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Abstract—Wireless channels are defined by the presence
and motion of objects between and around the communi-
cating stations. As parts of the environment change, so do
the channels between stations that are nearby. While the
impact of environmental changes on individual channals
has been studies extensively, the spatial auto-correlation
across multiple channels, which we will call spatial cross-
correlation, has received little attention. These effects are
important whenever protocols use multiple channels in real
time, such as in multi-hop networks.

This paper studies the trade-offs between different
ways of simulating spatial channel cross-correlation in the
context of vehicular networks. We compare independent
stochastic, locally cross-correlated stochastic, and explicitly
geometric models in terms of both their complexity and
the network-level performance they induce. Our results
generally favor the geometric approach. Geometric models
have higher precision and lower complexity than cross-
correlated stochastic models, although collecting the de-
tailed input needed for geometric models can be expensive.
As a result, we propose a hybrid approach that com-
bines geometric and stochastic approaches, depending on
whether the impact of physical changes has a major or
more minor impact on the channels.

I. INTRODUCTION

The properties of wireless links are highly dynamic
because the signal propagation environment changes as
a result of movement in the environment. The perfor-
mance of many wireless network protocols is sensitive
to changes in wireless channel and consequently link
properties, e.g., transmit rate adaptation. Some protocols
are also sensitive to how these changes are correlated
across multiple links. Examples include routing protocols
that adapt to quality of the links in multi-hop wireless
network [1], [2] or protocols that rely on opportunistic
overhearing of packets [3]. In a mobile environment
with multiple wireless links, the changes of nearby
links are not independent because the links share the
same physical environment. Movement by objects, for
example, is likely to impact all nearby links, although
the precise nature of the impact will differ. We will refer
to this phenomenon as spatial cross-correlation between
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wireless links. When such correlation is not accounted
for properly, the diversity of adjacent links is often over-
estimated, which can lead to incorrect results, i.e., the
performance of techniques obtained in simulation may
differ significantly from those obtained in the real world.

This paper studies the trade-offs in terms of cost and
accuracy of modeling spatial correlation for two common
classes of channel models: geometric and stochastic
models. Geometric models explicitly consider compo-
nents of the physical space that are relevant to a channel,
and directly derive the channel property. An example is
the ITS Irregular Terrain Model point-to-point mode for
path loss [4]. Since they explicitly represent the physical
environment, geometric models automatically capture
spatial correlation. While potentially very accurate, the
drawback is that collecting the necessary detailed phys-
ical input can be time consuming or even impossible.
Alternatively, stochastic models directly generate the de-
sired channel property using a random process and some
expected statistics, e.g. log-normal shadowing, Raleigh,
Rician and Nakagami fading [5], [6]. Such models
require far fewer parameters (e.g. a different K factor or
maximum Doppler shift) and are often computationally
simpler. They are generally less accurate, however, and
crucially they do not capture cross-correlation unless it
happens to arise from correlated input parameters.

Using line of sight (LOS) blocking in a vehicular
network as an example, we compared the geometric and
stochastic approaches in terms of cost and fidelity of
capturing channel correlation. We found that stochastic
cross-correlation models have very high computational
complexity, although it may be manageable for sparsely-
correlated networks. A simulation of a simple gossiping
protocol in an urban environment with rich LOS block-
ing shows that stochastic models are less accurate than a
geometric model. In contrast, explicit geometric model-
ing of the physical environment is also computationally
simpler, but it introduces the new challenge of finding
accurate input data for the model. We consequently sug-
gest a hybrid approach in which correlation for channel
effects caused by major physical effects, e.g., buildings
affecting LOS, is modeled geometrically, while those
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Fig. 1: Examples of Spatial Correlation across Links

caused by more minor effects, e.g., cars affecting LOS,
are modeled stochastically.

The main contributions of this paper are:
1) We present the design space for modeling spatial

correlation across wireless channels.
2) We present a technique for adding such correlation

to stochastic channel models, since they do not
inherently provide it.

