5-2695 v3, 2.3 GHz).
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Supplementary Figure 5. DLAG’s parameter and latent variable estimates remained stable
when dimensionality was underestimated. While the results in Fig. 3b,e suggest that our model
selection procedure performs well on realistic-scale synthetic data, we additionally sought to ex-
plore the impact of imperfect dimensionality estimates—inevitable in real data—on the estima-
tion and interpretation of DLAG’s parameters and latent variables following fitting. With the
goal of inducing dimensionality misestimates, we therefore repeated the analyses in Fig. 3b,e with
120 additional datasets generated from the DLAG generative model, but we lowered the signal-
to-noise ratio, tr(CiC

⊤
i )/tr(Ri), to 0.1 for each area i (compared to 0.3 and 0.2 in area A and

area B, respectively, in the original synthetic datasets; see Methods). All other data character-
istics remained the same as in the original data. Model selection remained accurate overall: es-
timated across- and within-area dimensionalities never deviated from the ground truth by more
than one (results not shown). Any inaccuracy primarily originated from the initial factor analysis
(FA) stage of model selection, rather than the second stage involving DLAG.
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Here we present a case study from one of the synthetic datasets described above, in which the to-
tal dimensionality of area B was underestimated during the initial factor analysis (FA) model se-
lection stage, and across-area dimensionality was underestimated in the second stage. (a) For ref-
erence, we first fit a DLAG model with the correct number of within- and across-area latent vari-
ables, i.e, no model selection was performed. With real data, we would not have access to this
information, but here we use it to understand the scenario in (b). Shown are single-trial latent-
variable time course estimates produced by the fitted model along with the ground truth (one
example trial shown). Top row / blue box: area A; bottom row / red box: area B. Left: across-
area; right: within-area. Orange dashed traces: DLAG estimates; black solid traces: ground truth.
a.u.: arbitrary units. Delays reported in ms. Even in the weak-shared variance regime, estimates
are qualitatively close to the ground truth. The asterisks (‘*’) are intended to highlight the third
across-area latent variable for each area, which becomes mistaken as a within-area A latent vari-
able when area B’s dimensionality is underestimated (see within-area A latent variable 8 in (b)).
(b) We next consider the model chosen through model selection, as we would with real data. The
estimated number of latent variables in area B and the estimated number of across-area variables
were each one fewer than the respective ground truth. Shown are single-trial latent-variable time
course estimates produced by this model (same trial shown as in (a)). Qualitatively, time course
estimates closely match those of the model in (a), in which the correct number of within- and
across-area variables was used (compare estimated latent variables with the same index across (a)
and (b)). Furthermore, delay estimates are only slightly affected. By inspection, the third across-
area latent variable pair (marked by the asterisks in (a)) now appears as the eighth within-area
A latent variable (also marked by an asterisk). Note that the ordering of latent variables is arbi-
trary; we have ordered the latent variables here to facilitate visual illustration.
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Supplementary Figure 6. DLAG’s parameter and latent variable estimates remained stable
when dimensionality was overestimated. Here we present a case study from one of the synthetic
datasets described in Supplementary Fig. 5, in which the total dimensionality of area B was over-
estimated during the initial factor analysis (FA) model selection stage, and across-area dimen-
sionality was overestimated in the second stage. (a) For reference, we first fit a DLAG model
with the correct number of within- and across-area latent variables, i.e., no model selection was
performed. With real data, we would not have access to this information, but here we use it to
understand the scenario in (b). Shown are single-trial latent-variable time course estimates pro-
duced by the fitted model along with the ground truth. Same conventions as in Supplementary
Fig. 5. Even in the weak-shared variance regime, estimates are qualitatively close to the ground
truth. The asterisk (‘*’) is intended to highlight the eighth within-area A latent variable, which
becomes mistaken as an across-area variable when area B’s dimensionality is overestimated (see
across-area variable 3 in (b)). (b) We next consider the model chosen through model selection, as
we would with real data. The estimated number of latent variables in area B and the estimated
number of across-area variables were each one more than the respective ground truth. Shown
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are single-trial latent-variable time course estimates produced by this model (same trial shown
as in (a)). Qualitatively, time course estimates closely match those of the model in (a), in which
the correct number of within- and across-area variables was used (compare estimated latent vari-
ables with the same index across (a) and (b)). By inspection, the eighth within-area A latent
variable (marked by the asterisk in (a)) now appears as the third across-area latent variable (also
marked by asterisks). This phenomenon is straightforward to diagnose: here, we have addition-
ally scaled each latent variable by the fraction of shared variance it explains within its respective
area (see Methods; same convention as in Fig. 5). The third across-area latent variable explains
little shared variance in area B, consistent with the ground truth. Note that the ordering of la-
tent variables is arbitrary; we have ordered the latent variables here to facilitate visual illustra-
tion.
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Supplementary Figure 7. DLAG accurately estimates within- and across-area time courses
and their parameters in synthetic data generated by a linear-nonlinear-Poisson model. We sought
to understand how the results in Fig. 3 might change if we applied DLAG to synthetic data in
which the linear and Gaussian assumptions of the DLAG observation model, equations (1) and
(2), are violated. Toward that end, we generated additional synthetic datasets from the following
linear-nonlinear-Poisson (LNP) generative model. For a given dataset, on each trial, we gener-
ated within- and across-area latent variable time courses according to the DLAG state model,
equations (3)–(8). Hence each latent variable time course followed a Gaussian process (GP) with
squared exponential (SE) covariance function, and across-area latent variables included time de-
lays across areas.

For area i with qi neurons, we then generated neural firing rates, λi,t ∈ Rqi , during time bin t of
width ∆ according to the following model:

λi,t = log
�
1 + exp

�
Ca
i x

a
i,:,t + Cw

i x
w
i,:,t + di

��
·∆

The function log(1 + exp(·)) is the commonly used softplus function (applied element-wise to its
arguments), a smooth analogue of the rectified linear function. The parameters Ca

i ∈ Rqi×pa ,
Cw
i ∈ Rqi×pwi , and di ∈ Rqi have similar interpretations as in equations (1) and (2) of the DLAG

observation model. We then generated observed spike counts for neuron j in area i during time
bin t, yi,j,t, according to a Poisson distribution with rate parameter λi,j,t (the jth element of λi,t):

yi,j,t | xa
i,:,t,x

w
i,:,t ∼ Poisson(λi,j,t)

Note that this generative model can be interpreted as describing nonlinear interactions across
areas since the conditional distributions P (y2,t | y1,t) and P (y1,t | y2,t) describe nonlinear rela-
tionships between the observed neural activity in each area, y1,t and y2,t.

As we did for the synthetic datasets underlying Fig. 3 (see Methods), we generated synthetic
datasets from the LNP generative model that were informed by experimental recordings. For all
datasets, we chose the numbers of neurons in each area based on our V1-V2 recordings (area A:
q1 = 80; area B: q2 = 20). We set the combined total dimensionality in each area to representa-
tive values (area A: pa + pw1 = 10; area B: pa + pw2 = 5), but varied the relative number of within-
and across-area latent variables across datasets. Generating 20 datasets at each of six configura-
tions (pa = 0, . . . , 5; pw1 = 5, . . . , 10; pw2 = 0, . . . , 5) resulted in a total of 120 independent datasets.

We generated the mean parameter for each area i, di, so that the distribution of mean firing
rates over time and trials was qualitatively similar to typical mean firing rate distributions en-
countered in V1 and V2 recordings. Specifically, we drew each element of di from an exponential
distribution with mean 20 spikes/second and 10 spikes/second in area A and area B, respectively.
To ensure that the synthetic datasets exhibited realistic noise levels, we manually tuned the load-
ing matrix parameters for each area, Ci, so that the signal-to-noise ratios according to DLAG
model estimates, tr(ĈiĈ

⊤
i )/tr(R̂i), were similar to those encountered in V1 and V2 (0.3 in area

A; 0.2 in area B).

Finally, we drew all timescales ({τaj }p
a

j=1, {τw1,j}
pw1
j=1, {τw2,j}

pw2
j=1) uniformly from U(τmin, τmax), with

τmin = 10 ms and τmax = 150 ms. We drew all delays ({D1, . . . , Dpa}) uniformly from U(Dmin, Dmax),

with Dmin = −30 ms and Dmax = +30 ms. All Gaussian process noise variances ({(σa
j )

2}paj=1,
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{(σw
1,j)

2}p
w
1

j=1, {(σw
2,j)

2}p
w
2

j=1}) were fixed at 10−3. With all model parameters specified, we then
generated N = 100 independent and identically distributed trials according to the LNP gen-
erative model described above. Each trial was 1, 000 ms in length, comprising spike counts in
T = 50 time bins of width 20 ms, the same spike count bin width used to analyze the V1-V2
recordings. Panels (a), (c), (d), (f), and (g) demonstrate DLAG’s ability to estimate the ground
truth latent variable time courses and parameters of the LNP generative models when the cor-
rect within- and across-area dimensionalities are assumed. Panels (b) and (e) show the results of
estimating across- and within-area dimensionalitities from the data.

