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Abstract

Increasing numbers of economic transactions are con-
ducted through on-line auctions. Nevertheless, most current
auction implementations fail to address important security
concerns. In particular, most auction systems force buyers
and sellers to trust the auctioneer; alternative secure sys-
tems are inflexible and have a high computational and/or
communication overhead.

To overcome these limitations, we propose a secure auc-
tion marketplace (SAM) architecture, based on the recently
available tool of high-performance, programmable secure
coprocessors.

Unlike previous schemes, this approach provides a gen-
eral framework that can incorporate arbitrary auction
schemes by using different evaluation programs, as well as
provide complex security properties by using the secure co-
processor and our auction protocols.

Our approach features strong security guarantees for the
buyers and sellers without trusting the auctioneer, precise
definition of the information disclosed during and after the
auction, and high flexibility to adapt to new types of auc-
tions. Keywords: Secure auction architecture, secure co-
processor.
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1 Introduction

This paper proposes the Secure Auction Marketplace
(SAM), an architecture for electronic auctions using trusted
hardware. This architecture provides a way to flexibly and
systematically address security, privacy, trust, and fraud
problems — and is implementable with current off-the-shelf
technology.

An auction is a general mechanism for commercial in-
teraction. However, implementing auctions in the setting of
distributed computing is complicated by several fundamen-
tal properties:

� Auctions involve multiple parties, such as the auction-
eer, buyers, sellers — and possibly other stakeholders,
such as government regulatory agencies.

� These parties have conflicting interests.

� Auctions involve private information, such as bids,
bidding strategies — and possibly fraud patterns and
investigation data.

� Auctions involve computation on this information,
such as execution of the auction, decisions on bids,
recognition and suppression of fraud.

In a distributed setting, these properties create a funda-
mental trust challenge: we need to distribute this informa-
tion and computation among the parties themselves, in way
such that the computation is still correct, and all involved
parties can still trust that their respective interests are pre-
served.

Recent advances in secure co-processing provide a foun-
dation to address these problems. COTS secure coprocessor
platforms now provide:

� a computing environment which its owner can config-
ure to carry out some arbitrary computation,



� and a security environment that enables remote parties
to authenticate what this computation is, and to trust
that this computation will proceed without observation
or further manipulation by the owner of this device.

In this paper, we use this foundation to build our Secure
Auction Marketplaces: havens that individual auctioneers
can configure to carry out this auction computation, that re-
solve these trust issues in a much more general and flexi-
ble way than was possible with previous cryptographic ap-
proaches.

Section 2 provides more discussions of our auction
model. Section 3 reviews previous approaches to this prob-
lem, and presents the secure co-processing technology that
enables our approach. Section 4 presents our marketplace
architecture. Section 5 demonstrates its value by discussing
some of the security and privacy properties it achieves. Sec-
tion 6 demonstrates its flexibility by presenting some av-
enues to extend this basic architecture. Section 7 concludes
with some avenues for future work.

2 Auctions

The auction is an important economic mechanism which
is widely used to sell a variety of commodities, such as
treasury bills, mineral rights including oil fields, real es-
tate, art works, etc. With the growing popularity of the
Internet, many traditional auctions are transforming into
electronic auctions, and many new electronic auctions are
being created. As a result, a number of web-based auc-
tion markets [1] have emerged. These range from rela-
tively public markets such as auctions run by e-Bay, Ama-
zon, and Yahoo! to Business-to-Business auctions (freemar-
kets.com, commerceonce.com) to double auctions such as
on-line stock markets. Compared to traditional auctions,
electronic auctions have the advantages; they are global in
scope, may be less expensive than traditional auctions. Par-
ticipants in electronic auctions require neither physical pres-
ence nor (for off-line auctions) a connected electronic pres-
ence.

Our Auction Model. We consider general auctions. We
view an auction as a triplet of trading rules, participant
strategies, and result disclosure rules. The trading rules are
announced before the auction. The sellers and bidders sub-
mit their strategies during the submission time as specified
in the trading rules. Then, during the auction evaluation
time, the seller and bidder strategies are evaluated accord-
ing to the trading rules and the result is determined. The
result disclosure rules furthermore define how the result is
announced, i.e. public or only to the winner and the seller.

This model embraces a wide variety of auctions. See [7]
for more information on auction types and variations. We
briefly present the most common auctions:

� Ascending-bid auction (aka English auction): The bid-
ders alternatively raise their bids or retire until only
one bidder is left.