3) We analyze the complexity of the different mod-
eling options and and compare their fidelity using
a use case, LOS blocking in vehicular networks.

The rest of the paper is structured as follows. §II mo-
tivates the need for modeling channel cross-correlation.
§III presents a design space for modeling spatial cor-
relation, and we look at an example of modeling LOS
blocking, including a novel correlated stochastic model,
in §III. Next we present our analysis of simulation
complexity and simulation results in §V and § VII. We
discuss related work in §VIII, and conclude in § IX.

II. CHANNEL DYNAMICS AND NETWORK
ADAPTATION

Channel variations may require adaptation by proto-
cols at all layers of the protocol stack. Most adaptive
behavior targets the optimization of individual links, e.g.,
transmit rate adaptation to changing channel conditions
or application-level strategies to deal with bandwidth
variations. To properly evaluate such optimizations, it
is sufficient that accurate channel models are used and
that their inputs are set and changed in a way that
reflects the target physical environment. However, for
the evaluation of protocols that deal specifically with
topology (e.g., routing) or that try to leverage spatial
diversity, simulators also have to accurately model the
spatial properties across groups of channels.

As a simple example, let us consider PRO, a Protocol
for Retransmitting Opportunistically [3]. In PRO, if a
transmission from a transmitter A to a receiver B fails
(Figure 1), a relay node R can retransmit the packet
on behalf of A, if it overheard the packet and has a
better channel to B than A does. Evaluation in both a
controlled and in-the-wild testbeds has shown that PRO
can improve throughput, especially in environments with

significant fading, which is not surprising since PRO
leverages spatial diversity between channels A→B and
A→R, and A→B and R→B. If those channels have very
similar properties, PRO will have limited benefits.

The goal of this paper is to determine how to best
model spatial correlation across channel in support of
topology sensitive experiments. We specifically focus on
vehicular networks which are challenging because of the
high degree of mobility and rich channel dynamics. Let
us consider how Line of Sight (LOS) conditions may
affect PRO’s performance in a vehicular network using
Figure 1. In this scenario, the channel A→B is blocked
by a building, meaning that a relay node might help.
However, many potential relays also have a blocked
LOS, either to the source A (e.g, relay R2) or destination
B (e.g, relay R1). If the relay links are consistently
blocked at the same times as the primary link (that is, if
LOS blocking has high cross-correlation) the benefit of
PRO will be reduced.

III. MODELING SPATIAL CORRELATION

This section classifies models by how their dynamics
originate. We identify two classes of common channel
models, geometric and stochastic, and discusses they can
support spatial correlation. We will use the LOS property
as a running example.

A. Spatial Auto- and Cross-Correlation Revisited

There is a key distinction between spatially-
determined correlation of a single channel’s properties
as it moves over time (spatial auto-correlation) and
correlation of nearby channels’ properties at a given time
(spatial cross-correlation). They reflect the same physical
effects, but may require different modeling. Especially:
Channel properties are commonly modeled with auto-
correlated random sequences where the expected amount
of change between samples is related to how far a
station has moved in that time. This is true of essentially
all fading models (though specific movement is often
abstracted as speed, and the movement of other objects
in the environment may be lumped in with the stations’
movement), and also of many shadowing models, e.g.
[7], [8]. Nothing in this approach creates cross-channel
correlation: Under such a model, nearby or co-located
channels will be completely statistically independent.

B. Geometric Models

At one extreme, in a purely deterministic model (e.g.
distance-based path loss) the dynamics of the output
(loss) follow directly from variation in the input (distance
between transmitter and receiver), or else are not cap-
tured at all. For geometric models, the calculated channel
properties are completely determined by input (envi-
ronment details). Spatial auto- and cross-correlation are



generated (or not) equally: The same physical features
give rise to each. In the LOS example of Figure 1, if the
same information about the location and size of physical
objects (buildings, cars) is used consistently throughout
the simulation, both kinds of spatial correlation will be
captured, allowing for a realistic evaluation of protocols
such as PRO.