(a) Single-trial latent-variable time course estimates for a representative synthetic dataset. Same
conventions as in Fig. 3a. Across all synthetic datasets for which across- or within-area dimen-
sionality was non-zero (across: 100 datasets; within A: 120 datasets; within B: 100 datasets),
mean accuracy (R2) of firing rate estimation was as follows: area A – 0.81; area B – 0.76 (all
SEM values less than 0.01). Similarly, mean accuracy of subspace (loading matrix) estimation
was as follows: Ca

1 – 0.77; Ca
2 – 0.83; Cw

1 – 0.79; Cw
2 – 0.83 (where a value of 1 implies that the

ground truth is fully captured by estimates; all SEM values less than 0.01). (b) Across-area di-
mensionality estimates versus the ground truth for all 120 synthetic datasets. Data points are
integer-valued, but randomly jittered to show points that overlap. (c) Delay estimates versus the
ground truth. Displayed error (‘err.’) indicates mean absolute error and SEM reported across
300 across-area variables. (d) Across-area Gaussian process (GP) timescale estimates versus the
ground truth. Displayed error (‘err.’) indicates mean absolute error and SEM reported across 300
across-area variables. (e) Within-area dimensionality estimates versus the ground truth for all
120 synthetic datasets (blue: within-area A; red: within-area B). Data points are integer-valued,
but randomly jittered to show points that overlap. (f) Within-area A GP timescale estimates
versus the ground truth. Displayed error (‘err.’) indicates mean absolute error and SEM reported
across 900 within-area variables in area A. (g) Within-area B GP timescale estimates versus the
ground truth. Displayed error (‘err.’) indicates mean absolute error and SEM reported across 300
within-area variables in area B.

Overall, these results suggest that, for firing rates similar to those encountered in the experimen-
tal recordings we consider in this work, DLAG is largely robust when the neural activity is not
generated according to the linear and Gaussian assumptions of the DLAG observation model.
Across the neuronal populations, firing rates are sufficiently high that neural activity is essen-
tially operating in the linear regime of the softplus function, and a Gaussian noise model can still
suffice for Poisson-distributed spike counts (we explore low-firing-rate regimes in panel (h)).

The LNP-generated activity appears to have the greatest impact on the estimation of across- and
within-area dimensionalities, shown in panels (b) and (e). During the first stage of our model se-
lection procedure, the optimal factor analysis (FA) dimensionality was larger than the ground
truth in at least one area in 115 of 120 datasets. Consequently, estimated within-area dimension-
alities also tend to be higher than the ground truth. Interestingly, across-area dimensionality es-
timates remained highly accurate, matching the ground truth in 107 of 120 datasets (across-area
latent activity is shared among a larger number of neurons, leading to greater statistical power).
We have already explored the consequences of misestimates of dimensionality in Supplementary
Fig. 5 and Supplementary Fig. 6; those results still hold here. Quantifying the shared variance
explained by each latent variable (see Methods) provides safeguards against the overestimation of
dimensionality.
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(h) DLAG performance remains stable over a range of realistic firing rates. To probe the limits
of DLAG’s performance as a function of firing rate, we synthesized additional datasets from the
LNP generative model defined above, with the following characteristics: N = 100 trials; q1 =
q2 = 50 neurons per area; 500 ms trial lengths with 20 ms spike count bin widths (for T = 25
bins per trial); latent dimensionalities pa = pw1 = pw2 = 5; GP timescales τa, τw1 , τw2 ∈ [10, 150]
ms; and delays D ∈ [−30, 30] ms. We systematically varied the mean parameter, d, of the mod-
els used to generate each dataset (equally spaced on a log scale from 1 to 100 spikes/second).
All neurons had the same mean parameter value, so that mean firing rates over time and trials
were nearly the same for all neurons. We manually tuned the loading matrix parameters for each
area, Ci, so that the signal-to-noise ratios according to DLAG model estimates, tr(ĈiĈ

⊤
i )/tr(R̂i),

were no greater than 0.2 for all firing rate settings. For Poisson-distributed spike counts, the es-
timated signal-to-noise ratio is inextricably linked to firing rate: in the lowest firing rate setting,
1.0 spikes/second, estimated signal-to-noise ratios were about 0.04. We generated 25 independent
datasets for each firing rate setting.

Left: Error of observation model parameter estimates decreases with increasing firing rate, d (Ca
1 :

solid magenta; Ca
2 : dashed magenta; Cw

1 : solid blue; Cw
2 : dashed red; d: dark gray). Error bars

represent SEM across 25 independent simulated datasets. Center: Absolute error (in ms) of state
model parameter estimates decreases as firing rate increases (τa: magenta; τw1 : blue; τw2 : red;
D: dashed magenta). Error of within-area timescale estimates have been omitted for values of 1
spike/second, where absolute error was 685±236 ms for τw1 and 1089±339 ms for τw2 (mean and
SEM across all within-area timescales). Given insufficient statistical power, some GP timescale
estimates (likely for latent dimensions that explain little shared variance within an area) become
large (i.e., larger than the length of a trial)—to the point where smoothed population activity
in the corresponding dimension is effectively constant within a trial. Error bars represent SEM
across 125 latent variables. Right: Error (1 − R2) of firing rate time course estimates decreases
as mean firing rate increases (λ1: blue; λ2: red). Error values have been omitted for values of
1 spike/second, where R2 values were less than 0 (and hence error values were greater than 1).
Error bars represent SEM across 25 independent simulated datasets.

Overall, the smooth degradation of performance as mean firing rates decrease is an expected
trend: neural activity increasingly inhabits the nonlinear regime of the softplus function, and
DLAG’s Gaussian noise model becomes a poorer description of the Poisson-distributed spike
counts. Importantly, however, DLAG’s performance remains stable over a wide range of firing
rates, from 100 spikes/second (50 spikes/trial) to as low as 3 spikes/second (1.5 spikes/trial).
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Supplementary Figure 8. DLAG performance when state model, in addition to observa-
tion model, assumptions are violated. We next sought to investigate the effects of violations to
DLAG’s Gaussian process state model assumptions. We therefore explored a case study in which
the latent time courses of the linear-nonlinear-Poisson (LNP) generative model, described in
Supplementary Fig. 7, were inspired by the V1-V2 neural recordings, rather than generated via
Gaussian processes. We generated ground truth across-area latent time courses as follows. (For
simplicity, we did not consider within-area latent variables in this case study.) First, we applied
canonical correlation analysis (CCA) to spike trains (i.e., neuronal spikes counted in 1 ms time
bins) from the same V1-V2 dataset as analyzed in Fig. 5. Hence the data consisted of 400 trials,
each 1280 ms in length. CCA produces two sets of canonical basis vectors (dimensions)—one for
V1 and one for V2. We took the top three canonical dimensions in V1, and projected observed
V1 spike trains on each trial onto these canonical dimensions. Then, we averaged the projected
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activity in each canonical dimension over trials, to produce a single set of trial-averaged “tem-
plate” time courses. For each template time course, we took activity in a 1000 ms time window—
these snippets became the across-area latent time courses for our simulated area A. We then took
another 1000 ms snippet from each template, time-shifted relative to the snippets used for area
A—these snippets became the time-delayed across-area latent time courses for our simulated area
B.

Next, we generated an observed spike train on each simulated trial from the LNP observation
model defined in Supplementary Fig. 7. The same latent time courses were used on each trial,
hence all sources of trial-to-trial variability in these simulations arise from Poisson-distributed
noise that is independent across neurons. Before applying DLAG, we counted spikes in 20 ms
time bins, as we did for the V1-V2 recordings. Remaining dataset characteristics were as follows:
N = 100 trials; q1 = q2 = 50 neurons per area. We drew each element of the mean parameter
for area i, di, from an exponential distribution with mean 20 spikes/second (same for area A and
area B). We manually tuned the loading matrix parameters for each area, Ci, so that the signal-
to-noise ratios according to DLAG model estimates, tr(ĈiĈ

⊤
i )/tr(R̂i), was 0.3 for both areas.

(a) Ground truth latent variable time courses. Top row / blue box: area A; bottom row / red
box: area B. Across-area variables are paired vertically; vertical arrows point in the direction of
signal flow, as defined by the sign of the delay next to each arrow (all delay values are in units
of ms). a.u.: arbitrary units. Ground truth latent time courses are the same on every trial. No-
tice how the assumptions of the DLAG state model (i.e., that latent time courses follow a zero-
mean Gaussian process) no longer hold for these simulated data. First, latent time courses are
no longer zero-mean. Second, latent time courses no longer covary according to a squared expo-
nential function. For instance, all three across-area latent variable pairs exhibit strong periodic
structure. Furthermore, each latent time course comprises multiple timescales: notably, fast tran-
sient activity at the beginning of each trial, and slower timescales as the trial progresses.

(b) To focus first on the effects these violated assumptions had on DLAG’s estimation of latent
time courses, without being concerned about model selection, we fit a DLAG model with the
same number of across-area latent variables as the ground truth. Each black trace corresponds
to one trial; for clarity, only 10 of 100 are shown. To facilitate comparison with panel (c), the es-
timated GP timescale is displayed for each latent variable (τ1, τ2, τ3). All other conventions are
the same as in panel (a). Importantly, DLAG’s estimates recapitulate the key qualitative fea-
tures of the ground truth, including the fast increase in activity at the beginning of each trial
(see “Across 1”) and the periodic structure throughout each trial. Time delays are also accu-
rately estimated. The latent time courses estimated by DLAG are qualitatively smoother than
the ground truth (particularly during the first 60 ms of each trial), a consequence originating
from two sources: (1) temporal smoothing via the SE kernel, and (2) counting spikes in 20 ms
time bins.

(c) Next, we assumed no prior knowledge of the ground truth dimensionality—as would be the
case with real neural recordings—and estimated the across-area dimensionality. Interestingly, the
optimal across-area dimensionality, selected via cross-validated data log-likelihood (see Methods),
was 6, greater than the ground truth value. We investigated the latent time courses extracted by
this 6-dimensional model (displayed with the same conventions as in panel (b)).
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The first three across-area variables still recapitulate the main features of the ground truth. Rel-
ative to the 3-dimensional DLAG model (panel (b)), the delay estimates of the 6-dimensional
DLAG model differ by a few ms. Close inspection of the first 60 ms of each trial suggests that
the first three latent variables of the 6-dimensional DLAG model smooth over the fast transient
activity to a greater degree than the 3-dimensional DLAG model. Indeed, Across 1 in (c) has a
slightly longer GP timescale (43 ms) than Across 1 in (b) (34 ms).

