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a b s t r a c t

One method for improving wireless network throughput involves using directional
antennas to increase signal gain and/or decrease interference. The physical layer models
used in current networking simulators only minimally address the interaction of
directional antennas and radio propagation. This paper compares the models found in
popular simulation tools with measurements taken across a variety of links in multiple
environments. We find that the effects of antenna direction are significantly different
from those predicted by the models used in the common wireless network simulators.
We propose a parametric model that better captures the effects of different propagation
environments on directional antenna systems; we also show that the derived models are
sensitive to both the direction of signal gain and the environment in which the antenna is
used.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Increasingly, wireless networks are using directional antennas to improve the throughput, reach of networks [1], or
to reduce interference between adjacent networks and other noise sources. A more recent development is the use of
electronically steerable directional or phase array antennas [2–4]. These antennas provide better network performance by
dynamically controlling the radiation pattern of the antenna. Networks that utilize these antennas can reap substantial
improvements in efficiency at all layers of the networking stack.

Fig. 1 shows a common visualization used to understand the antenna gain pattern for a particular highly directional
antenna.1 The pattern shows a predominant main lobe along with a number of ‘‘side lobes’’ interspersed with ‘‘nulls’’ or
regions of strongly reduced gain. Fixed or steerable directional antennas provide better network performance by controlling
the radiation pattern of the antenna, increasing the gain or alternatively reducing interference by ‘‘steering a null’’ at a radio
on the same channel.

Different network simulators model such antennas with different degrees of fidelity. In this paper, we argue that the
models in the most common network simulators make such simplifying assumptions that it is often difficult to draw strong
conclusions from the simulations derived using those models. We demonstrate this using a series of measurements with
several different and widely used directional antenna configurations. We then develop a more accurate model based on
measurements and intuitions about radio propagation.2 We argue that this model captures more about the uncertainty of
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Fig. 1. Sample directional antenna gain pattern displayed on a polar graph.

the environment than the specifics of the antenna and that our results should be generally applicable to many different
directional antenna patterns with similar gain characteristics.

Our measurement study uses sophisticated measurement equipment, including a vector signal analyzer (VSA) and
signal generator (VSG). Since the costs of such equipment are prohibitive, we also develop a method that uses inexpensive
equipment (such as standard networking cards) to produce the data needed for the derived models.

The remainder of this paper is organized as follows: In Section 2, we discuss the basics of existing radio propagation
models, their limitations, and how our proposal fits in. In Section 3 we describe our data collection method and in Section 4
we describe the set of measurements that we use to derive our model. In Section 5 we describe our model and derive its
parameters. Section 6 describes how this model can be used in simulations. Finally, in Section 7 we conclude.

2. Background and related work

In this section we will describe the propagation models used by current network simulators, give an overview of related
work, and discuss how our model addresses problems we identify.

2.1. Path loss models

Wireless network simulators use a path loss model to model the degradation of a transmitted signal as a function of
distance; when a signal is too degraded, it cannot be received reliably. Assuming a simplified (i.e., naïve) model, energy is
propagated in all directions and the energy that actually strikes the receiver would seem to be proportional to the square of
the distance between the transmitter and receiver—the signal is attenuated ∝ r2. This simple path loss model ignores the
significant reflection, scattering, refraction, and absorption effects as radio-frequency (RF) energy interacts with the earth,
the atmosphere and other smaller features. One of the major effects is multipath interference, where the RF waves bounce
off objects in the environment and converge at the receiver after having traversed different distances.

The two-ray model uses a reflection from the earth and the heights of the transmitter and receiver to indicate the likely
signal strength at a given distance. This model is specific to the radio frequency used; Fig. 2 is an example of a two-ray
calculation from a survey tutorial on antenna propagation models for a 900 MHz signal for an AM 8.7 m high transmitter
and a 1.6 m high receiver; the horizontal axis is a logarithmic scale [6].

This diagram shows that the signal strength decreases roughly at rk, 2 ≤ k ≤ 4, but that there is considerable variation
over short distances. Othermodels for such effects are based on fitting empiricalmeasurements, rather than a priori analysis.
There are general purpose models such as the Hata / COST231 model and the Longley-Rice model [7,8], and several specific
to thewavelength and operating characteristics of wireless LAN cards [9]. Additionally, indoor environments are sufficiently
different from outdoor environments that they justify their own approach (see [10,6,11] for excellent surveys).

2.2. Fading models

Theprecedingwork describes relatively large scale phenomena. In addition towhatever long range attenuation theremay
be, there is also small-scale fading that is the result of multipath interference and occurs at the scale of single wavelengths.
Though such interference can theoretically be predicted analytically, it requires that the environment be knownwith a level
of detail that is generally impractical [12,13].
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Fig. 2. Example of two-ray model attenuation.