C. Stochastic Models

At the other end, dynamics are entirely internal to
the model. Rayleigh Fading is the classic example: The
input parameters (station speed and carrier frequency)
change slowly or not at all, and the output variation
comes from an autocorrelated random variable. The
underlying physical events (the positions of the objects
whose motion is causing the fading) are not represented,
but instead model inputs are chosen so the properties of
the channel model output match those observed in the
real world.

In order to have realistic inter-channel correlation, it
must be modeled explicitly. This implies (a) determining
the expected correlation properties among channels, and
(b) applying this correlation to (time-series) models
while maintaining their statistical properties. The pri-
mary example of this approach in practice is correlated
fading for MIMO channels [9]. We present a harder
example in § IV. As with MIMO, the approach which
we explore here is to enforce correlation across the
random variables which are implicit inputs to stochastic
models, however with a discrete model that has a more
complicated structure.

Between the two extremes, a stochastic model may
have some environment-specific inputs. Examples in-
clude fading models that use some information about
the physical environment, e.g., density of objects and
degree of mobility [10]. If environment information and
its changes are used consistently across “independent”
channels, this may capture some or all of the covariance.

D. Discussion

Network simulators typically model channels by com-
bining models for different features. When doing site-
specific simulations, geometric models are preferred
since they are more accurate, but collecting the models
inputs can be expensive. For this reason, geometric and
stochastic models are often combined. For example, [11]
describes the models used for the vehicular channels on
a suburban street. They include:

• Large-scale path loss is based on a geometric model
(log-distance model).

• Fading caused by reflections off large objects (e.g.,
buildings) is based on a geometric model for a
suburban street [10].

• LOS blocking by other vehicles uses a stochastic
model.

• Scattering caused by small objects is based on a
stochastic model.

The first two models correspond to the largest physical
effects, so generating the inputs is realistic [12]. Collect-
ing site-specific inputs for the last two properties would
be very expensive, so a stochastic model is used. If we
need to accurately model spatial correlation, an explicit
model will be need will be needed for those, but not for
the first two.

IV. EXAMPLE: LOS MODELING

Shadowing is a reduction in signal strength caused by
obstructions which absorb incident energy or reflect it
away from the shadowed area. Shadowing occurs when
obstructing objects – stationary or mobile – impinge
significantly on the Fresnel zone around the dominant
propagation path.

The time and space scales of shadowing makes it es-
pecially important for vehicular networks: Unlike small-
scale fading, shadowing occurs on a time scale that
network protocols can (and should) react to [13]. At
inter-vehicle scales, shadowing is neither stable like
large-scale path loss, nor effectively uncorrelated like
fading.

A. Shadowing vs. Line of Sight

For the sake of this work, we consider a significant
simplification: Treating shadowing by cars and buildings
as a binary condition (Line-Of-Sight vs. Non-Line-Of-
Sight). This is not entirely unreasonable at high frequen-
cies [14]. We emphasize that the goal of this paper is not
to propose or evaluate the LOS/shadowing models as
such, but rather to use them as a test case for comparing
simulation approaches. For this purpose, we choose a
discrete model precisely because it is a common class
of model which is also challenging from a correlation
standpoint.

B. Example: Geometric-Deterministic LOS Model

We consider a simple geometric LOS model: The
position of every vehicle in our simulated environment
is modeled. Vehicles which are on the same road have
an NLOS state if and only if another vehicle is on the
same road between them.1 Vehicles on different road
segments but within 50 m of each other (that is, roughly,
vehicles within the same intersection for the road sizes in
this neighborhood) have an unobstructed LOS. Vehicles
on different road segments between 50 m and 175 m
(that is, on intersecting roads) have NLOS. (NLOS

1This model does not consider which lane any given vehicle is in;
it may therefore have false positives when the “intervening” vehicle is
not actually physically between the communicating pair.



propagation conditions near intersections are investigated
in e.g. [15].) While this is in many ways a simplification,
they key point is that LOS properties are directly derived
from the environment, and the movement of cars relative
to each other is explicitly considered.