The remaining latent variables, Across 4–6, are used by DLAG to account for the multiple timescales
present in the ground truth. Across 4 combines with Across 1 to account for the fast rise in ac-
tivity. Across 5 accounts for slower temporal structure throughout the trial, present in all ground
truth time courses. Across 6 is periodic with twice the temporal frequency of Across 3, and hence
a harmonic signal. Evidence of this phenomenon can be seen in some of the latent variables pre-
sented in Fig. 5. We note that we did not rescale latent variable amplitudes here, to best high-
light the temporal structure of each latent variable; however, these “extra” latent variables ex-
plained little shared variance relative to the first three latent variables (Across 4–6 cumulatively
explained only 12% and 9% of the shared variance in area A and in area B, respectively). Still,
the model selection results (i.e., that 6 dimensions was deemed optimal) suggest that these extra
latent variables do improve DLAG’s ability to capture the temporal structure of this simulated
neural activity.
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Supplementary Figure 9. V1-V2 results are preserved when V1 is subsampled to match V2
in population size. Same conventions as in Fig. 6. We sought to understand the extent to which
the results reported in Fig. 6 were driven by the fact that V1 populations were larger than V2
populations. All else being equal, more neurons allows one to reliably identify more latent dimen-
sions [72]. For each dataset, we thus randomly subsampled the V1 population (‘V1sub’) to match
the size of the V2 population. We then applied DLAG to each subsampled dataset in the same
manner as in Fig. 6. (a) V1sub-V2 within- and across-area dimensionalities. Compared to Fig. 6,
median across-area dimensionality (3) was the same. As a consequence of the smaller popula-
tion size, median within-V1sub dimensionality (7.5) decreased, but remained higher than median
across-area and median within-V2 (3) dimensionalities. Within-V2 dimensionality was 0 in 1 of
40 datasets. (b) Fraction of shared variance of each area explained by across-area latent vari-
ables in V1sub and in V2. Despite population sizes now being the same, across-area strength is
still significantly greater in V2 than in V1sub (median V1sub: 0.33; median V2: 0.70; one-sided
paired sign test; p = 1.8 × 10−4), as in Fig. 6. Even after controlling for V1 population size,
the within-area dimensionality of V1sub and V2 are not equal. It is possible that the difference
in across-area strength seen in (b) is implied by, and therefore redundant with, the difference in
within-area dimensionalities seen in (a). Specifically, the weaker across-area strength in V1 rel-
ative to V2 might be implied by the greater number of within-V1sub dimensions relative to the
number of across-area dimensions. To test this possibility, we recomputed the median across-area
strengths for V1 and V2, considering only datasets such that the distributions of within-V1sub
and within-V2 dimensionalities were the same. Sixteen datasets remained after this distribution-
matching procedure (the 16 datasets for V1 were not necessarily the same 16 datasets as for
V2). The medians in V1 and V2 were nearly unchanged (V1sub: 0.33; V2: 0.67). Across-area
strengths therefore convey a difference in the properties of V1 versus V2 activity that could not
be seen from differences in dimensionality alone. (c) Gaussian process (GP) timescale vs. time
delay for across-area latent variables. Across all 40 datasets, the delays of 97 of 136 across-area
variables were deemed significantly non-zero, and the remaining 39 delays were deemed ambigu-
ous. These values are nearly identical to those reported in Fig. 6. Similarly, delays remained
significantly less than zero, representing feedback interactions from V2 to V1sub (median delay
across all significantly non-zero across-area variables: -8 ms; ‘***’: one-sided one-sample sign test
on ‘non-zero’ delays, p = 5.2×10−4). Among the significantly non-zero delays, 67% were negative.
The magnitude of significant negative delays (median: -12 ms) remained greater than the magni-
tude of significant positive delays (median: +8ms). (d) GP timescales for within-area latent vari-
ables. GP timescales within V1sub and within V2 are similar to those reported in Fig. 6 (median
across 307 within-V1sub latent variables: 21 ms; median across 153 within-V2 latent variables:
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68 ms). Furthermore, as in Fig. 6, within-V2 GP timescales are significantly longer than within-
V1sub GP timescales (‘***’: one-sided Wilcoxon rank sum test, p = 3.5× 10−29).

21



a

D1 = -23 ms

Across-area Within-area

0.7

-0.7

0.0

0.5

-0.5

0.0

D2 = -10 ms

Stim. onset

Within 1

Within 1

Across 1 Across 2

Across 1 Across 2

Within 2Across 3

Across 3 Within 2

D3 = +5 ms

V2

V1

a.
u.

a.
u.

Mean over 
one stim.

Time

160 ms

Diff. in stim. angle (°)
0 90

Diff. in stim. angle (°) Diff. in stim. angle (°) Diff. in stim. angle (°)
0 90 0 90 0 90

A
cr

os
s-

ar
ea

 s
im

ila
rit

y

0

1

A
cr

os
s-

ar
ea

 s
im

ila
rit

y

0

1
W

ith
in

-a
re

a 
si

m
ila

rit
y

0

1

W
ith

in
-a

re
a 

si
m

ila
rit

y

0

1

b cV1 V2 V1 V2

Supplementary Figure 10. DLAG latent variable time courses and model parameters are sen-
sitive to stimulus condition. (a) We first explored how DLAG’s estimated latent time courses
might change with the orientation angle of grating stimuli. Toward that end, we started with the
parameters of the DLAG model fit to the V1-V2 dataset shown in Fig. 5. Then, we used those
model parameters to estimate latent time courses on trials involving all eight orientation angles,
including the orientation from which the model parameters were fit and the other seven orienta-
tions, which were not used for fitting. We then visualized the across- and within-area latent vari-
able time courses, averaged separately over the trials corresponding to each stimulus condition.
Left: Across-area time courses. Right: Within-area time courses. Top row / blue box: V1. Bot-
tom row / red box: V2. Each panel corresponds to a latent variable time course. All time courses
are aligned to stimulus onset. a.u.: arbitrary units. Each trace represents an average over 400 tri-
als, corresponding to one of eight orientation angles. Gray shading distinguishes stimulus condi-
tions. The ordering of latent variables and all other conventions are the same as in Fig. 5a. The
amplitude and phase of the periodic components present in each latent variable reflect the dif-
ferences in the orientation angle of the drifting gratings. (b) We next asked how the across-area
subspaces, defined for area i by the loading matrix parameter Ca

i , changed as a function of orien-
tation angle. For each V1-V2 recording session, we computed the subspace similarity (1 − esub,
where esub is defined in equation (9)) between estimated Ca

i for each pair of grating orientations.
To summarize the 8 × 8 pairwise comparisons in each session, we considered only the relative
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differences in orientation angle between datasets (from 0° to 157.5°). We computed the average
subspace similarity, across all eight orientations, at each relative orientation angle difference. We
then averaged these curves of subspace similarity as a function of relative orientation angle differ-
ence across sessions. Left: V1 across-area subspace similarity versus relative difference in orien-
tation angle. Right: Same as the left, for V2. Error bars represent SEM over five sessions, each
with eight orientations. Notice the periodic structure of the subspace similarity, consistent with
the periodic nature of the oriented grating stimulus: the more similar the orientations, the more
similar the identified subspaces. (c) Same as (b), but comparing within-area subspaces, defined
for area i by the loading matrix parameter Cw

i . Notice again the periodic structure of the sub-
space similarity, consistent with the periodic nature of the oriented grating stimulus.
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Supplementary Figure 11. DLAG shows that V1-V4 interactions depend on the type of vi-
sual stimulus presented.

We used DLAG to study interactions between a second pair of brain regions (visual areas V1 and
V4) in an awake animal. In particular, we sought to explore if DLAG, when used to study V1-V4
interactions, was sensitive to the type of stimulus presented: oriented gratings versus naturalis-
tic textures. Previous work has shown that responsivity to higher order statistics of visual stim-
uli develops gradually along the ventral visual stream. V2 and V4 respond to the higher order
statistics present in textures, whereas V1 does not—selective primarily to the spectral content of
textures [73, 74].

To better understand the effect of stimulus complexity on inter-areal communication, we recorded
simultaneous V1 and V4 population responses to gratings and textures while an awake animal
was passively fixating. Animal procedures and recording details have been described in previous
work [41, 75]. Briefly, one male adult cynomolgus macaque was trained to maintain fixation on a
small spot (0.2° × 0.2°, 80 cd/m2) on a gray background (40 cd/m2) within a 1.4° diameter fixa-
tion window. Eye-position was monitored using a video tracking system (Eyelink II, SR research,
ON, Canada) with a sampling rate of 500 Hz. Stimuli were presented on a calibrated monitor 64
cm away from the animal (1400 × 1050 pixel resolution; 100 Hz refresh rate).

(a) After training, Utah arrays (0.4 mm spacing; 1 mm electrode length, Blackrock, UT) were
implanted in V1 and V4: two 96 channel arrays in V1 and two 48 channel arrays in V4 (see [41]).
All procedures were approved by the IACUC of the Albert Einstein College of Medicine. We tar-
geted the arrays to have matching retinotopic locations in V1 and V4 by relying on anatomical
markers and previous mapping studies. Receptive fields were in the lower right visual hemifield
and largely overlapping for V1 and V4 populations (see [41]). Extracellular voltage signals were
amplified and band-pass filtered between 250 and 7.5 kHz using commercial acquisition software
(Blackrock Microsystems, UT and Grapevine, Ripple, UT). Voltage snippets that exceeded a
user-defined threshold were digitized and sorted offline.