� Descending-bid auction (aka Dutch auction): The
price continuously decreases until a bidder claims the
good at that price.

� First-price sealed-bid auction: Each bidder submits
her bid secretly, the highest bidder wins and pays the
value of the bid.

� Second-price sealed-bid auction (aka Vickrey auc-
tion): Each bidder submits her bid secretly, the highest
bidder wins and pays the value of the second-highest
bid.

Our auction model also embraces more elaborate auc-
tions, as shown in the following examples. Usually, auc-
tions have one seller and many buyers, but in reverse auc-
tions such as Priceline, only one buyer initiates the auction
and many sellers place their offers. In the case of multiple
buyers and sellers, the auction is called a double auction. If
the resource sold in the auction is an on-going resource such
as electricity, and the bids are cleared in short time intervals,
the auction is known as a continuous auction. For example
the stock market is an instance of a continuous double auc-
tion. If the bids contain multiple attributes such as volume
and price, the auction is called a multi-attribute auction. For
example, a future specifies a contract to buy/sell a stock at
a particular price at a certain time in the future, hence it is a
multi-attribute auction. The bids can include conditions of
other commodities, i.e. “I buy A at a price X only if I can
buy B at a price Y.”. Such an auction is called combinatorial
auction.

Fraud. Buyers and sellers have direct interests in the
outcome of the auction. However, often society itself has
a broader interest in ensuring that certain kinds of fraudu-
lent or criminal behavior does not occur. Our model can
also extend to include these interests, by including attempts
at fraud monitoring and suppression as additional trading
rules.

Problem Statement. Electronic auctions are promising,
but they also create new security challenges. The Internet
bears many security threats; auctioneers, sellers, and bid-
ders may all have more opportunities to cheat in an elec-
tronic auction. Many different types of auctions exist and
they have various security requirements. The security prop-
erties we consider include:

� Authentication, privacy and anonymity of participants

� secrecy of bids and strategies

� controllable revelation of information about the auc-
tion including the final result
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� the atomicity of the goods and charge (i.e., a win-
ner only needs to pay if he gets the goods or vice
versa) [20, 3].

� authentication by participants and stakeholders that
any given auction actually followed the above rules.

Prior to our work, no solution satisfied this wide variety of
security requirements.

A main disadvantage of most of the existing auction
schemes is that they require the sellers and bidders to trust
the auctioneer. But in fact a common attack is that the auc-
tioneer uses the seller and bidder information as an advan-
tage to increase profits.

A critical part of auctions and markets is the ability of
participants to hide private information, such as their strate-
gies, resources, and even identities. However, this privacy
enables many types of fraud, such as:

� Options front-running, where a broker places a small
order for himself before placing a large order for a
client (which changes the price)

� Money laundering in futures markets, where a broker
places symmetric orders, and later attributes the win-
ning one to Alice and the losing one to Bob (thus en-
abling Bob to pay an untraceable bribe to Alice)

� Fraudulent bids that win auctions [21]. 1

� Collusion among participants in an auction

� Auctioneer driving up the price via fake bidders (per-
haps to increase his commission), or otherwise exploit-
ing the anonymity of bidders.

As marketplaces become increasingly distributed and au-
tomated, these problems become even worse. The problem
is further complicated by mutual distrust among auction-
eers, who would not want to share any of their secret infor-
mation. When a critical infrastructure (e.g., the power-grid)
is involved, the consequences of this rogue activity may
change from simple fraud to a significant national emer-
gency.

3 Previous Work

Section 3.1 presents previous work on secure auctions.
Section 3.2 presents the secure co-processing technology
that enables our solution.

1There is also a recent case in which a child in Philadelphia placed
fraudulent bids in electronic auctions, and won the bid [4].

3.1 Secure Auctions

Franklin and Reiter [5], and Harkavy, Tygar and
Kikuchi [6], address auction security issues and they pro-
pose to use multiple auctioneers and variations of secret
sharing schemes to reduce the trust on a single auctioneer 2.
But the approaches using multiple auctioneers are in gen-
eral expensive, and difficult to adapt to other auction types
and privacy requirements.

Stubblebine and Syverson [19] propose to use certified
mail and online notary services to reduce the trust on a sin-
gle auctioneer in English auctions. This approach has the
drawback that it requires to trust the additional services.