A commonway to address such situations is through statistical fading models. Rather than determine the signal strength
at any exact place or time, it is modeled as a random variable with a known distribution. In general, the distributions are
fairly well established, but the parameters are very environment specific (e.g., [14]). There are several common models,
among them Rayleigh fading, which assumes that there are many comparable multipath signals, and Rician fading, which
assumes a less ‘‘cluttered’’ environment in which line of sight (LOS) paths are more important.

Ourmodel for directional antennas adopts a similar approach to the empiricalmodels and the Rayleigh fadingmodel—we
use empirical measurements to identify the characteristics of the random or stochastic process. Where we differ is that our
model is primarily concerned with effects on directionality.

2.3. Directional models

The simulators commonly used in networking research do not consider antenna directionality and radio propagation
as interacting variables. This paper considers three widely used simulators, OpNet, QualNet, and NS-2. Each one supports
several models of radio propagation, but they all follow the same general model with regard to antenna gain: For any two
stations i and j, the received signal strength is computed according to the general form of Eq. (1):

Received Power = Ptx ∗ Gtx ∗ |PL(i, j)| ∗ Grx. (1)

The received power Prx is the product of the transmitted power Ptx, the transmitter’s gain Gtx, the magnitude of path loss
between the two stations |PL(i, j)|, and the receiver’s gain Grx.

The transmitter and receiver gains are treated as constants in the case of omnidirectional (effectively isotropic in the
azimuth plane) antennas. For directional antennas, however, gain is an antenna-specific function of the direction of interest.
Wemodel the orientation of an antenna in terms of its zenith (φ) and azimuth (θ ). Then, for a given antenna a, we can define
a characterization function fa(φ, θ):

Gain in direction (φ, θ) = fa(φ, θ) (2)

Combined gain = fa(φ, θ) ∗ fb(φ′, θ ′). (3)

Correspondingly, the receiver gain ismodeled by a (potentially different) function of the direction fromwhich the signal is
received. Besides being a source of interference for a dominant signal, the energy traveling along secondary paths also carries
signal. If one of the weaker signals for a transmitter happens to be aligned with a high gain direction of a receiving antenna,
the received power from that path can be greater than that of the primary path. Thus, in environments with significant
multipath, the gain cannot be determined based solely on a single direction. This is easier to understand using Fig. 3, which
combines a transmitter (on the left) and a receiver (on the right).

In this figure, the transmitter gain is indicated by the (large) gain of the antenna pattern; the receiver gain is indicated by
the (much smaller) gain from the ‘‘side lobe’’ that is linearly located between transmitter and receiver. The complex-valued
path loss, PL(i, j), is related to the length of the dark line separating the transmitter and receiver.

The abovemodels describe the power emitted in, or received from, a single direction. In reality, the transmitter’s power is
radiated in all directions, and the receiver aggregates power (be it signal or noise) fromall directions. Although the simulators
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Fig. 3. Illustration of the common path loss model for directional antennas.

we are considering assume that the single direction of interest for each station is precisely toward the other station, we can
generalize Eqs. (1) and (3) to the case where there are multiple significant signal paths:

Prx =
−

l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′l , θ
′

l ). (4)

In Eq. (4), note that Prx is not necessarily all ‘‘signal’’. It may be the case that only one signal is decodable and the others
destructively interfere. In this case Eq. (5) is a better model:

Prx = max
l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′l , θ
′

l ). (5)

Both of these models assume that there is some way to describe available paths that a signal may take. As with the
Rayleigh and Rician fading models, it may be possible to build a parameterized model of those paths for ‘‘cluttered’’ and
‘‘uncluttered’’ environments. This is the approach we take, using measured data to determine the model.

With any of the three simulators we consider, the user has the freedom to provide any type of mapping between gain
and angle. This means that the user could conceivably make measurements with their desired hardware in their desired
environment,much aswe have done, and then install this as the pattern. However, even though the antenna can conceivably
be modeled arbitrarily well, we will show that the directionality of the signal is an effect of the interaction between antenna
and environment and that modeling both in isolation, however well, misses significant effects. We propose a combined
empirical model that attempts to account for both the pattern of the antenna and the deviation from this pattern due to
environmental effects.

3. Method

In this section we will describe the method we devised for deriving empirical models for antenna patterns using
commodity hardware and address any reservations about their accuracy by providing a means for equipment calibration.