Visual stimuli and task contingencies were presented using custom openGL software (Expo: http:
//sites.google.com/a/nyu.edu/expo). During recording sessions, two sets of stimuli were
presented: a set of sinusoidal gratings and a set of naturalistic textures, which included noise
stimuli whose spectra were matched to that of a texture. Sets of gratings included four full con-
trast stimuli, comprising two spatial frequencies one octave apart (1.2-2.4 cyc/°) and two orien-
tations 90° apart (e.g., 1.2 cyc/°, 45°; 2.4 cyc/°, 45°; 1.2 cyc/°, 135°; 2.4 cyc/°, 135°). Sets of tex-
tures included six stimuli (four naturalistic texture stimuli, two spectrally matched noise stimuli),
generated as follows. Two textures were selected from the Multiband Texture Database (http:
//multibandtexture.recherche.usherbrooke.ca/original_brodatz.html) and Salzburg Tex-
ture Image Database (https://wavelab.at/sources/STex). The two textures were first down
sampled to 256 × 256 pixels and matched in contrast. Then two distinct samples (each 512 ×
512 pixels in size) were synthesized for each texture using the Portilla-Simoncelli algorithm [76].
One sample of spectrally matched noise was synthesized for each of the two textures. All stimuli
were presented in a 4.7° square aperture.

Trials began with the animal fixating on a small spot in the center of the screen. After a delay
of 300 ms, a random sequence of two stimuli, both from either the grating set or the texture set,
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appeared on the screen. Each stimulus presentation lasted for 300 ms. The inter stimulus inter-
val was 400 ms (gray screen). After the second stimulus presentation, the animal had to main-
tain fixation for an additional 300 ms (gray screen) and was then positively reinforced with a liq-
uid reward if fixation was maintained throughout the trial. The animal performed on average
1307±15 trials per session. We recorded neural activity for three sessions.

We were interested in observing whether DLAG was sensitive to the presentation of grating ver-
sus texture stimuli. Hence for further analysis, we excluded presentations of spectrally matched
noise stimuli. As stated above, each trial comprised two stimulus presentation periods: we treated
these periods as independent “trials” when applying DLAG. Our analysis included on average
262±4 presentations per stimulus (four grating stimuli, four texture stimuli) per session. For
each recording session, we grouped together all trials in which oriented grating stimuli were pre-
sented (regardless of orientation or spatial frequency; a “grating stimulus set”), and all trials in
which texture stimuli were presented (regardless of texture sample; a “texture stimulus set”). We
analyzed 480 ms time windows, from 30 ms after stimulus onset to 210 ms after stimulus offset
(hence the analysis time window included some spontaneous neural activity). We counted spikes
in 20 ms time bins during this analysis time window.

We analyzed neuronal responses from one V1 array and from one V4 array that showed the great-
est visual receptive field overlap with V1. For each recording session, we excluded neurons that
fired fewer than 0.5 spikes/second, on average, for any given stimulus condition. We also ex-
cluded neurons with a Fano factor greater than 1.6, on average, across all stimulus conditions
(Fano factor was computed across trials of one stimulus condition at a time). Following these
screening steps, sessions 1, 2, and 3 contained pools of 60, 83, and 77 neurons, respectively, in
V1, and pools of 44, 54, and 37 neurons, respectively, in V4. Note that, for each recording ses-
sion, V1 and V4 neurons were the same across grating and texture stimulus sets. Because we
were interested in V1-V4 interactions on timescales within a trial, we subtracted the mean across
time bins within each trial from each neuron. This step removed activity that fluctuated on slow
timescales from one stimulus presentation to the next.

(b) Average population activity in V1 (top row) and V4 (bottom row) in response to an exam-
ple grating stimulus set (left column) and in response to an example texture stimulus set (right
column). These grating and texture stimulus sets correspond to Stimulus Set 2 (gray squares) in
panels (c)–(e). Shaded regions indicate ± one SEM, where the mean is taken over peristimulus
time histograms (PSTHs) of individual neurons (83 in V1; 54 in V4). The recorded V1 and V4
neurons are the same across the left and right columns.

Finally, throughout our analyses, we sought to assess the variability of DLAG’s estimates within
each recording session and stimulus set. For each recording session, we randomly subsampled 20
V1 neurons and 20 V4 neurons from the overall pool of neurons described above. We repeated
this subsampling procedure 10 times (starting from the same overall pool of neurons in V1 and
in V4). We then applied DLAG separately to each subsample, resulting in 60 separate analyses
across the three recording sessions, each with one grating stimulus set and one texture stimulus
set. Importantly, the subsampled V1 and V4 neurons were the same across grating and texture
stimulus sets, enabling direct comparison between DLAG models. In (c)–(e), we refer to these
paired grating/texture stimulus sets as simply “stimulus sets.”
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(c) V1-V4 across-area dimensionality during the presentation of texture stimuli versus oriented
grating stimuli. Each point represents results for a single subsample of V1 and V4 neurons. Data
points are integer-valued, but randomly jittered to show points that overlap. In two of three
stimulus sets, V1-V4 across-area dimensionality was significantly lower during presentations of
texture stimuli than during presentations of oriented grating stimuli (one-sided paired sign test;
stimulus set 1, magenta circles: p = 0.144; stimulus set 2, gray squares: p = 0.016; stimulus
set 3, orange triangles: p = 0.002). (d) Cross-validated across-area prediction (leave-group-out
R2) between V1 and V4 during the presentation of texture stimuli versus oriented grating stim-
uli. Each point represents results for a single subsample of V1 and V4 neurons. In all three stim-
ulus sets, V1-V4 across-area prediction appears weaker during presentations of texture stimuli
than during presentations of oriented grating stimuli (one-sided paired sign test; for all stimulus
sets, p < 0.001). (e) Gaussian process (GP) timescale vs. time delay for across-area latent vari-
ables uncovered during presentations of oriented grating stimuli (left) and during presentations
of texture stimuli (right). Each point represents one across-area variable. Filled points: across-
area latent variables for which the delays were deemed significantly non-zero. Unfilled points:
across-area latent variables for which delays were deemed ambiguous (not significantly positive
or negative). Relative to grating sets, texture sets exhibited a marked absence of across-area GP
timescales in the 30–45 ms range. The time delays for across-area variables with GP timescales
in the 45–80 ms range appear to depend on the set of textures presented (points in this range
cluster according to texture set).
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Supplementary Figure 12. V1-V2 interactions are better described by DLAG than by prob-
abilistic canonical correlation analysis. To demonstrate the advantages of modeling the temporal
structure of neuronal interactions within and across areas, we applied probabilistic canonical cor-
relation analysis (pCCA) [42] to the same V1-V2 datasets as in Fig. 6. pCCA is a static dimen-
sionality reduction method that includes across-area latent variables, but not within-area latent
variables (see Methods, equations (46) and (47)). (a) Comparison of pCCA and DLAG across-
area dimensionality estimates. For each of the 40 V1-V2 datasets, we identified the number of
pCCA latent variables through K-fold cross-validation (here we chose K = 4, as was done for
DLAG cross-validation). The pCCA model with the highest cross-validated data likelihood was
taken as optimal. Top: Estimated pCCA dimensionality versus estimated DLAG across-area di-
mensionality. Each data point represents one V1-V2 dataset. Data points are integer-valued, but
randomly jittered to show points that overlap. pCCA and DLAG estimates of across-area dimen-
sionality are modestly correlated (Pearson correlation coefficient, r = 0.48). Bottom: Distribu-
tion of the differences between pCCA and DLAG across-area dimensionality (‘dim.’) estimates on
each dataset. pCCA estimates are slightly higher than DLAG estimates (black triangle indicates
the median difference across datasets: 0.5; ‘*’: one-sided paired sign test; p = 0.0494). (b)–(c)
DLAG outperforms pCCA according to multiple metrics. On each dataset, we compared the op-
timal pCCA model to the optimal DLAG model (each selected through cross-validation) via two
performance metrics: cross-validated data log-likelihood (LL; b) and cross-validated leave-group-
out R2 (c). See Methods for details. Cross-validated LL offers the most principled comparison,
as it is precisely the data log-likelihood that the two probabilistic methods are intended to max-
imize. However, interpretation of the relative performance differences between methods can be
difficult given the scale of LL values. Furthermore, LL values can vary dramatically from dataset
to dataset, often by orders of magnitude. Hence leave-group-out R2 facilitates more intuitive
comparison between methods and across datasets, at the expense of a principled characterization
of performance within each method’s probabilistic framework. Top panels: pCCA performance
versus DLAG performance. Each data point represents one V1-V2 dataset. Bottom panels: Dis-
tribution of differences between pCCA and DLAG performance on each dataset. DLAG signifi-
cantly outperforms pCCA across datasets (black triangles indicate the median difference across
datasets; ‘***’: one-sided paired sign test; p < 0.001). DLAG’s better performance can be at-
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tributed to multiple differences between the DLAG and pCCA models. First, DLAG includes the
addition of low-dimensional within-area latent variables. pCCA models within-area activity via
full-rank observation noise covariance matrices (see equation (47)). Fig. 6a suggests that within-
area activity in both V1 and in V2 is well-described as low-dimensional. Second, the number of
parameters in the DLAG model scales linearly with the number of neurons in each area, whereas
the number of parameters in the pCCA model scales quadratically with the number of neurons in
each area, lending pCCA to be more prone to overfitting. Third, DLAG accounts for the tempo-
ral structure of within- and across-area interactions (using Gaussian processes), whereas pCCA
does not. Fourth, DLAG accounts for time delays in across-area interactions, whereas pCCA
does not.
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Supplementary Figure 13. Canonical correlation analysis (CCA) cannot disentangle signals
that are relayed concurrently and with similar strength. Here we leverage simulations to demon-
strate where a static method like CCA is unable to disentangle concurrent signaling. In brief, we
synthesized two additional datasets from the linear-nonlinear-Poisson (LNP) generative model
defined in Supplementary Fig. 7. The two datasets were nearly identical, with one difference: in
the first dataset (a), across-area latent variables had different strengths; in the second dataset
(b), across-area latent variables had equal strengths. This difference between datasets cannot be
seen above, since the amplitudes of latent time courses are normalized.