Naor, Pinkas, and Reingold present a scheme which is
based on garbled circuits and oblivious transfer [11]. Their
system can achieve similar security properties as SAM at
the cost of a substantial communication and computation
overhead. Although their approach is theoretically interest-
ing, the large overhead prohibits a practical implementation.

3.2 Secure Coprocessors

Loosely defined, a secure coprocessor is a general-
purpose computing environment that can be trusted to carry
out its computation unmolested, even if an adversary has
direct physical access to the device.

White, Comerford, and Weingart developed a high-end
secure coprocessor prototypes [22, 23] for use in piracy sup-
pression. Tygar and Yee [26, 25] used these prototypes to
demonstrate the usefulness of secure coprocessors in dis-
tributed commerce applications. Smith and Weingart [16]
then developed and implemented a logical and physical se-
curity architecture that enables a vendor to ship a generic se-
cure coprocessor platform, that distributed application ven-
dors can configure and maintain—while providing the core
requirement that coprocessor applications can always prove
“they’re the real thing, doing the right thing,” and also
while accommodating the realities of trust issues and se-
curity flaws in complex software. This architecture was in-
dependently validated at FIPS 140-1 Level 4 [15], and is the
basis for a COTS family of devices such as IBM 4758.

For our purposes, secure coprocessors provide three key
features:

� that individual parties can install application code into
their coprocessors;

� that, once installed, the application can proceed
untampered—even by that party, who might advance
his or her interests by tampering with the computation
or observing its secrets;

2Note that Franklin and Reiter provide a powerful tool to address this
problem - they have a system of e-cash where payment is provided auto-
matically to the winner of an auction [5].
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� that this untampered application can authenticate itself
as such to remote participants.

This latter outbound authentication feature is critical for
us. In the IBM technology, devices leave the factory pos-
sessing a certified key-pair, whose private key is confined
(by hardware) to the security configuration code that runs
at boot time. This code generates and certifies keypairs for
use by higher-level code in the device, and stores all pri-
vate keys in tamper-protected memory. Application code
can thus access private-key operations whose public keys
are supported by a trust chain binding that key-pair to that
application, in that software configuration, on that untam-
pered device. The literature (e.g., [18]) provides more de-
tail on how application development and deployment might
work in practice.

4 SAM

Our Secure Auction Marketplace allows an untrustwor-
thy auctioneer to conduct a wide variety of auctions effi-
ciently.

The main problem we address is that the bidders do not
need to trust the auctioneer and nevertheless, they can get
very strong security guarantees, such as correct bidding re-
sult, abuse-freeness, confidentiality of bids, and anonymity.
These requirements are difficult to achieve, even if the auc-
tioneer uses a secure coprocessor to direct the auction, be-
cause in the general case, the auctioneer writes the software
which runs on the secure coprocessor. A malicious auction-
eer could simply write auction software which decodes the
secret bids inside the secure coprocessor and sends it to the
auctioneer in clear text. How can the bidders be guaranteed
which software will conduct the auction?

4.1 Installation and Deployment

Our solution is based on an advanced secure coprocessor
environment such as IBM 4758, as discussed in Section 3.2.

The basic idea is that trusted software is loaded onto the
secure coprocessor securely. The trusted software and the
secure coprocessor together act as a secure auction mar-
ketplace (SAM). This SAM then becomes an authenticated
computational entity, whose internal state and operations
cannot be examined or altered by an adversary—even one
with direct physical access to that hardware.

In our case, this “trusted software” would be a secure
auction operating system (SAOS), which offers the follow-
ing API:

� register auction(auction source code, auction spec,
seller spec): auction advertisement

� register bid(bid): bid confirmation

� auction status(): status information

A party (such as ourselves, once our work is finished)
would obtain an application-developer certificate from the
coprocessor manufacturer, and publish full information
(source and signed executable) so that parties could both
verify that this source matches this executable, and then in-
stall this executable in a virgin coprocessor.

This SAM could then use the coprocessor’s outbound au-
thentication API to obtain a pair of public/private keypairs
(one for encryption, one for signatures) certified to belong
to that SAM. These give SAM the ability to provide au-
thorized advertisement before the auction opening time by
publishing the signed auction advertisement. The auction
advertisement contains an unique auction ID, and an auction
specification which specifies the trading rules. During the
auction, the bidders send their bids (or strategy programs)
encrypted with SAM’s public key to the marketplace which
returns a signed receipt. By binding the bid or strategy to an
auction ID, the bidder is assured that the bid is evaluated ac-
cording to the auction specification, i.e. it is only evaluated
after the auction closing time, and it is only evaluated for
the intended auction by the specified trading rules. After
the auction closing time, the SAM evaluates the bids ac-
cording to the published auction specification, and outputs
an authenticated result of the auction, in conformance with
the result disclosure rules.