3.1. Data collection procedure

Two laptops are used, one configured as a receiver and the other as a transmitter. Each is equippedwith an Atheros-based
MiniPCI-Express radio that is connected to an external antenna using a U.Fl to N pigtail adapter and a length of LMR-400
low loss antenna cable. The receiver laptop is connected to a 7 dBi omnidirectional antenna on a tripod approximately two
meters off the ground. The transmitter laptop is connected to the antenna we intend to model on a tripod 30.5 m from
the receiver, also two meters off the ground. The transmitter tripod features a geared triaxial head, which allows precise
rotation.

The transmitter radio is put in 802.11x ad hoc mode on the least congested channel. The transmitter’s ARP table is
manually hacked to allow it to send UDP packets to a nonexistent receiver. The receiver is put in monitor mode on the same
channel and logs packets with tcpdump. Finally, both the receiver and transmitter must have antenna diversity disabled.
With the equipment in place, the procedure is as follows: For each 5° position about the azimuth, send 500 unacknowledged
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UDP packets. Without intervention otherwise, due to MAC-layer retransmits, each will be retried 8 times, resulting in 4000
distinct measurements.

During the experiment, the researchers themselves must be careful to stay well out of the nearfield of the antennas and
to move to the same location during runs (so that they, in effect, become a static part of the environment). If additional data
is desired for a given location, multiple receivers can be used, provided the data from them is treated separately (as each
unique path describes a unique environment).

3.2. Commodity hardware should suffice

To ensure that it is safe to use commodity 802.11x-based hardware to measure antenna patterns, we calibrate the
sensitivity of our radios and analyze losses in the packet-based measurement platform.

In the process of collection, some packets will be dropped due to interference or poor signal. In our experience, the
percentage of dropped frames per angle is very small: the maximum lost frames per angle in our datasets is on the order of
5%, with less than 1% lost being more common (the mean is 0.01675%). Moreover, the correlation coefficient between angle
and loss percentage is −0.0451, suggesting that losses are uniformly distributed across angles. Given that we have taken
4000 samples in each direction, noise in our measurements due to packet loss is negligible.

To get an idea of how accurate our commodity radios are in measuring received signal strength (RSS), we directly
connected each of four radio cards (all Atheros-based Lenovo-rebranded Mini-PCI Express) to an Agilent E4438C VSG. The
VSG was configured to generate 802.11 frames and the laptop to receive them. For each of the four cards we collected many
samples while varying the transmit power of the VSG between−20 dBm and−95 dBm (lower than the receive sensitivity
threshold of just about any commodity 802.11 radio) on 5 dB increments. We performed a linear least squares fit, finding a
slope of 0.9602 and adjusted R-squared value of 0.9894 (indicating a strong fit to the data). The commodity radios perform
remarkably well in terms of RSS measurement. To correct for the minor error they do exhibit, we use the slope of this fit to
adjust our measurements, dividing each measurement by the slope value.

4. Measurements

In this section we will explain the datasets we collected, discuss our normalization procedure, and give some high level
statistical characterization of the data.

4.1. Experiments performed

In order to derive an empirical model that better fits real world behavior, we collected data in several disparate
environments with three different antennas. A summary of these datasets is provided in Table 1. With the exception of
the reference patterns, all of the measurements were made with commodity hardware by sending many measurement
packets between two antennas and logging received signal strength (RSS) at the receiver. The three antenna configurations
used include: (1) a HyperLink 24 dBi parabolic dish with an 8° horizontal beamwidth, (2) a HyperLink 14 dBi patch with a
30° horizontal beamwidth, and (3) a Fidelity Comtech Phocus 3000 8-element uniform circular phased array with a main
lobe beamwidth of approximately 52°. This phased array functions as a switched beam antenna and can form this beam in
one of 16 directions (on 22.5° increments around the azimuth). For the HyperLink antennas, we used the same antenna in
all experiments of a particular type to avoid intra-antenna variation due to manufacturing differences.

In addition to the in situ experiments, we have a ‘‘reference’’ data set for each configuration. The Array-Reference data
set was provided to us by the antenna manufacturer. Because HyperLink could not provide us with data on their antennas,
Parabolic-Reference and Patch-Reference were derived using an Agilent 89600S VSA and an Agilent E4438C VSG in a remote
floodplain.3

Following is a brief description of each of the experiments:
Parabolic-Outdoor-A, Patch-Outdoor-A: A large open field on the University of Colorado campus was used for these
experiments. The field is roughly 150 m on a side and is surrounded by brick buildings on two of the four sides. Although
there is line of sight and little obstruction, the surrounding structures make this location most representative of an urban
outdoor deployment.
Parabolic-Outdoor-B, Patch-Outdoor-B: A large University-owned floodplain on the edge of town was used for our most
isolated data sets. The floodplain is flat, recessed, and is free from obstruction for nearly a quarter mile in all directions.
This location is most representative of a rural backhaul link.
Array-Outdoor-A: The same open field is used as in the Parabolic-Outdoor-A and Patch-Outdoor-A data sets. The collection
method here differs from that described in Section 3. A single phased array antenna is placed approximately 30m away from
an omnidirectional transmitter. The transmitter sends a volley of packets from its fixed position as the phased array antenna

3 We were unable to acquire access to an anechoic chamber in time for this study, but would like to make use of one in future work, for even cleaner
reference measurements.
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Table 1
Summary of data sets.