C. Example: Stochastic Shadowing Model

Here, we briefly introduce a typical stochastic shad-
owing model based on [16], and shown in Figure 2.
This is a two-state Markov model; the states considered
are LOS and NLOS. The transition probabilities are p1
and p2. At initialization, each link randomly selects a
starting state. For each state, the probability distribution
over possible subsequent states is realized as a discrete
random variable. Because each state in this model has
only two possible next states, the discrete “next state”
distributions are implemented as random variables r
with a continuous distribution and a cutoff threshold.
For example, if current state = LOS, next state is
NLOS iff ri <= p1.

Fig. 2: Two-state Markov Shadowing Model

D. Spatial Cross-Correlation for the Stochastic Model

In the model just described, each link is modeled in-
dependently with individual streams of random variables
as input. The correlation among multiple links is missing
in this modeling process. For the purposes of this work,
we assume that the desired level of cross-correlation is
known. Determining the expected correlation is a major
measurement and modeling undertaking in its own right.
For this work, we use a very simple model, where
correlation is a piecewise linear function of distance
(measured from the “center point” of each link), ranging
from 0.9 at 0 m to 0.01 at 1500 m. Distance-based
correlation models (either auto- or cross-) have been
successfully developed for small-scale fading [17], path
loss [18], shadowing from stationary objects [19], and
more.

In this model, input random variables r determine the
next transition out of each state. To find the necessary
input correlation among the random variables to produce
a desired output correlation in the state, we solve for the
stationary distribution of the Markov chain given p1 and
p2 and numerically compute the input-output relation.

Consider a network of n connected links that are
simulated independently with random variable streams
rl l ∈ [1, n), where each l represents one link. The
desired (input) correlation between link l1 and link

l2 is denoted as C(l1, l2). The pairwise correlation is
described by an n by n correlation matrix C.

Given i.i.d. random variables for all links R = [r(l)],
the original correlation among inputs is RRT = I . The
task is to find Rcorr = [rcorr(l)] such that

RcorrR
T
corr = C (1)

As elements of matrix C are chosen individually, there
is no guarantee that C is a valid correlation matrix (C
is symmetric, but not always positive-definite). A simple
way to deal with this is to find the nearest correlation
matrix Cnearfor C [20], [21]. Then, a corresponding
Rcorr can be found by computing an X through spectral
decomposition of Cnear such that

XTX = Cnear (2)

The correlated input Rcorr can then be derived by:

Rcorr = RX (3)

Each stream in Rcorr = [rcorr(l)] is now a linear
combination of original n i.i.d. random inputs, and still
preserves original statistics. Note that these computations
will need to be repeated whenever the desired pairwise
correlation changes.

V. DISCUSSION ON COMPLEXITY

In this section, we analyze and compare the model-
ing complexity of a network-wide simulation correlated
wireless channels using the geometric and stochastic
strategies discussed earlier in the paper.

A. Simulation Model

We assume a simulation of a network of N nodes
that move around in a physical environment, and at
most n (0 ≤ n ≤ N ) nodes are within range of a
node. Because simulators need only model links for
which the end-points have a realistic chance of being
within communication or interference range, the number
of links to simulate drops from N2 to nN links. n varies
based on the node density and expected communication
range.

As nodes move, both channel state and internal data
structures must be updated. Not all movement events
require all data to updated, however.

The most frequent events are updates of the channel
state, which can then be used to calculate packet level
errors and link state. We will denote the update frequency
of the channels as fc and the interval between updates
as tc, i.e., fc = 1/tc. The minimum frequency fc min at
which channels must be updated depends on the speed
of both the wireless devices and other objects in the
environment. If exact fading state is maintained, this
must be recomputed for a movement of even a small
fraction of a wavelength. Other channel properties, such



as path loss, LOS, and Doppler shift, will typically
change more slowly. The update frequency fc can usu-
ally be determined based on the maximum speed of
objects in the environment.