In detail, we first generated latent time courses for pa = 2 across-area variables. For simplicity,
we did not include within-area latent variables. One across-area variable (Across 1) was assigned
a delay of +25 ms (so that area A leads area B; observe the relative time-shift in Across 1 be-
tween black traces in area A versus area B); the second across-area variable (Across 2) was as-
signed a delay of −25 ms (so that area B leads area A; observe the relative time-shift in Across
2 between black traces in area A versus area B). Both across-area variables had the same Gaus-
sian process (GP) timescale, 60 ms. In this demonstration, we wanted to isolate the consequences
of the CCA model definition from issues like overfitting. We therefore simulated a data-rich sce-
nario by generating N = 1, 000 independent trials, each 500 ms in length. On each trial, we gen-
erated a different set of across-area latent time courses, Xn. Let X = {X1, . . . , XN} be the set of
latent time courses over all N trials.

For both datasets, we generated spike trains (see Supplementary Fig. 7) at 1 ms resolution for
q1 = q2 = 50 neurons per area from the common set of latent time courses, X. All neurons had
the same mean parameter value (d, defined in Supplementary Fig. 7) of 20 spikes/second, so that
mean firing rates over time and trials were nearly the same for all neurons. The loading matrix
parameters for each area, Ca

i , were manually tuned so that the signal-to-noise ratios according to

DLAG model estimates, tr(Ĉa
iĈa

⊤
i )/tr(R̂i), were 0.2. We counted spikes in 20 ms time bins, and

then fit both a CCA model and a DLAG model to each dataset.
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The difference between the two datasets was as follows. For the first dataset, we scaled the columns
of Ca

i (for each area i) so that the magnitude of the column associated with the +25 ms latent
variable was twice the magnitude of the column associated with the −25 ms latent variable. For
the second dataset, we took the same Ca

i that was used for the first dataset, but rescaled the
columns of Ca

i (for each area i) so that both columns had equal magnitude. We performed this
rescaling such that signal-to-noise ratios remained the same across both datasets. Thus these two
datasets allowed us to isolate the effects of the relative strengths of feedforward versus feedback
signals on CCA’s (and DLAG’s) ability to disentangle those signals.

Time delays are not inherently built into the CCA model. To estimate a time delay for each pair
of fitted canonical dimensions, we identified the time delay at which projections of area A ac-
tivity and projections of area B activity had maximum cross-correlation. The cross-correlation
function between area A and area B projections was computed with 1 ms resolution, from -40 ms
(B leads A) to +40 ms (A leads B). In detail, we first took a fixed window of activity in area A,
420 ms in length, from 40 ms to 460 ms into the trial. For each trial, we counted spikes within
this window in 20 ms nonoverlapping time bins, and projected this activity onto each canonical
dimension in area A. For area B, we employed a sliding window of length 420 ms, which we ad-
vanced in 1 ms increments, from the beginning of the trial to 80 ms into the trial. At each incre-
ment, we counted spikes within the window in 20 ms nonoverlapping time bins, and projected
this activity (on each trial) onto each canonical dimension in area B. For each canonical pair,
we computed the Pearson correlation between the projected area A activity and the projected
area B activity. This correlation value gave one element of a cross-correlation function: repeat-
ing this procedure at each increment of the sliding window in area B produced a cross-correlation
function from -40 ms to +40 ms. We then identified the time delay at which the cross-correlation
function for each canonical pair was maximum.

(a) Each canonical dimension can reflect a directed interaction if the signals in each direction
have different strengths. In general, the first canonical pair returned by CCA is the pair of di-
mensions along which projections of simultaneously observed activity exhibit the greatest corre-
lation across areas. Projections onto the second canonical pair exhibit the second greatest cor-
relation across areas, and so on. In this dataset, projections of simultaneously observed activ-
ity onto Across 1 exhibit greater across-area correlation than do projections onto Across 2, by
design. Thus the first and second canonical pairs estimated here indeed reasonably reflect each
direction of signal flow. DLAG estimates closely match the ground truth. Top row / blue box:
area A; bottom row / red box: area B. Black solid traces: ground truth across-area latent time
courses on a representative trial. Orange dashed traces: DLAG estimates. Magenta solid traces:
CCA estimates. a.u.: arbitrary units. Black arrows indicate the direction of signal flow between
area A and area B, given by the ground truth delay value. Ground truth and estimated delay
values (in ms) are shown to the right of each arrow (top, black: ground truth; center, orange:
DLAG estimate; bottom, magenta: CCA estimate). Canonical pairs are sorted from left to right,
in descending order, based on the value of their canonical correlation.

(b) Canonical dimensions reflect a mixture of signals relayed in each direction if those signals
have similar strengths. Same conventions as in panel (a). Because the latent variables in this
dataset have similar strengths, the canonical pairs do not provide a faithful description of each
direction of signal flow. The CCA-estimated time courses and time delays deviate significantly
from the ground truth. DLAG estimates still closely match the ground truth.
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Overall, these two scenarios demonstrate that CCA can identify directions of signal flow if signals
in one direction are dominant (a), but not if signals in both directions have similar strengths (b).
DLAG successfully disentangles concurrent signaling in both scenarios.
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Supplementary Figure 14. Canonical correlation analysis (CCA) provides a description of
V1-V2 signal flow that is qualitatively different from that of DLAG. Here we consider the V1-
V2 recordings, and explore the qualitative differences between a static method like CCA and
DLAG, particularly in their descriptions of inter-areal signal flow. We thus considered the same
V1-V2 dataset as presented in Fig. 5, and studied the projections of V1-V2 neural activity onto
the across-area dimensions obtained via CCA.

(a) The top canonical variable is dominated by feedback (V2 leads V1) activity, even if CCA is
fit to V1-V2 activity with a nominal feedforward (V1 leads V2) time-shift. One approach to us-
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ing CCA to identify the direction of inter-areal signal flow was recently proposed in [41]. There,
a sliding window scheme was used, in which observations of V2 activity were first time-shifted
relative to observations of V1 activity, and then CCA was fit to this time-shifted V1-V2 activ-
ity. CCA was fit anew for each incremental advance of the sliding window throughout the course
of the trial, thereby producing a different set of canonical dimensions for each relative time shift
between V1 and V2 activity. The top canonical dimensions were then studied at various time
delays and at various time points throughout the trial to identify periods of feedforward- and
feedback-dominated activity.

In Supplementary Fig. 13, we showed that the top canonical dimension—when fit to simultane-
ous observations—reflects either the dominant direction of interaction (Supplementary Fig. 13a)
or a mixture of signals relayed in both directions (Supplementary Fig. 13b). Could one tease
apart concurrent feedforward and feedback signals by instead fitting the top canonical dimen-
sion to time-shifted V1-V2 activity, as in [41]? One might expect, for example, that a feedfor-
ward interaction becomes dominant in V1-V2 activity after imposing a “feedforward” time shift.
Then in principle, the top canonical dimension identified from this time-shifted activity could
reflect such a feedforward interaction (resembling, for example, DLAG’s Across 3 in Fig. 5a, a
nominally feedforward latent variable). One could analogously find the top canonical dimension
for “feedback-shifted” V1-V2 activity to reveal a feedback interaction (resembling, for example,
DLAG’s Across 1 in Fig. 5a, a nominally feedback latent variable).

To investigate whether this expectation holds in the V1-V2 recordings, we employed a scheme
similar to that of [41] (but modified to better facilitate comparison with DLAG), and studied
how projections of V1 and V2 activity onto the top canonical dimension qualitatively change as
CCA is fit to V1-V2 activity with different relative time shifts. Specifically, we first took a fixed
window of activity in V1, 1240 ms in length, from 20 ms to 1260 ms after stimulus onset. We
counted spikes within this window in 20 ms nonoverlapping time bins. For V2, we considered
three different (overlapping) time windows, each 1240 ms in length: from 0 ms to 1240 ms af-
ter stimulus onset, from 20 ms to 1260 ms after stimulus onset, and from 40 ms to 1280 ms after
stimulus onset. In each of these windows, we counted spikes in 20 ms nonoverlapping time bins.
We then fit a separate CCA model between the fixed window of activity in V1 and each of the
three windows of activity in V2. Then for each fitted model, we projected V1 and V2 neural ac-
tivity onto the top canonical pair of dimensions.

The projected time courses show no appreciable differences across the three time-shifted model
fits. Left: A CCA model was fit to time-shifted activity, in which V2 activity was shifted to lead
V1 activity by 20 ms (-20 ms delay). Center: A CCA model was fit to simultaneously observed
V1 and V2 activity. Right: A CCA model was fit to time-shifted activity, in which V2 activity
was shifted to lag V1 activity by 20 ms (+20 ms delay). Top row / blue box: V1. Bottom row /
red box: V2. Each black trace corresponds to one trial; for clarity, only 10 of 400 are shown. All
time courses are aligned to stimulus onset. a.u.: arbitrary units.