4.2 An Example of SAM

In this section, we describe a simple example of SAM.
(We discuss various generalizations in Section 6.)

4.2.1 System Description

The SAM is based on a secure coprocessor which has the
following software components: an auction controller and
a bids collector, as shown in Figure 1. The auctioneer pos-
sesses such a SAM. The SAM has its unique public/private
key pairs (i.e. one pair is used for encryption, and another
pair for digital signatures) certified through a CA. The pri-
vate keys are generated inside the secure coprocessor and
are hence not disclosed to any one else, including the auc-
tioneer. To hold an auction, the auctioneer provides the auc-
tion specification and publishes the auction advertisement.
Bids are sent to SAM and evaluated in SAM. Finally, the
result is computed and output by SAM.

4.2.2 Phase description

This section describes the process of an auction phase by
phase.
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Bid Bid

Bids
Collector

Auction
Controler

Result

Auction
Specification

Auction
Advertisement

OS

Secure Marketplace

Secure Coprocessor

Specification
Seller

Figure 1. A Simple Secure Auction Market-
place

1. Advertising Phase: The auction specification is input
to the auction controller. The auction specification in-
cludes the opening time, closing time, auction evalu-
ation algorithm, result disclosure rules, and other pa-
rameters if necessary. The auction specification is de-
picted in Figure 2. The auction controller generates a
nonce auction ID and signs the concatenation of the
auction ID and the auction specification. An advertise-
ment of the auction is then published. The advertise-
ment should contain sufficient information for partici-
pants to identify and evaluate the trustworthiness and
behavior of the marketplace with the given parameters.
Figure 3 shows the advertising phase.

2. Opening Phase: At the opening time of an auction, the
auction controller enables the bids collector to collect
incoming bids.

3. Collection Phase: During the bids collection phase,
the bids collector receives bids. It validates the bids,
including the verification of the auction ID. If the
check is successful, the bids collector signs the hash
of the bid message with the auction ID and returns the
signature. Furthermore, it inserts the bid into the bids
table. A bid includes the auction ID, a bid strategy
and other payload according to the specific auction,
such as bidder ID and digital cash. The messages
included in this phase are illustrated as the following:

Bidder ! Marketplace :

fauction ID; bid; [Optional Fields]gKSMP
Marketplace ! Bidder :

fauction ID;Timestamp; H(bid message)g
K
�1

SMP

Figure 4 depicts the opening and collection phase.

4. Closing Phase: At the closing time of an auction, the
auction controller disables the bids collector to collect

any more bids.

5. Evaluation Phase: The auction controller invokes the
auction evaluation algorithm with the bids table as ar-
gument which generates the result. Figure 5 depicts
the evaluation phase.

6. Result-Disclosure Phase: The auction controller signs
the concatenation of the final result and the auction ID
and sends it out.

Auction
Specification

Auction
Advertisement

Provided by Agressor
or by Auctioneer

SAM

Opening Time

Closing Time

Goods Description

Result Disclosure Rules Auction ID

Digital Signature

SAM ID

Auction Evaluation Algorithm

Figure 2. Auction specification and auction
advertisement. For this and the following
three figures: The round boxes represent en-
tities, and the square boxes represent infor-
mation.

Auctioneer

Auction
Specification

Agressor

Auction
Advertisement

SAM

Figure 3. Auction advertisement phase

Auction
Advertisement

Auctioneer

SAM

Bid / Strategy

Bid Confirmation

Bidder

Figure 4. Auction opening and collecting
phase

4.3 More Complex Examples of SAM

In the above section, we limited ourselves to the use of
a single coprocessor. Such an approach has architectural
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Strategy

Auction
Advertisement

Strategy

ResultSAM

Figure 5. Auction evaluation phase

elegance, but is also necessarily limited by the resources
available to the coprocessor. How can we scale?