Correlation matrices (when they exist) need to be
updated when then the relative positions of nodes change
“enough.” Exactly what that means will depend on
the model used, however it is expected that this rate
fcorr � fc.

B. Geometric Models

We denote by M the total number of objects mod-
eled in the simulated environment, and the maximum
number of objects to be considered when modeling a
link is denoted as m. The per link cost associated with
a geometric channel model includes two components:
First, identifying the m objects that may impact the link,
i.e., that are within a certain range, thus can be done
in O(log(M)) time, as per [22]. Second, there will be
an actual modeling complexity which depends on m;
we’ll denote this Cg(m). For the model described in §IV,
this is Θ(m). With geometric models, there is no extra
cost for modeling spatial correlation across channels,
it is already reflected in the overhead associated with
modeling the objects. This gives a complexity of O(nm),
which is also O(NM) in the common case.

C. Stochastic Models

The costs are similar for stochastic models, except
that when modeling correlation among multiple links,
an additional step is required to calculate desired corre-
lation properties. For example, the correlated simulation
model described in § III considers the first-order spatial
correlation, where all links in the vicinity of a given
link are modeled collectively. In this case, there are
three major steps: (a) calculate correlation coefficients
in a correlation matrix, (b) spectral decomposition of the
correlation matrix, and (c) calculate correlated random
input. The first two steps occur with a frequency of fcorr,
while the last step occurs with a frequency fc.

Let ncorr be the maximum number of nodes in the
correlated vicinity of a given link. The complexity of
each of the above step is determined by the size of
the correlation matrix (ncorr by ncorr). Therefore, the
overall cost for all links combined is: n2

corr correlation
coefficients for step (a). For step (b), a reasonable cost
for eigenvector decomposition in Equation 2 is O(n6

corr)
[23]. For step (c), the complexity is n2

corr for each link
in Equation 3, thus O(n4

corr) for all links. Consequently,
the overall complexity is dominated by the eigenvector
decomposition, and requires O(n6

corr) time.

VI. NS-3 SIMULATION MODELS

A prototype of the proposed stochastic shadowing
model with correlation was implemented in ns-3. We
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Fig. 3: Simulation Platform Overview

utilize this simulation model to evaluate realism of
statistic shadowing models againt geometric models. Our
simulation examines the performance of a “generic”
gossiping protocol in an urban V2V network, compared
across the different LOS models.

A. Gossiping Protocol

The protocol we use in the simulation is as follows:
Each vehicle broadcasts status packets with a fixed
interval of 100 ms. When a vehicle receives a new mes-
sage in an incoming packet, it selectively re-broadcasts
the new message with a certain probability (to avoid
message flooding). Gradually, each message will spread
throughout the network.

The primary performance metric for the gossip proto-
col is the delivery time of messages in the vehicular net-
work, i.e., how long it takes for vehicles to receive a new
message. Our interest is not in the actual performance of
this (admittedly very simple) gossiping protocol. Rather,
we are interested in understanding the relative difference
in performance of the gossiping protocol, when different
models of spatial correlation across links are used.

B. Simulation Setup

A road network map was generated for a roughly
1.5 km x 1.5 km semi-residential region of a major U.S.
city. Three-hundred vehicles are simulated; they move
along roads following the true map, however the specific
traffic load and vehicle routes are synthetically generated
using MOVE [24] and SUMO [25]. A new message is
generated every 0.01 s at one single vehicle in the center.
Each simulation runs for 20 seconds, during which time
the new message was always distributed to all vehicles
that are reachable in the network. Wireless channels
and networking were simulated in ns-3 [26], which was
extended with the shadowing channel models described
in § VI-C. The channel, PHY and MAC layer were
implemented as a YansWifiChannel model with log-
distance large scale path loss (exponent = 3.0) and
Rayleigh 2 fading, in addition to our shadowing models.