Even though the time courses in each of the three cases look similar, do they reflect signal flow
in different directions? To address this question, we estimated a time delay for each pair of fit-
ted canonical dimensions using the same procedure as in Supplementary Fig. 13: we identified
the time delay at which projections of V1 activity and projections of V2 activity had maximum
cross-correlation. The cross-correlation function between V1 and V2 projections was computed
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with 1 ms resolution, from -40 ms (V2 leads V1) to +40 ms (V1 leads V2). In detail, we first
took a fixed window of activity in V1, 1200 ms in length, from 40 ms to 1240 ms after stimulus
onset. For each trial, we counted spikes within this window in 20 ms nonoverlapping time bins,
and projected this activity onto each canonical dimension in V1. For V2, we employed a sliding
window of length 1200 ms, which we advanced in 1 ms increments, from 0 ms to 1280 ms after
stimulus onset. At each increment, we counted spikes within the window in 20 ms nonoverlap-
ping time bins, and projected this activity (on each trial) onto each canonical dimension in V2.
For each canonical pair, we computed the Pearson correlation between the projected V1 activ-
ity and the projected V2 activity. This correlation value gave one element of a cross-correlation
function: repeating this procedure at each increment of the sliding window in V2 produced a
cross-correlation function from -40 ms to +40 ms. We then identified the time delay at which
the cross-correlation function for each canonical pair was maximum. Vertical arrows point in the
direction of signal flow implied by this time delay.

For the canonical pair fit to V1-V2 observations with a -20 ms time shift (left panel), the iden-
tified time delay is indeed negative—but so are the time delays identified in the other two cases.
Here, a feedback interaction is dominant, and its cross-correlation (a function of the relative time
lag between V1 and V2) decays sufficiently slowly that it remains dominant over a wide range
of time lags. Thus the top canonical pair reflects this dominant feedback interaction even when
fit to feedforward-shifted V1-V2 activity (right panel). This phenomenon demonstrates the chal-
lenge of using a static method like CCA, as we have done here (see also [41]), to disentangle con-
current, bidirectional interactions across areas. We note that, in contrast to the results demon-
strated here, [41] found bidirectional (though not concurrent) signals because a much smaller
analysis time window was used (80 ms), which enabled the characterization of feedforward- and
feedback-dominated trial periods. The concepts demonstrated here still apply within each of
those trial periods.

(b) Canonical variables fit to simultaneously observed activity indicate only predominant feed-
back (V2 to V1) activity or zero-lag activity. We again considered the CCA model fit to simul-
taneously observed activity (panel (a), center), and sought to assess the direction of signal flow
associated with all significant canonical pairs selected via cross-validation (see Supplementary
Fig. 12). We estimated a time delay for each canonical pair using the same procedure as de-
scribed in Supplementary Fig. 13 and in panel (a). Canonical variables are paired vertically, and
ordered from left to right according to descending canonical correlation value. All other conven-
tions are the same as in (a).

The first canonical pair is associated with a negative (V2 to V1) delay, similar to DLAG’s Across
1 and Across 2 in Fig. 5a. But notably, the remaining canonical pairs are associated with time
delays at or near 0 ms, whereas DLAG identified a similarly periodic signal with a time delay of
+5 ms (Across 3 in Fig. 5a). The qualitative discrepancy between CCA and DLAG could be due
to two possible sources: (1) Given the same data, CCA has less statistical power than DLAG,
and (2) The mathematical definition of CCA limits its ability to disentangle concurrent signals,
irrespective of the amount of available data (as illustrated in Supplementary Fig. 13).
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Supplementary Figure 15. V1-V2 interactions are better described by DLAG models with
time delays than without time delays. To demonstrate the benefit of including time delays in the
statistical model, we re-applied DLAG to the V1-V2 datasets presented in Fig. 6, but forced all
time delay parameters to be zero throughout model selection and fitting. We abbreviate these
constrained models as ‘DLAG-0’ from here on and in all figure panels. (a) Comparison of DLAG-
0 and DLAG across-area dimensionality estimates. For each of the 40 V1-V2 datasets, we iden-
tified the number of within- and across-area latent variables for DLAG-0 models using the same
two-stage model selection procedure as for the DLAG models (see Methods). Hence estimates
for DLAG-0 and DLAG dimensionalities were based on the same first-stage factor analysis (FA)
estimates of dimensionality. Top: Estimated DLAG-0 across-area dimensionality (‘dim.’) ver-
sus estimated DLAG across-area dimensionality. Each data point represents one V1-V2 dataset.
Data points are integer-valued, but randomly jittered to show points that overlap. DLAG-0 and
DLAG estimates of across-area dimensionality are highly correlated (Pearson correlation coef-
ficient, r = 0.81). Whether or not the ability to fit time delays leads to higher or lower esti-
mates of across-area dimensionality depends on the idiosyncrasies of the neural activity being
analyzed. Greater model flexibility provided by time delays could lead to fewer identified dimen-
sions (cf. [45]). However, the ability to capture time-delayed interactions could also lead to the
discovery of additional dimensions that contain significant (time-lagged) cross-area correlations—
correlations that would have gone otherwise undetected by a method that could not account for
time delays. Bottom: Distribution of the differences between DLAG-0 and DLAG across-area
dimensionality estimates on each dataset. ‘ns’: across-area dimensionality estimates are not sig-
nificantly different across datasets (one-sided paired sign test: p = 0.0946; black triangle indicates
the median difference across datasets: 0). (b)–(c) DLAG outperforms DLAG-0 according to mul-
tiple metrics. On each dataset, we compared the optimal DLAG-0 model to the optimal DLAG
model (each selected through cross-validation) via two performance metrics: cross-validated data
log-likelihood (LL; b) and cross-validated leave-group-out R2 (c). See Methods for details. Top
panels: DLAG-0 performance versus DLAG performance. Each data point represents one V1-V2
dataset. Bottom panels: Distribution of differences between DLAG-0 and DLAG performance on
each dataset. DLAG significantly outperforms DLAG-0 across datasets (black triangles indicate
the median difference across datasets; ‘***’: one-sided paired sign test; p < 0.001). DLAG-0 does
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outperform DLAG on some datasets (2 of 40 datasets according to LL; 7 of 40 datasets accord-
ing to leave-group-out R2), not inconsistent with the results presented in Fig. 6c, in which many
“ambiguous” time delays were identified, whose magnitudes did not significantly deviate from
zero (see also Methods). Preferably, one would assess the significance of time delay estimates on
a case-by-case basis, as we have done throughout this work.
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Supplementary Figure 16. The strongest across-area interactions in V1 are nominally feed-
forward (V1 to V2), while the strongest across-area interactions in V2 are nominally feedback
(V2 to V1). (a) Normalized distributions of the fraction of shared variance explained in V1
(‘Shared var. exp. in V1’) by individual across-area latent variables across all 40 datasets. Left:
All across-area latent variables with a significant positive delay (V1 to V2). ‘Frac. pos.-delay la-
tents’: Fraction of positive-delay latent variables. Center: All across-area latent variables with a
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significant negative delay (V2 to V1). ‘Frac. neg.-delay latents’: Fraction of negative-delay latent
variables. Right: All across-area latent variables with an ambiguous delay (not significantly posi-
tive or negative). ‘*’: Individual positive-delay latent variables explained more shared variance in
V1 than individual negative-delay latent variables (one-sided Wilcoxon rank sum test, p = 0.042).
(b) Normalized distributions of the fraction of shared variance explained in V2 (‘Shared var. exp.
in V2’) by individual across-area latent variables across all 40 datasets. Same conventions as in
(a). ‘**’: Individual negative-delay latent variables explained more shared variance in V2 than
individual positive-delay latent variables and individual latent variables with ambiguous delays
(one-sided Wilcoxon rank sum test, p < 0.01). (c) Normalized distributions of the fraction of
shared variance explained in V1a (‘Shared var. exp. in V1a’) by individual across-population
latent variables across all 40 datasets. Left: All across-population latent variables with a signif-
icant positive delay (V1a to V1b). Center: All across-population latent variables with a signif-
icant negative delay (V1b to V1a). Right: All across-population latent variables with an am-
biguous delay (not significantly positive or negative). No type of latent variable explained more
or less shared variance in V1a than any other type of latent variable (two-sided Wilcoxon rank
sum test, p > 0.05 in all cases). (d) Normalized distributions of the fraction of shared variance
explained in V1b (‘Shared var. exp. in V1b’) by individual across-population latent variables
across all 40 datasets. Same conventions as in (c). No type of latent variable explained more or
less shared variance in V1b than any other type of latent variable (two-sided Wilcoxon rank sum
test, p > 0.05 in all cases).
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Supplementary Note

Fitting the DLAG model

Equations (1)–(8) provide a full definition of the DLAG model. In this section, we describe how
DLAG model parameters are fit using exact Expectation Maximization (EM), where the parame-
ters are

θ =
n
C, d, R, {Dj}p

a

j=1, {τaj }p
a

j=1, {τw1,j}
pw1
j=1, {τw2,j}

pw2
j=1

o
(19)

Toward that end, we first write the DLAG observation model more compactly as follows. De-
fine the joint activity of neurons in all brain areas by vertically concatenating the observations in
each area, y1,t and y2,t:

yt =

�
y1,t

y2,t

�
∈ Rq (20)

where q = q1 + q2. Next we group together the across- and within-area latent variables for the ith

brain area to define xi,t = [xa⊤
i,:,t x

w⊤
i,:,t]

⊤ ∈ Rpi , where pi = pa + pwi . We then vertically concatenate
the latent variables in each area:

xt =

�
x1,t

x2,t

�
∈ Rp (21)

where p = p1 + p2. We also define the following structured matrices. First define Ci = [Ca
i Cw

i ] ∈
Rqi×pi by horizontally concatenating Ca

i and Cw
i . Then, we collect the Ci into a block-diagonal

matrix as follows:

C =

�
C1 0
0 C2

�
∈ Rq×p (22)

Similarly, define

R =

�
R1 0
0 R2

�
∈ Rq×q, (23)

d =

�
d1

d2

�
∈ Rq (24)

We can then write the DLAG observation model compactly as follows:

yt | xt ∼ N (Cxt + d, R) (25)