Label Environment LOS? Dist. (m) Samples Loss (%)

Parabolic-Outdoor-A Open field on campus Yes 30.5 214471 24.81
Parabolic-Outdoor-B Empty floodplain Yes 30.5 258876 7.05
Parabolic-Indoor-A Laboratory Yes 30.5 267092 2.21
Parabolic-Indoor-B Office building Yes ≈60 268935 10.41
Parabolic-Indoor-C Office building No ≈15 283104 5.12
Parabolic-Reference Empty floodplain Yes 30.5 229 N/A

Patch-Outdoor-A Open field on campus Yes 30.5 455952 12.44
Patch-Outdoor-B Empty floodplain Yes 30.5 278239 4.99
Patch-Indoor-A Laboratory Yes 30.5 290030 2.21
Patch-Indoor-B Office building Yes ≈60 265593 7.40
Patch-Indoor-C Office building No ≈15 278205 2.65
Patch-Reference Empty floodplain Yes 30.5 229 N/A

Array-Outdoor-A Open field on campus Yes ≈30 475178 N/A
Array-Indoor-A Office building Mixed Varies 2 672050 N/A
Array-Indoor-B Office building Mixed Varies 2 708160 N/A
Array-Reference Open urban area Yes ≈5 320 N/A

electronically steers its antenna across each of its 16 states, spending 20ms in each state. Several packets are received in each
directional state. The phased array antenna is thenmanually rotated in 10° incrementswhile the omnidirectional transmitter
remains fixed. The same procedure is repeated for each of 36 increments. Moving the transmitter changes not only the angle
relative to the antenna but also the nodes’ positions relative to their environment. To address this confound, each physical
position is treated as a separate experiment. This means that the number of angles relative to the steered antenna pattern
is limited to the number of distinct antenna states (16). The transmission power of the radio attached to the directional
antenna was turned down to 10 dBm to produce more tractable noise effects (the default EIRP is much too high to model
small-scale behavior).
Parabolic-Indoor-A and Patch-Indoor-A: For this data set we used the University of Colorado Computer Science Systems
Laboratory. The directional transmitter was positioned approximately 6m from the receiver in a walkway between cubicles
and desks. This is our most cluttered environment.
Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B, and Patch-Indoor-C: An indoor office space was used for this set of
tests. Two receivers were used here: one with line of sight and one without line of sight, placed amidst desks and offices.
Array-Indoor-A and Array-Indoor-B: Seven phased array antennas are deployed in the same 25 × 30 m indoor office space
used for Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B and Patch-Indoor-C. Data from two of the seven antennas
are analyzed here. Each antenna electronically steers through its 16 directional states, spending 20 ms at each state. Two
mobile omnidirectional transmitters move through the space and transmit 500 packets at 44 distinct positions. For each
packet received by a phased array, the packet’s transmission location and orientation is recorded (i.e., which of the four
cardinal directions was the transmitter facing) along with the directional state in which the packet arrived and the RSSI
value.
Parabolic-Reference and Patch-Reference: The large floodplain is used here. AnAgilent VSA is connected to the omnidirectional
receiver andmakes a 10 s running average of power samples on a specific frequency (2.412GHzwas used). Three consecutive
averages of both peak and band power are recorded for each direction. The directional transmitter is rotated in five degree
increments and is connected to a VSG outputting a constant sinusoidal tone at 25 dBm on a specific frequency. Before, after,
and between experiments, we make noise floor measurements, and as a post-processing step, we subtract the mean of this
value (−59.62 dBm or 1.1 nW) from the measurements.

4.2. Normalization

Our first task in comparing data sets is to come up with a scheme for normalization so that they can be compared to
one another directly. For each data set, we find the mean peak value, which is the maximum of the mean of samples
for each discrete angle. This value is then subtracted from every value in the data set. The net effect is that the peak of
the measurements in each data set will be shifted to zero, which allows us to compare measurements from diverse RF
environments directly.

