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Abstract— The activity of tens to hundreds of neurons can be
succinctly summarized by a smaller number of latent variables
extracted using dimensionality reduction methods. These latent
variables define a reduced-dimensional space in which we can
study how population activity varies over time, across trials, and
across experimental conditions. Ideally, we would like to visual-
ize the population activity directly in the reduced-dimensional
space, whose optimal dimensionality (as determined from the
data) is typically greater than 3. However, direct plotting can
only provide a 2D or 3D view. To address this limitation,
we developed a Matlab graphical user interface (GUI) that
allows the user to quickly navigate through a continuum of
different 2D projections of the reduced-dimensional space. To
demonstrate the utility and versatility of this GUI, we applied it
to visualize population activity recorded in premotor and motor
cortices during reaching tasks. Examples include single-trial
population activity recorded using a multi-electrode array, as
well as trial-averaged population activity recorded sequentially
using single electrodes. Because any single 2D projection may
provide a misleading impression of the data, being able to
see a large number of 2D projections is critical for intuition-
and hypothesis-building during exploratory data analysis. The
GUI includes a suite of additional interactive tools, including
playing out population activity timecourses as a movie and
displaying summary statistics, such as covariance ellipses and
average timecourses. The use of visualization tools like the
GUI developed here, in tandem with dimensionality reduction
methods, has the potential to further our understanding of
neural population activity.

I. INTRODUCTION

A major challenge in systems neuroscience is to interpret
the activity of large populations of neurons, which may
be recorded either simultaneously or sequentially [1]. One
approach for characterizing the activity of tens to hundreds
of neurons is to extract a smaller number of latent variables
that can succinctly summarize the population activity. This
approach has been applied to study the motor system [2],
olfactory system [3], visual system [2], working memory in
prefrontal cortex [4], and rule learning in prefrontal cortex
[5]. Dimensionality reduction methods to extract these latent
variables include principal component analysis (PCA) [3],

1Department of Electrical and Computer Engineering, 2Department of
Biomedical Engineering 3Center for Neural Basis of Cognition, Carnegie
Mellon University, Pittsburgh, PA.

4Neurosciences Program, 5Department of Electrical Engineering,
6Department of Bioengineering, 7Department of Neurobiology, Stanford
University, Stanford, CA.

8Department of Neuroscience, Columbia University Medical School, New
York, NY.

9Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto,
CA.

[4], factor analysis (FA) [6], Gaussian-process factor analysis
(GPFA) [7], and locally-linear embedding (LLE) [3].

The basic setup is to first define an n-dimensional space,
where each axis represents the firing rate of one of the
n neurons in the population. A dimensionality reduction
method is then applied to the n-dimensional population ac-
tivity to determine the optimal number, r, of latent variables
needed to adequately capture the population activity (r <
n), as well as the relationship between the latent variables
and the population activity. These latent variables define a
reduced r-dimensional space in which we can study how
the population activity varies over time, across trials, and
across experimental conditions. Ideally, we would like to
visualize the latent variables directly in the r-dimensional
space. However, the optimal number r of latent variables,
as determined from the data, is typically greater than three
[4], [6], [7] and direct plotting can only provide a 2D or 3D
view. A common approach is to visualize a small number of
2D projections, obtained by specifying some cost function,
which may give a misleading impression of the data.

To address this limitation, we developed an interactive
graphical user interface (GUI), called DataHigh, in Matlab
for visualizing a continuum of 2D projections. The user first
applies a dimensionality reduction method of their choice
to the neural activity, then passes the reduced-dimensional
data to DataHigh for visualization. We found DataHigh to
be a valuable tool for building intuition about the popula-
tion activity and for hypothesis generation. Although high-
dimensional visualization is a challenge across many scien-
tific fields, we designed DataHigh explicitly for neural data
analysis. DataHigh is versatile and can be used to study pop-
ulation activity recorded either simultaneously (using multi-
electrode arrays) or sequentially (using conventional single
electrodes). It can be applied to visualize i) the trial-to-trial
variability of population activity taken in a single, predefined
time bin (termed neural state), ii) single-trial population
activity timecourses (termed neural trajectories), or iii) trial-
averaged neural trajectories. Sections II and III describe the
design and features of DataHigh. Section IV shows examples
of using DataHigh to analyze neural population activity.