The observation model expressed in equation (25) defines a distribution for neural activity at a
single time point, but to properly fit the DLAG model, we must consider the distribution over all
time points. Thus we define ȳ = [y⊤

1 · · ·y⊤
T ]

⊤ ∈ RqT and x̄ = [x⊤
1 · · ·x⊤

T ]
⊤ ∈ RpT , obtained by

vertically concatenating the observed variables yt and latent variables xt, respectively, across all
t = 1, . . . , T . Then, we rewrite the state and observation models as follows:

x̄ ∼ N (0, K̄) (26)

ȳ | x̄ ∼ N (C̄x̄+ d̄, R̄), (27)

where C̄ ∈ RqT×pT and R̄ ∈ SqT×qT are block diagonal matrices comprising T copies of the matri-
ces C and R, respectively. d̄ ∈ RqT is constructed by vertically concatenating T copies of d. The
elements of K̄ ∈ RpT×pT are computed using equations (3)–(8). Then, the joint distribution over
observed and latent variables is given by

�
x̄
ȳ

�
∼ N

��
0
d̄

�
,

�
K̄ K̄C̄⊤

C̄K̄ C̄K̄C̄⊤ + R̄

��
(28)
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E-step In the E-step, our goal is to compute the posterior distribution of the latent variables x̄
given the recorded neural activity ȳ, P (x̄|ȳ), using the most recent parameter estimates θ. Using
basic results of conditioning for jointly Gaussian random variables, we get

x̄ | ȳ ∼ N
�
K̄C̄⊤

�
C̄K̄C̄⊤ + R̄

�−1 �
ȳ − d̄

�
, K̄ − K̄C̄⊤

�
C̄K̄C̄⊤ + R̄

�−1
C̄K̄

�
(29)

Thus, posterior estimates of latent variables are given by

E [x̄|ȳ] = K̄C̄⊤
�
C̄K̄C̄⊤ + R̄

�−1 �
ȳ − d̄

�
(30)

The marginal likelihood of the observed neural activity can be computed as

ȳ ∼ N
�
d̄, C̄K̄C̄⊤ + R̄

�
(31)

M-step In the M-step, our goal is to maximize E(θ) = E [logP (x̄, ȳ)|θ] with respect to θ, using
the latest inference of the latent variables, computed in the E-step. As in [44, 45], we adopt the
following notation. Given a vector v,

⟨v⟩ = E [v|ȳ] (32)

⟨vv⊤⟩ = E
h
vv⊤|ȳ

i
(33)

The appropriate expectations can be found using equation (29).

Maximizing E(θ) with respect to C, d yields the following closed-form update for the ith brain
area:

�
Ci di

�
=

 
TX

t=1

yi,t ·
�
⟨xi,t⟩⊤ 1

�
! 

TX

t=1

�⟨xi,tx
⊤
i,t⟩ ⟨xi,t⟩

⟨xi,t⟩⊤ 1

�!−1

(34)

After performing the update for each area separately, we collect all updated values into C and d.
Then we update R for both brain areas together, as follows:

R =
1

T
diag

(
TX

t=1

�
(yt − d)(yt − d)⊤ − (yt − d)⟨xt⟩⊤C⊤ − C⟨xt⟩(yt − d)⊤ + C⟨xtx

⊤
t ⟩C⊤

�)

(35)
There are no closed-form solutions for the Gaussian process parameter updates, but we can com-
pute gradients and perform gradient ascent. Note that, for this work, we choose not to fit the
Gaussian process noise variances, but rather, we set them to small values (10−3), as in [44]. Within-
area timescale gradients for the ith brain area and jth within-area latent variable are given by

∂E(θ)
∂τwi,j

= tr



 
∂E(θ)
∂Kw

i,j

!⊤ 
∂Kw

i,j

∂τwi,j

!
 (36)

where
∂E(θ)
∂Kw

i,j

= −1

2
(Kw

i,j)
−1 +

1

2

�
(Kw

i,j)
−1⟨xw

i,j,:x
w⊤
i,j,:⟩(Kw

i,j)
−1

�
(37)
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and element (t1, t2) of ∂K
w
i,j/∂τ

w
i,j is given by

∂kwi,j(t1, t2)

∂τwi,j
=

�
1− (σw

i,j)
2
� (t2 − t1)

2

(τwi,j)
3

exp

 
−(t2 − t1)

2

2(τwi,j)
2

!
(38)

To express the across-area timescale and delay parameter gradients, we introduce more compact
notation for the variables in equation (6). Let xa

j,: = [xa⊤
1,j,:x

a⊤
2,j,:]

⊤ ∈ R2T for the jth across-area
latent variable, and

Ka
j =

�
Ka

1,1,j Ka
1,2,j

Ka
2,1,j Ka

2,2,j

�
∈ S2T×2T (39)

Then, across-area timescale gradients are given by

∂E(θ)
∂τaj

= tr



 
∂E(θ)
∂Ka

j

!⊤ 
∂Ka

j

∂τaj

!
 (40)

where
∂E(θ)
∂Ka

j

= −1

2
(Ka

j )
−1 +

1

2

�
(Ka

j )
−1⟨xa

j,:x
a⊤
j,: ⟩(Ka

j )
−1

�
(41)

and each element of ∂Ka
j /∂τ

a
j is given by

∂kai1,i2,j(t1, t2)

∂τaj
=

�
1− (σa

j )
2
� (∆t)2

(τaj )
3
exp

 
− (∆t)2

2(τaj )
2

!
(42)

where ∆t is defined as in equation (8). To optimize the timescales while respecting non-negativity
constraints, we perform a change of variables, and then perform unconstrained gradient ascent
with respect to log τwi,j or log τaj .

Next, delay gradients for brain area i and across-area latent variable j are given by

∂E(θ)
∂Di,j

= tr



 
∂E(θ)
∂Ka

j

!⊤�
∂Ka

j

∂Di,j

�
 (43)

where ∂E(θ)
∂Ka

j
is defined as in equation (41), and each element of ∂Ka

j /∂Di,j is given by

∂kai1,i2,j(t1, t2)

∂Di,j
=

�
1− (σa

j )
2
� ∆t

(τaj )
2
exp

 
− (∆t)2

2(τaj )
2

!
∂ (∆t)

∂Di,j
(44)

∂(∆t)

Di,j
=

�
1 if i = i2
−1 if i = i1

(45)

where ∆t, i1, and i2 are defined as in equation (8). In practice, we fix all delay parameters for
area 1 at 0 to ensure identifiability. As with the timescales, one might wish to constrain the de-
lays within some physically realistic range, such as the length of an experimental trial, so that

−Dmax ≤ Di,j ≤ Dmax. Toward that end, we make the change of variables Di,j = Dmax
1−e

−D∗
i,j

1+e
−D∗

i,j

and perform unconstrained gradient ascent with respect to D∗
i,j . Here we chose Dmax to be half

the length of a trial. No delays came close to these constraints in our results (Fig. 6, Supplemen-
tary Fig. 9).
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Finally, note that all of these EM updates are derived for a single sequence, or trial. It is straight-
forward to extend these equations to N independent trials (each with a potentially different num-

ber of time steps, T ) by maximizing ∂
∂θ

hPN
n=1 En(θ)

i
, where trial is indexed by n = 1, . . . , N .

Parameter initialization To initialize the DLAG observation model parameters to reasonable
values prior to fitting with the EM algorithm, we first fit a probabilistic canonical correlation
analysis (pCCA) [42] model to the neural activity, with the same number of across-area latent
variables as the desired DLAG model (see next section). pCCA is defined by the following state
and observation models:

xa
t ∼ N (0, I) (46)

yi,t | xa
t ∼ N (Ca

i x
a
t + di, Ri) (47)

where Ca
i ∈ Rqi×pa maps the pa-dimensional across-area latent variables xa

t ∈ Rpa to the neural
activity of area i, di ∈ Rqi is a mean parameter, and Ri ∈ Sqi×qi is the observation noise covari-
ance matrix. Ri is not constrained to be diagonal. The fitted values for Ca

i and di are used as
initial values for their DLAG analogues. We take only the diagonal elements of Ri to initialize its
DLAG analogue.

pCCA does not incorporate within-area latent variables. Therefore, we initialized each DLAG
within-area loading matrix Cw

i so that its columns spanned a subspace uncorrelated with that
spanned by the columns of Ca

i , returned by pCCA. Such a subspace can be computed as follows.
Let Σi ∈ Sqi×qi be the sample covariance matrix of activity in area i. Then define Mi = Ca⊤

i Σi ∈
Rpa×qi . The singular value decomposition of Mi is given by Mi = UiSiV

⊤
i , where Ui ∈ Rpa×pa ,

Si ∈ Rpa×qi , and Vi ∈ Rqi×qi . The first pa columns of Vi span the same across-area subspace
spanned by the columns of Ca

i . The remaining qi − pa columns form an orthonormal basis for the
subspace uncorrelated with this across-area subspace. We initialized Cw

i with the first pwi of these
uncorrelated basis vectors. Finally, we initialized all delays to zero, and all within- and across-
area Gaussian process timescales to the same value, equal to twice the sampling period or spike
count bin width of the neural activity.
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Supplementary Discussion

Statistical tradeoffs between within- and across-area latent variables

Throughout this work, we have described how DLAG decomposes observed neural activity into
a linear combination of within- and across-area latent variables. Equivalently, DLAG partitions
each area’s population space into distinct within- and across-area subspaces, which represent
characteristic ways in which the neurons covary (Fig. 2). Here we investigate more deeply why
the within-area latent variables are a necessary model component, even if across-area activity is
of primary scientific interest. Toward that end, we will consider an alternative interpretational
perspective: namely, that DLAG performs a low-rank decomposition of the covariance matrix of
a time series. This alternative perspective also illuminates a general statistical phenomenon—not
specific to DLAG—that any multi-area time series method must consider.