2Note that ns-3 does not support Rician or more vehicular-specific
fading models, unless one wishes to do symbol-by-symbol simulation
with PhySim-WiFi.



C. Shadowing Models

We implemented the geometric and stochastic LOS
models described below. Across all models, an addi-
tional shadowing loss of 8 dB is added to any NLOS
(shadowed) link. We use the following three shadowing
models, and a baseline “No obstructions” case without
shadowing.

1) Geometric: The model described in § IV-B:
Vehicle-vehicle obstructions are directly inferred from
their positions; obstruction by buildings is assumed
when vehicles are not on the same street or near an
intersection.

2) Stochastic (Independent): In the stochastic model,
links are modeled independently, so the shadowing prop-
erties of links are independent. The Markov two-state
shadowing model described in § IV-A is implemented,
and each link is associated with one instance of this
model. The transition probability parameters are fitted
to match the behavior of the geometric model as closely
as possible; this is described in more detail in §VI-D.

3) Stochastic (Correlated): The stochastic LOS
model is modified to enforce pairwise correlation as
described in §IV-C.

D. Accuracy of Stochastic LOS Model

The uncorrelated stochastic line-of-sight model intro-
duced in § IV-C has two free parameters: p1 and p2.
They determine the expected duration of LOS and NLOS
periods respectively:

E[TLOS ] =
1− p1
p1

E[TNLOS ] =
1− p2
p2

(4)

We aim to isolate the effect of spatial variation and
correlation: That is, to the extent possible average link
performance is held constant across models, leaving
the spatial and temporal differences as determinants of
application-layer performance. Therefore, we configure
p1 and p2 in this way: we select the p1

p2
ratio that

produces a PDR which matches the actual link PDR
property observed from geometric model from § IV-B.

Next, the exact p1 is calculated from E[TLOS ] and p2
value is determined afterwards.

Figure 4 shows the distributions of the duration of
LOS and NLOS states for links across all models
considered. Note that the correlated and uncorrelated
stochastic cases have the same distribution (as expected),
and the geometric case is similar but not the same. The
mean duration for each state is close across models (see
Table I).

VII. RESULTS

The simulation results address two basic questions: 1.
Do spatial patterns in link quality matter to application
performance? and 2. How well does a stochastic model

Fig. 4: ECDF of LOS and NLOS durations.

Geometric Stochastic

Packet delivery ratio 0.28 0.23
LOS probability 0.89 0.73
E[LOS duration] (s) 5.87 6.75
E[NLOS duration] (s) 9.09 8.35

TABLE I: Link-level Comparison of Shadowing Models.

with explicit spatial correlation approximate the effects
of “real” spatial patterns? We define application-layer
performance as the time required for each participating
node to receive the gossiped message. This section
looks at both overall performance (the distribution of
delivery time over all nodes) and delivery time relative
to distance.

A. Overall Message Delivery Time

Figure 5 shows the cumulative distribution function
of the delivery times over all nodes in the simula-
tion. In addition to the three shadowing models already
discussed, a baseline no obstructions case is included
for reference. This shows the performance without any
shadowing effects. In these results, the geometric model
is the “reality” that the stochastic models were tuned
to approximate; difference in application performance
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Fig. 5: End-To-End Delay



Fig. 6: Message Delivery Time

(whether higher or lower) is therefore a measure of
inaccuracy in the stochastic models.

We observe a substantial effect from spatial and tem-
poral variation: The median packet delivery time is 0.52 s
for the independent model 0.82 s for the geometric case;
the Kolmogorov-Smirnoff (K-S) distance between the
two distributions is 0.6. Recall from § VI-D and Table I
that the probability of success for an arbitrary link at
an arbitrary moment is very similar across the geometric
and both stochastic models. In fact, the geometric model
produced a slightly better PDR, along with lower overall
perfomance. The Markov (stochastic) model has similar
(but not identical) time-series behavior to the geometric
case, suggesting spatial patterns as the primary differ-
ence.