II. ROTATING A 2D PROJECTION PLANE

The main interface of DataHigh (Fig. 1) allows the user to
smoothly rotate a 2D projection plane in the r-dimensional
space. The goal is to provide the minimum set of “knobs”
that allow the user to achieve all possible rotations within
the r-dimensional space. We first describe the idea of our
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Fig. 1. Main interface for DataHigh. Central panel: 2D projection of 15D single-trial neural trajectories extracted using GPFA from population activity
recorded in premotor cortex during a standard delayed-reaching task for two different reach targets (blue and green) [7]. Dots indicate time of target onset
(red) and go cue (cyan). Gray indicates baseline activity. Preview panels (left and right of central panel): clicking and holding on a preview panel rotates
one of the two projection vectors for the central panel. Toolbar (far right) accesses features described in Section III.

approach, then the mathematical implementation. We begin
with two arbitrary orthonormal r-dimensional vectors, v1 and
v2, which define the horizontal and vertical axes, respec-
tively, of a 2D projection plane. To rotate the projection
plane, we fix one vector v1, while rotating the other vector
v2. To maintain orthogonality, v2 must rotate in the (r−1)
dimensional orthogonal space of v1. In this space, any
rotation of v2 can be fully specified by (r−2) angles. Thus,
we provide the user with (r−2) knobs (right panels in Fig. 1)
to rotate v2 while keeping v1 fixed. Each panel shows a
preview of the resulting 2D projection if v2 were rotated
by 180° in a particular rotation plane. The user can click
and hold on a particular preview panel, which continuously
updates the central panel as v2 is smoothly rotated in that
plane. Similarly, we can fix v2 and rotate v1, which yields an
additional (r−2) preview panels (left panels in Fig. 1). Note
that the r-dimensional data are centered before projection.

Mathematically, we first use the Gram-Schmidt process
to find a set of (r− 1) orthonormal vectors spanning the
orthogonal space of v1; these vectors define the columns
of Q ∈ Rr×(r−1). We also define a rotation matrix Ri(θ) ∈
R(r−1)×(r−1), which rotates an (r−1) dimensional vector by
θ degrees in the ith rotation plane.

Ri(θ) =


Ii−1

cos(θ) −sin(θ)
sin(θ) cos(θ)

Ir−i−2

 , (1)

where Ip is a p× p identity matrix and i = 1, . . . ,r− 2. To
rotate v2 by θ degrees in the ith rotation plane, we compute

vnew
2 = QRi(θ)QT vold

2 . (2)

The neural trajectories shown in Fig. 1 are 15-dimensional,
leading to the use of 2 · (r− 2) = 26 preview panels. At
present, DataHigh can support dimensionalities up to r = 17
(30 preview panels), which we found to be large enough for
most current analyses, yet small enough to have all preview
panels displayed simultaneously on a standard monitor. For
r > 17, DataHigh applies PCA to the data and retains
the top 17 PCA dimensions for visualization. Alternatively,
DataHigh can be easily extended to have a larger number of
preview panels.

III. DATAHIGH FEATURES

In addition to the continuous rotation of a 2D projection
plane, DataHigh offers a suite of additional features that are
useful for exploratory data analysis:
• Freeroll continuously rotates the 2D projection plane

in a random fashion without user intervention. The GUI
repeatedly “clicks and holds” on a random preview panel
for a random period of time.
• Conditions allows the user to selectively display any

subset of the experimental conditions in the dataset. The
user is given the option to recenter the data based on the
updated set of experimental conditions.
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Fig. 2. A 3D projection of trial-averaged neural trajectories during reaching
movements. Each trajectory corresponds to one reach condition.

• 3D projection uses the current 2D projection, along
with a randomly-chosen third projection vector, to allow
visualization in Matlab’s built-in 3D viewer (Fig. 2).
• Find projection displays the static 2D projections found

by PCA or linear discriminant anaysis (LDA) (Fig. 3).
• Capture saves the current 2D projection by adding its

thumbnail image to the list of saved projections (Fig. 4A).
A projection can be loaded simply by clicking on its
thumbnail image. The user can also manually specify
and save the values of v1 and v2, as well as save a 2D
projection as a Matlab figure.
• Weights displays the elements of v1 and v2 as bar graphs.
• Evolve displays a movie of the neural trajectories playing

out together over time. The movie may be saved for
external viewing.
• Drag trajectory plots each of the r dimensions of a

neural trajectory versus time (Fig. 4B). The user can
“perturb” the trajectory by dragging any of the points in
the dimension versus time plots and see its effect in the
2D projection. The perturbed trajectory can then be sent
to the central panel (Fig. 1) for further inspection.
• Smoother convolves the input data with a Gaussian

kernel for temporal smoothing. It is intended for use with
input data that have not already been smoothed (e.g.,
raw spike counts or trial-averaged spike counts). The
smoothing kernel width is chosen by a scroll bar, and the
plots are updated immediately.
• Additional features for neural trajectories: display trial-

averaged trajectories for each experimental condition and
plot task epoch boundaries with colored dots (Fig. 1).
• Additional features for neural states: for each experimen-

tal condition, plot cluster mean, covariance ellipse, and
first principal component direction (Fig. 5).