4.3. Error relative to the reference

Fig. 4(a) through 4(d) show the normalizedmeasured in situ patterns and their corresponding (also normalized) reference
patterns. Recall that the reference pattern is generated and recorded by calibrated signal processing equipment and the
measured data is collected using commodity 802.11 cards. There is much variation in the measured patterns and in how
much they differ from the reference (which we would typically classify as error). As we would expect, the measurements
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(a) Parabolic dish indoor environments. (b) Parabolic dish outdoor environments.

(c) Patch panel indoor environments. (d) Patch panel outdoor environments.

Fig. 4. Comparison of signal strength patterns across different environments and antennas.

in outdoor environments exhibit less noise due to less clutter, but still deviate from the reference on occasion. A further
confirmation that our measurement process works well, notice how well Parabolic-Outdoor-B and Patch-Outdoor-B
(Fig. 4(b), (d)) correlate with the reference pattern (recall that these experiments were done in the same floodplain as the
reference, indicating that the commodity hardware can compete with the expensive specialized equipment in a similar
environment).

On inspection of this data, our first question is whether there a straightforward explanation for error in the measured
patterns. Fig. 5 provides a CDF of all error for each antenna. The three antennas provide similar error distributions, although
offset in the mean. The array data is the most offset from the others (presumably because its reference pattern is theoretical
rather than measured) and exhibits some bimodal behavior. The patch measurements are closest to the reference, showing
a large kurtosis about zero.

Clearly, the antennas have different error characteristics. However, for each antenna, and for each data set, it might be
that the error in a given direction is correlated with that in other directions—if this were true, we could use a single or small
set of probability distributions to describe the error process in a given environment with a given antenna.
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Fig. 5. Cumulative density functions for the error process (combined across multiple traces) for each antenna type.

Weused a Shapiro–Wilkes test on the per angle error for each data set. The resulting p-values arewell under theα = 0.05
threshold, and in all cases we can reject the null hypothesis that the error is normally distributed; this means that standard
statistical tests (and regressionmodels) that assumenormality cannot beused. A pairwiseMann–WhitneyU-test can beused
to determine which pairs of samples grouped on some criterion (in our case angle) are drawn from the same distribution.
For each dataset, we generate a ‘‘heatmap’’ where each cell corresponds to a pair of angles. The cell is colored by the
p-value produced by the U-test when run pairwise, comparing the error for the reference pattern and the in situ pattern for
those angles. Remarkably, all of our traces produce similar heatmaps: in the majority of pairs we reject the null hypothesis
that their error process is drawn from the same distribution. However, for angles near zero, we are unable to reject this
hypothesis. This observation, that measurements where the main lobe of the directional antenna is pointed at the receiver may
exhibit correlated error processes, motivated another series of tests.

To further explore ‘‘possibly well behaved’’ error processes about the main lobe, we applied a Kruskal–Wallis rank-sum
test to two scenarios: (1) For angles near zero, are batches with the same antenna (but different environments) equivalent?
(2) For angles near zero, are batches with the same environment (but different antennas) equivalent?

For (1), the null hypothesis is soundly rejected for all combinations (p-value ≪ 0.05) For (2), the results still point
strongly toward rejection (mean p-value = 0.0082), however there is one outlier—in the case of 355° in the laboratory
environment, we achieve a p-value of 0.2097. One outlier, however, is not sufficient to overcome the evidence that neither
antenna configuration nor environment alone is sufficient to account for intra-angle variation in error—even in the more
seemingly well-behaved cone of the antenna mainlobe.

4.4. Observations

There are several qualitative points that are worth bringing out of this data: (1) In the indoor environments, none of
the measurements track the reference signal at all closely; (2) In all environments, there is significant variation between
data sets; (3) The maximum signal strength is generally realized in approximately the direction of maximum antenna gain,
but directions of low antenna gain often do not have correspondingly low signal strength. This means that no system for
interference mitigation can safely rely on predetermined antenna patterns.

5. A newmodel of directionality

We began this paper with the observation that path loss and antenna gain are typically regarded as orthogonal
components of the power loss between transmission and reception (Eqs. (1)–(3)). In this section, we evaluate the best case
accuracy of this approach, and suggest a new model based on the limitations identified.

5.1. Limitations of orthogonal models

If transmit power and path loss do not vary with antenna angle, the received power relative to antenna angle can be
modeled as:Prx = β0 ∗ f (φ, θ). (6)

β0 is a constant combining the path loss – however calculated – and the gain of the nonrotating antenna. f (φ, θ) is a
function describing the gain of the other antenna relative to the signal azimuth θ and zenith φ. Without loss of generality,
we will assume that the antenna being varied is the receiver, and that the zenith, φ, is fixed.
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(a) Patch-Outdoor-A.