We additionally note a significant difference between
the correlated and independent stochastic model outputs:
The K-S distance is 0.37. In this case, the degree
of cross-correlation is the only difference between the
models. The cross-correlated model is closer to the
geometric model (in both median and variance) than
the independent model is, but there is still a significant
difference (K-S distance of 0.36).

B. Delivery Time Relative to Distance

Figure 6 is a scatter plot of message delivery times (y-
axis) as a function of the distance between the receiver
and the vehicle that originated the message.

If we draw a line to approximate linear regression of
the delivery time vs. distance, the slope is proportional
to the number of hops for a given distance. Geometric
models impose constraints on connectivity as a result of
LOS blocking due to buildings and vehicles, and as a
result, more hops are required on average compared to
the empty world model that ignores shadowing. Using
stochastic shadowing model improves the level of real-
ism somewhat relative to the empty world model, while

adding spatial correlation brings the results even closer
to those obtained with the geometric model.

Regarding the horizontal distribution of delay for
a given distance, the results based on the geometric
shadowing model have the widest range. The reason is
that the geometric model captures spatial diversity in
the most detail, e.g., consistently distinguishing between
node pairs on the same road segment, near an inter-
section, or on parallel road. The diversity for a given
distance indicates the spatial variation of link property
(at the same distance). Since both the empty world and
stochastically uncorrelated models are spatially inde-
pendent (or homogeneous in all directions) by nature,
the horizontal diversity range is minimum compared to
other models. The stochastically correlated model falls
in between.

VIII. RELATED WORK

The spatial correlation of shadowing property among
adjacent links have been frequently observed in wireless
networks. Some measurement study specifically quanti-
fied the level of correlation versus distance in urban and
suburban area [19], while others studies the correlated
shadowing effects in multi-hop networks [8] and vehic-
ular network [27]. Studies have shown the correlation
in shadowing effects has significant impact on wire-
less protocol performance [28], specifically in vehicular
networks [29]. Moreover, such correlation can even be
utilized in discovery [30] and geographic mapping [18].

Two different types of stochastic correlated models
have been proposed for wireless channels. One type
is for large-scale path loss models [19], and the other
type is for small-scale channel properties in MIMO [17].
Correlated stochastic shadowing models are not present
in most wireless simulation platforms such as [26]
and [31]. When evaluating adaptive protocols (such as
PRO[3]) that are sensitive to spatial correlation, the
spatial diversity, which is essentially the opposite side
of correlation, could be mis-represented.

IX. CONCLUSION

This paper addresses challenges in modeling cross-
channel correlation in wireless networks. For a V2V
gossiping test case, we find that cross-correlation in
(simulated) channel conditions does significantly impact
observed protocol performance, affirming the importance
of simulating such cross-correlation accurately. Stochas-
tic channel models – including ones considering spatial
autocorrelation of individual channels – will systemati-
cally underestimate cross-correlation between channels.
For protocols which benefit from decorrelation (diver-
sity) this may result in unrealistically good performance
in simulation.



We compare two general approaches to simulation
spatial cross-correlation: (1) Geometric models in which
cross- and auto-correlation result automatically from the
effects of explicitly-modeled objects, and (2) Stochastic
models in which cross-correlation must be explicitly
imposed. We find that, in addition to being less accurate,
the second approach is unexpectedly computationally
demanding, with complexity up to O(n6) in the number
of nodes. This suggests that the first approach is gener-
ally preferable, except when the detailed environmental
information it requires is not available, or link cross-
correlation is sparse. We advise a hybrid approach of
geometrically modeling large objects, which are gener-
ally more knowable and significant, while stochastically
modeling the small and highly-variable.
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