IV. DATA ANALYSIS EXAMPLES

We demonstrate here a few examples of the utility of
DataHigh for exploratory data analysis.

Fig. 3. Static 2D projections found by standard methods, A: PCA and
B: LDA, when applied to the data shown in Fig. 1. In contrast, DataHigh
(Fig. 1) can find a dynamic 2D projection in which the trajectories splay out
over time and are largely non-overlapping for different reach conditions.

Fig. 4. DataHigh features. A: Capture projection, B: Drag trajectory.

Trial-to-trial variability of neural state: For each trial, we
first took the spike counts across n = 61 simultaneously-
recorded neurons in a single, predefined time bin during the
delay period in a standard delayed-reaching task [6]. FA was
then applied to reduce the dimensionality of each 61D vector
of spike counts to a 7D vector of latent factors (a neural
state). The FA parameters were fit using trials of all reach
targets together, and the optimal latent dimensionality (r = 7)
was determined using cross-validation. We used DataHigh
to visualize the 7D latent factors (Fig. 5). By rotating the
2D projection plane, we can study the relative placement of
the clusters, as well as the trial-to-trial variability. For each
cluster, a red line represents the 2D projection of a unit vector
pointing in the direction of greatest trial-to-trial variability in
the 7D latent space. The length of the red line indicates the
extent to which the direction of greatest variability in the 7D
space aligns with the 2D projection plane. Note that the red
lines need not align with the direction of greatest variability
as seen in the 2D projection (i.e., each red line need not
align with the major axis of the corresponding ellipse). This
underscores the danger of drawing conclusions from any
individual 2D projection, as well as the need for looking
at many 2D projections using DataHigh.

Single-trial neural trajectories: It is often difficult to find
an informative 2D projection of high-dimensional data. Two
common approaches are PCA (Fig. 3A) and LDA (Fig. 3B),
which yield projections in which the trajectories look like

4609



Fig. 5. Trial-to-trial variability of neural state during reach planning. Each
dot corresponds to one trial and is colored according to reach target. For
each cluster, the user can choose to display the one standard deviation ellipse
and/or the direction of greatest trial-to-trial variability (red lines).

Fig. 6. An outlying trial (red trace) can be easily identified by rotating the
2D projection plane.

“spaghetti”. Using DataHigh, we can quickly search a large
number of 2D projections to find projections in which
the trajectories splay out over time and are mostly non-
overlapping for different experimental conditions (Fig. 1).
We also find DataHigh to be useful for identifying outlying
trials and studying their relationship with the non-outlying
trials (Fig. 6). The DataHigh interface allows the user to
highlight any trajectory by clicking on it, change the color
of the trajectory on the fly, and save this change to the Matlab
data structure.

Trial-averaged neural trajectories: DataHigh can also be
used to study trial-averaged neural trajectories obtained
from sequentially-recorded neurons. Fig. 2 shows rotational
structure in the movement-related neural activity during arm
reaches [8]. Each trajectory corresponds to the trial-averaged
activity of 118 neurons recorded in motor cortex for one
reach condition. DataHigh can be used to find the planes in
which rotational structure is present in the data, as well as
provide insight about the population activity in non-rotational
planes.

V. DISCUSSION

To date, the visualization of high-dimensional neural pop-
ulation activity has largely relied on a small number of 2D
projections. If the features of interest of the neural activity
are known in advance, one can specify a cost function to
find a 2D projection that illustrates those features. However,
in exploratory data analysis, the key features may not be
known in advance, and it is easy to miss such features
by looking at a small number of 2D projections. DataHigh
allows for an “unbiased” exploration of neural population
activity by displaying a large number of 2D projections in a
short amount of time. This can be useful not only for triaging
large datasets and identifying outlying trials, but also for
developing scientific hypotheses about the data, which can
then be tested quantitatively. In addition to visualizing latent
variables extracted by a dimensionality reduction method (r-
dimensional), DataHigh can also be used to visualize raw
population spike counts (n-dimensional). We have put sub-
stantial effort into minimizing DataHigh’s response latency to
enhance the user’s interactive experience. We plan to extend
DataHigh to incorporate built-in dimensionality reduction
methods for neural data. The software can be downloaded
from http://users.ece.cmu.edu/∼byronyu/software.
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