(b) Patch-Indoor-B.

Fig. 6. Differences between the orthogonal model and observed data in dB: P̂rx − Prx .

To evaluate the accuracy of this model, we start by finding the estimate b0 for β0 that minimizes the sum of squared error
(SSE). In effect, this is assuming the best possible path loss estimate, without specifying how it is determined. If the function
f (φ, θ) correctly describes the antenna, and if path loss and antenna gain are in fact orthogonal components of the received
signal strength, then the remaining error should be randomly distributed about 0.

Fig. 6(a) through 6f depict the error of this orthogonal model for several data sets. There are several qualitative
observations to be made: First and most importantly, the error value is not uniformly random, but rather correlated with
direction. The variabilitywithin any given direction is less than that for the data set as awhole. Second, the error is significant.
In the worst states, the mean error is between 8 and 10 dB, in either direction. Third, the model overestimates signal
strength in the directions where the gain is highest, and underestimates in the directions where the gain is lowest. That
is, the difference in actual signal strength between peaks and nulls is less than the antenna in isolation would produce. This has
significant implications for systems that use null steering to manage interference.

The data in Fig. 6(e), (f) is aggregated from 36 distinct physical configurations. In each configuration, the directional
receiver was (electronically) rotated in 22.5° increments, and between configurations, the omnidirectional transmitter was
physically moved around the receiver by ten degrees. A consequence of this method is that these 10° changes represent
not only a change of the angle between the transmitter and the antenna, but also a change of location with the attendant
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(c) Patch-Indoor-C.

(d) Parabolic-Indoor-C.

Fig. 6. (continued)

possibility of fading effects. To account for this, we consider each of the 36 configurations individually. This gives less angular
resolution, but also fewer confounds. Fig. 7 displays each configuration as a separate line. The model accuracy is fairly
consistent: The residual standard error of the aggregate is 8 dB, and the individual cases range from 5.74 dB to 11.4 dB
with a mean of 7.6 dB.

The path loss value used for each data set was the lowest error fit for that specific data, and the antenna patterns (f (θ))
for the patch and parabolic antennas were measured using the specific individual antenna in question. Note also that error
patterns differ from environment to environment: one could derive an ex post facto f (θ) to eliminate the error in a single
data set, but it would not be applicable to any other.

The magnitude and systematic nature of the error suggest that the orthogonal model has inherent limitations that cannot
be alleviated by improving either the antenna model or path loss model separately.

5.2. An integrated model

To address these limitations, we propose an integratedmodel that addresses the systematic errors discussed above,while
remaining simple enough to use in analysis and simulations.
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(e) Array-Outdoor-A.

(f) Array-Indoor-A.

Fig. 6. (continued)

We address the environment specific, direction specific error shown in Fig. 6(a) through 6(f) with the following
environment awaremodel, given in Eq. (7). The expected received power is given by a constantβ0, the antenna gain function
f (φ, θ), and a yet to be determined environmental offset function x(φ, θ):

Prx = β0 ∗ f (φ, θ) ∗ x(φ, θ). (7)

As with the orthogonal model, we assume a constant zenith and consider f (φ, θ) and x(φ, θ) with regard to the azimuth
θ . Eq. (7) can be converted to a form that lends itself to least squares (linear regression) analysis in the following way: First,
we rewrite Eq. (7) as addition in a logarithmic domain, and second we substitute a discrete version for the general x(θ). In
the discrete x(θ), the range of angles is partitioned into n bins such that bin i spans the range [Bi, Ti). Each bin has associated
with it a boxcar function di(θ) to be 1 if and only if the angle θ falls within bin i (Eq. (8)) and an unknown constant offset
value βi. These transformations yield the model given in Eq. (10).

di(θ) =


1, Bi ≤ θ < Ti
0, otherwise (8)
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Fig. 7. Mean error of orthogonal model for each observation point in the Array-Outdoor-A data set. The format is the same as in Fig. 6(a) through Fig. 6(f).

Fig. 8. Effect of increasing bin count (decreasing bin size) on modeling precision.

x(θ) =

n−
i=1

di(θ) βi (9)

f (θ)− Prx = β0 + β1d1(θ)+ β2d2(θ)+ · · · + βndn(θ). (10)

If x(θ) is discretized into n bins, the model has n + 1 degrees of freedom: One for each bin and one for β0, the signal
strength without antenna gain. For any given signal direction, exactly one of the di(θ) functions will be 1, so each prediction
is an interaction of two coefficients: β0 and βi. Consequently, β0 could be eliminated and an equivalent model achieved by
adding β0’s value to each βi. Mathematically, this means that there are only n independent variables in the SSE fitting, and
the full set is collinear. In practice, we drop the constant βn, but this does not mean that packets arriving in that bin are any
less well modeled. Rather, one can think of bin n as being the ‘‘default’’ case.