DLAG performs a low-rank covariance decomposition

Let us first express the DLAG model not only for a single time point, as in equation (25), but
for all time points in a sequence. In particular, we will collect observed and latent variables in
a manner that highlights group structure (i.e., organized differently than in equations (26) and
(27)). We define ey1 = [y⊤

1,1 · · ·y⊤
1,T ]

⊤ ∈ Rq1T and ey2 = [y⊤
2,1 · · ·y⊤

2,T ]
⊤ ∈ Rq2T , obtained by verti-

cally concatenating the observed neural activity y1,t and y2,t in areas 1 and 2, respectively, across
all times t = 1, . . . , T . We collect the across- and within-area latent variables for each area simi-
larly. Let exa

1 = [xa⊤
1,:,1 · · ·xa⊤

1,:,T ]
⊤ ∈ RpaT , exw

1 = [xw⊤
1,:,1 · · ·xw⊤

1,:,T ]
⊤ ∈ Rpw1 T , exa

2 = [xa⊤
2,:,1 · · ·xa⊤

2,:,T ]
⊤ ∈

RpaT , and exw
2 = [xw⊤

2,:,1 · · ·xw⊤
2,:,T ]

⊤ ∈ Rpw2 T .

Then, we rewrite the state and observation models as follows:




exa
1

exw
1

exa
2

exw
2


 ∼ N







0
0
0
0


 ,




eKa
1,1 0 eKa

1,2 0

0 eKw
1 0 0

eKa
2,1 0 eKa

2,2 0

0 0 0 eKw
2





 (48)

�
ey1

ey2

�
|




exa
1

exw
1

exa
2

exw
2


 ∼ N




"
eCa
1

eCw
1 0 0

0 0 eCa
2

eCw
2

#



exa
1

exw
1

exa
2

exw
2


+

"
ed1

ed2

#
,

"
eR1 0

0 eR2

#

 (49)

where eCa
1 ∈ Rq1T×paT , eCw

1 ∈ Rq1T×pw1 T , eCa
2 ∈ Rq2T×paT , eCw

2 ∈ Rq2T×pw2 T , eR1 ∈ Sq1T×q1T , and
eR2 ∈ Sq2T×q2T are all block diagonal matrices comprising T copies of the loading matrices Ca

1 ,

Cw
1 , C

a
2 , and Cw

2 , and observation noise covariance matrices R1 and R2, respectively. ed1 ∈ Rq1T

and ed2 ∈ Rq2T are constructed by vertically concatenating T copies of mean parameters d1 and
d2, respectively. Note that equations (48) and (49) above are equivalent to equations (26) and
(27), but with variables rearranged.
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Each within-area covariance matrix eKw
i ∈ Spwi T×pwi T , for area i = 1, 2 has the following block

structure:

eKw
i =



eKw
i (1, 1) · · · eKw

i (1, T )
...

. . .
...

eKw
i (T, 1) · · · eKw

i (T, T )


 (50)

where each block eKw
i (t1, t2) = diag(kwi,1(t1, t2), . . . , k

w
i,pwi

(t1, t2)) ∈ Spwi ×pwi , t1, t2 ∈ {1, . . . , T} is
a diagonal matrix whose elements are computed according to the covariance function defined in
equations (4) and (5).

Each across-area auto- or cross-covariance matrix eKa
i1,i2

∈ RpaT×paT , for areas i1, i2 ∈ {1, 2} has
analogous structure:

eKa
i1,i2 =



eKa
i1,i2

(1, 1) · · · eKa
i1,i2

(1, T )
...

. . .
...

eKa
i1,i2

(T, 1) · · · eKa
i1,i2

(T, T )


 (51)

where each block eKa
i1,i2

(t1, t2) = diag(kai1,i2,1(t1, t2), . . . , k
a
i1,i2,pa

(t1, t2)) ∈ Spa×pa , t1, t2 ∈ {1, . . . , T}
is a diagonal matrix whose elements are computed according to the covariance function defined in
equations (7) and (8). Note that the cross-covariance matrices are transposes of one another, i.e.,
eKa
i1,i2

= eKa⊤
i2,i1

.

Upon inspection of equation (48), the statistical dependency between latent variables becomes
clear. However, the statistical dependency between observed neural activity in each area, ey1 and
ey2, is not obvious, since the structure of equation (49) suggests that they might be decoupled.
The relationship between observed areas becomes clear when we consider their joint distribution,
after marginalizing out the latent variables:

�
ey1

ey2

�
∼ N

 "
ed1

ed2

#
, eΣ
!

(52)

where

eΣ =

"
eCa
1
eKa
1,1
eCa⊤
1 + eCw

1
eKw
1
eCw⊤
1 + eR1

eCa
1
eKa
1,2
eCa⊤
2

eCa
2
eKa
2,1
eCa⊤
1

eCa
2
eKa
2,2
eCa⊤
2 + eCw

2
eKw
2
eCw⊤
2 + eR2

#
(53)

Equation (53) makes explicit the alternative interpretational perspective of DLAG: DLAG per-
forms a low-rank decomposition of the covariance matrix eΣ. This decomposition is illustrated
graphically in Supplementary Fig. 17a. For simplicity, we illustrate a covariance matrix for areas
with three neurons each, over two time points. The shading of blocks of the covariance matrix
illustrate which type of DLAG parameter is responsible for explaining that particular portion of
covariance (magenta: across-area; blue/red: within-area; gray: independent single-neuron vari-
ability). Regions of overlap (i.e., where both blue/magenta or red/magenta shading are present)
illustrate portions of covariance that both within- and across-area variables are responsible for
explaining. Any regions of white indicate that no model parameters explain that portion of co-
variance.

The across-area parameters (note the fully magenta-shaded across-area covariance component in
Supplementary Fig. 17a) serve to explain covariance among all neurons, in both areas. Within-
area parameters (blue and red shading, for areas 1 and 2, respectively) serve to explain covari-
ance among neurons within each area, but not across areas (note the white across-area blocks for
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the within-area covariance component). Importantly, the only parameters in the DLAG model
capable of explaining covariance across areas are the across-area parameters (only magenta shad-
ing is present in the across-area blocks of eΣ). And interestingly, within-area components fully
overlap across-area components in the within-area blocks of eΣ, suggesting a potential redun-
dancy. However, as we will discuss below, the overall structure of the decomposition shown in
Supplementary Fig. 17a is critical to the interpretation of across-area variables—that they isolate
neural interactions across areas (and minimally reflect purely within-area interactions).

A time series within-area model must accompany a time series across-area model

To build further intuition, let us consider the scenario where within- and across-area covariances
are modeled statically—without considering the flow of time (Supplementary Fig. 17b). Static
covariance decompositions result, for example, from the probabilistic canonical correlation anal-
ysis (pCCA) model [42], which includes static across-area latent variables and no within-area
latent variables (within-area covariance is instead captured using full observation noise covari-
ance matrices, R1 and R2). The covariance matrix eΣ still decomposes into across- and within-
area components; however, covariances at non-zero time lags (i.e., the covariance between neu-
ral activity at a time point t1 and a different time point t2 ̸= t1, indicated by the white-shaded
blocks of eΣ in Supplementary Fig. 17b) are all zero, by definition. Just like the DLAG case (Sup-
plementary Fig. 17a), only the across-area parameters can explain across-area covariance, and
within-area components fully overlap across-area components in the within-area blocks of eΣ (to
understand why this covariance structure is important, see case below). Across-area activity is
successfully isolated by across-area variables.

The problematic case arises when we use a time series model to describe across-area interactions,
but use a static model to describe within-area interactions (Supplementary Fig. 17c). For exam-
ple, what if we proposed a version of DLAG that simply adopted the same observation model as
pCCA (i.e., full observation noise covariance matrices, R1 and R2) to model within-area inter-
actions? In this case, although the within-area model components do explain covariance among
neurons within each area, they fail to capture any within-area covariance across time points,
by definition. This shortcoming forces the across-area variables to explain within-area covari-
ance across time points. Visually, all within-area blocks of the covariance matrix eΣ represent-
ing relationships across time points have solely magenta shading (these problematic blocks are
highlighted by the ‘*’ symbols in Supplementary Fig. 17c). In contrast, the true DLAG model
and fully static models avoid this pitfall. These successful models (Supplementary Fig. 17a,b)
do not have any blocks of eΣ for which across-area parameters are solely responsible for explain-
ing within-area covariance. This statistical phenomenon applies to any multi-area time series
method, and is not specific to DLAG [32, 62].
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Supplementary Figure 17. Full-sequence (trial) covariance matrix decompositions. For sim-
plicity, in (a)-(c), we illustrate a covariance matrix for areas with three neurons each, over two
time points. From left to right, panels represent the overall covariance matrix, its across-area
component, its within-area component, and a component representing variance independent to
each neuron. Across-area parameters (magenta shading) are solely responsible for explaining
across-area covariance over time (i.e., there is no overlap of magenta with blue, red, or gray in
the across-area off-diagonal blocks of the overall covariance matrix, on the left). (a) DLAG de-
composes the covariance of a full sequence (trial) into low-rank components. Covariance among
neurons within an area that cannot be explained by across-area covariance is captured by within-
area parameters (area A: blue; area B: red). (b) Models such as probabilistic canonical correla-
tion analysis (pCCA), for example, similarly decompose the overall covariance matrix into across-
and within-area components, but make no attempt to model covariance across time points, either
across or within areas (indicated by blocks with white shading). (c) If one is using a time series
across-area model, then in the absence of a time series within-area model, across-area parameters
are forced to explain within-area covariance over time. This problem is illustrated by the within-
area blocks of the overall covariance matrix that have only magenta shading (indicated by the ‘*’
symbols).
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