The azimuth can be divided into arbitrarily many bins. The more finely it is divided, the more degrees of freedom the
model offers, and thus the more closely it can be fitted to the environment. To investigate the effect of bin number, we
modeled every data set using from two to twenty bins. Fig. 8 shows the residual standard error as a function of bin count.
The grey box plot depicts the mean and interquartile range for all of the data collectively, and the foreground lines show
values for links individually. In general, there appears to be a diminishing return as the number of bins increases, with the
mean remaining nearly constant above 16 bins.
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Fig. 9. Residual error of the discrete offset model with 16 bins.

Table 2
Factors influencing fitted offset values, 16-bin case.

Data set Factor Coefficient P-value

Parabolic-Outdoor-A Antenna gain 0.185 1.02e−87
Obs. angle 0.00301 5.1e−06

Patch-Outdoor-A Antenna gain 0.146 6.4e−50
Obs. angle 0.00744 1.14e−17

Array-Outdoor-A Antenna gain 0.41 2.03e−206
Obs. angle −0.0271 5.36e−188

Parabolic-Outdoor-B Antenna gain 0.0377 8.68e−05
Obs. angle −0.00323 5.95e−05

Patch-Outdoor-B Antenna gain 0.00919 0.0492
Obs. angle −0.00198 3.08e−06

Parabolic-Indoor-A Antenna gain 0.33 4.6e−102
Obs. angle 0.00463 1.91e−05

Patch-Indoor-A Antenna gain 0.258 1.22e−122
Obs. angle 0.00894 3.09e−24

Parabolic-Indoor-B Antenna gain 0.378 2.2e−134
Obs. angle 0.00971 1.97e−16

Patch-Indoor-B Antenna gain 0.372 1.1e−81
Obs. angle 0.014 3.87e−18

Parabolic-Indoor-C Antenna gain 0.668 1.39e−234
Obs. angle −0.0146 4.15e−36

Patch-Indoor-C Antenna gain 0.703 0
Obs. angle −0.0154 2.63e−48

In discussing parameters for this model, we will use the 16-bin case specifically. We find the same patterns across other
numbers, though the actual coefficients are bin count specific. One result of note with regard to bin count is this: Several
environments exhibit a ‘‘sawtooth’’ pattern in which the odd bin counts do better than the even ones, or vice versa. This
appears to be an effect of the alignment of the bins relative to environmental features, rather than the number of bins as
such.

Our model has significantly less error than the orthogonal model: Across all data sets, the mean residual standard error
is 4.0 dB, (4.4 dB indoors) compared to 6.15 dB (7.312 dB indoors) for the orthogonal model. More importantly, the error
remaining in the discrete offset model is largely noise: The mean error is almost exactly zero for several ways of grouping
the data. Fig. 9 depicts the error (predicted valueminus observed value). While the outliers reveal some direction correlated
effect that is not accounted for, this model is much better for the bulk of the traffic. Over 99.9% of the traffic at every angle
falls within the whisker interval.

5.3. Describing and predicting environments

The environmental offset function x(φ, θ), or its bin offset counterpart, models the impact of a particular environment
combined with a particular antenna. This can serve as an ex post facto description of the environment encountered, but it
also has predictive value: If one knows the offset function for a given environment, it is possible to more accurately model
wireless systems in that environment. We are not aware of any practical way to know the exact spatial RF characteristics
of an environment – and thus its offsets – without actually measuring it. However, our results suggest that it is possible to
identify parameters generating the distribution from which the offset values for a class of environments are drawn.

We analyzed a range of possible determining factors for the fitted offsets, across all traces and a range of bin counts. A
linear regression fit and ANOVA test found significant correlation with two factors: The nominal antenna gain f (θ) and the
observationpoint; none of the other factors examinedwere consistently significant. Table 2 shows the regression coefficients
and P-values for both factors for a variety of traces. The observation angle was always statistically significant, but the
coefficient is constantly near zero. For each factor, the regression coefficient describes the correlation between the fitted
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Table 3
Summary of data derived simulation parameters: Gain-offset regression coefficient (Kgain), offset residual std. error (Soff), and signal strength residual std.
error (Sss).

Environment Kgain Soff Sss

Open outdoor 0.01–0.04 1.326–2.675 2.68–3.75
Urban outdoor 0.15–0.19 2.244–3.023 2.46–2.75
LOS indoor 0.25–0.38 2.837–5.242 2.9–5.28
NLOS indoor 0.67–0.70 3.17–3.566 3.67–6.69

offset and the factor. That is, the coefficient shows how much the actual signal strength can be expected to differ from the
orthogonal model, for any value of that factor. For example, the antenna gain coefficients of 0.668 and 0.703 for Parabolic-
Indoor-C and Patch-Indoor-C mean that in those data sets for every dB difference in antenna gain between two angles, the
best fit difference in actual signal strength is only≈ 0.3 dB.

There are two key results pertaining to the antenna gain regression coefficient: First, the coefficients for different
antennas in the same environment are very close. Second, the coefficients for distinct but similar environments are fairly
close. This suggests that classes of environments can reasonably be characterized by their associated coefficients, which
provides a compact representation of environment classes that lends itself easily to simulation. In this way, the task of the
researcher is reduced to choosing amongst several representative environment classeswhen designing their experiment.

6. Simulation process

The statistical model laid out above can be used as the basis for more realistic simulations. It has long been recognized
that radio propagation involves very environment specific effects. We identify three major ways of addressing such effects
in modeling and simulation: The first is to simply ignore the variability and use a single representative value in all cases.
The second, which goes to the opposite extreme, is to model specific environments in great detail. A third approach is to
randomly generate values according to a representative process and perform repeated experiments.

Each approach has its benefits, but we are advocating the repeated sample approach. Precisely modeling a specific
environment probably has the greatest fidelity, but it provides no information as to how well results achieved in a
single environment will generalize to others. Stochastic models have the advantage of being able to produce arbitrarily
many ‘‘similar’’ instances, and parametric models make it possible to study the impact of varying a given attribute of the
environment. Such approaches are frequently used to model channel conditions [6], network topology [15,16], and traffic
load [17].

The following algorithms produce signal strength values consistent with our statistical findings. The key parameters are
the gain offset correlation coefficient Kgain, the offset residual error Soff, and the per packet signal strength residual error Sss.
We computed these values across many links for two types of environments in Sections 5.2 and 5.3. Table 3 summarizes
these results.

Algorithm 1 is a one time initialization procedure which computes the offsets between the antenna gain in any direction
and the expected actual signal gain.

Algorithm 1 Compute Direction Gain
1: Kgain ← gain offset correlation coefficient
2: Soff ← offset residual std. error
3: procedure Direct-Gain
4: for Node n ∈ all nodes do
5: P ← partition of azimuth range [−π, π)
6: for pi ∈ P do
7: θi ← center angle of pi
8: X ← random value from (µ = 0, σ 2

= Soff)
9: on,pi ← Kgain ∗ fn(θi)+ X

10: end for
11: end for
12: end procedure

Algorithm 2 computes the expected end to end gain for a given packet, not including fixed path loss. Thus, the simulated
signal strengthwould be determined by the transmit power, path loss, receiver gain, fadingmodel (if any) and the directional
gain from Algorithm 2. Note that a fading model that accounts for interpacket variation for stationary nodes might make
the random error ϵ in line 9 redundant.
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Algorithm 2 Compute Per Packet Gain
1: Spss ← residual error of packet signal strengths
2: function Directional-Packet-Gain(src, dst)
3: θsrc ← direction from src toward dst
4: θdst ← direction from dst toward src
5: psrc ← partition at src containing θsrc
6: pdst ← partition at dst containing θdst
7: Gsrc ← fsrc(θsrc)− osrc,psrc
8: Gdst ← fdst(θdst)− osrc,pdst
9: ϵ ← random value from (µ = 0, σ 2

= Spss)
10: return(Gsrc + Gdst + ϵ)
11: end function

7. Conclusion

In this paper, we have presented an empirical study of the way different environments and antennas interact to affect
the directionality of signal propagation. The three primary contributions of this work are:

1. A well validated method for surveying propagation environments with inexpensive commodity hardware.
2. A characterization of several specific environments ranging from the very cluttered to the very open.
3. New, more accurate, techniques for modeling and simulating directional wireless networking.

Wireless signal – and interference –propagation ismore complicated than commonpreviousmodels have acknowledged.
Becausemodels of the physical layer guide the development and evaluation of higher layer systems, it is important that these
models describe reality well enough. Indeed, in [18] we show that application layer results reported by simulators can be
affected dramatically by theway directional antennamodels are simulated, producing results that deviate significantly from
reality. Our measurements, and the resulting model, bring to light several important aspects of the physical environment
that previous models have failed to capture. The effective directionality of a system depends not only on the antenna, but is
influenced by the environment to such a large extent that many decisions cannot be made without in situ measurements.
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