It is easy to imagine networking secure coprocessors,
since auctions are often hierarchical, this is a natural step.
An auction in a limited geographical area (a county) results
in a single winner (or, in the case of multiple goods be auc-
tioned, is n winners.) The winner(s) compete in a larger
nationwide auction, and the winner(s) of that auction com-
pete in an international auction.

A particularly intriguing feature of such auctions is that
they can provide for powerful time-fairness – using clock
synchronization,3 each bid can be time stamped. The fi-
nal auctioneering secure coprocessor waits until the auction
end time plus the maximum possible clock skew among the
secure coprocessor plus the maximum possible latency in
the network. Clearly, the final auctioneering coprocessor
would receive all valid bids by this time. Because bids were
timestamped by a secure source, only valid bids could be
accepted. This has important implications for online stock
markets.4 With computer-assisted trading, it appears that
without secure time stamping bidders who were on the an-
tipode of the secure market would have bids delayed by at
least one second - and typically far more because of trans-
mission delays and speed of light considerations. But with
timestamping we could release continuous auction informa-
tion to bidders and sellers and also fairly consider bids and
asks at the coprocessor by using the timestamp data.

5 Properties

Our work features the following novel advantages:

The participants do not need to trust the auctioneer. In
fact, our approach provides a high degree of secrecy and pri-

3Smith, Johnson, and Tygar [14]; and Smith [17] contain relevant ma-
terial on using secure coprocessors for clock synchronization.

4It is amusing to note that this same technique also could be used for
many more applications: for example, the 2000 US election vote in Florida
had many controversies. One was the question of inclusion of votes by
military personnel (on ships, for example) who could not postmark their
ballots. Secure coprocessor timestamping would help here.

vacy for both sellers and bidders so that even the auctioneer
cannot gain any more information than an outside observer.
Hence, it automatically prevents fraud which relies on the
auctioneer’s insider knowledge.

This approach provides a universal framework for se-
cure electronic auctions. Previous approaches have to
use complex cryptographic algorithms and complicated sys-
tem setups to achieve varying security properties. Our ap-
proach is more general and flexible to adapt to new auc-
tion schemes, and to provide different security properties.
(We would like to emphasize that the cryptographic solu-
tions currently fail to solve some basic auction problems
with sufficient security.)

In SAM, the auction specification precisely states which
information is private, public, or should be disclosed only to
a subset of the participants. The auction result is disclosed
in conformance with the result disclosure rules. This flexi-
bility and ability of controllable information distribution is
unachieved by the current cryptographic solutions for se-
cure auctions.

This approach provides a universal framework for dis-
tributed electronic auctions. When a SAM is being used
to continuously buy/sell an online resource, such as network
bandwidth or electricity, we can not only distribute the de-
vices into the network where this resource resides (which
might be in an untrusted and dangerous physical location),
but use the devices to directly execute the result of the deal.

When a SAM is used for off-line auction, it greatly re-
duces I/O bandwidth and eliminates the delay for the round-
trip time for feedback and bid submission.

This approach provides a universal framework for
fraud suppression in electronic auctions. As noted ear-
lier, the SAM approach can combat fraud and other risks by
providing a trusted place to calculate predicates on other-
wise private participant information. For example:

� To prevent options front-running, the SAM can itself
monitor for such correlations (without otherwise leak-
ing bidder identity).

� To prevent money-laundering frauds, the SAM can re-
quire brokers to cryptographically commit to the iden-
tity of the end-client in each bid, at the time of the bid.

� To prevent false bids, the SAM can require some evi-
dence of ability to pay before accepting a bid.

� To prevent rogue players from bringing down a critical
infrastructure, the SAM can require some evidence of
“ability to provide service” before accepting a seller.
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� In an electronic futures market, the SAM also provides
a nice place to clear orders, such as a contract-to-buy
and a matching contract-to-sell.

In distributed markets (like the power grid example),
these predicates can be calculated by distributed SAMs—
although specifying the predicates and determining how to
calculate them becomes much more interesting. Much work
can be done here, depending on on the fraud and risk sce-
narios involved.

Trust Model We assume that the bidder does not trust the
auctioneer; the seller does not trust the auctioneer; and the
bidder and seller do not trust each other.

The correctness and the security of the auctions are only
rely on the following factors:

� The secure coprocessor’s tamper-resistance, code
loading techniques, and outbound authentication API
work correctly. (The FIPS validation helps us here.)

� The software components, auction controller and bids
collector work correctly.

Secrecy of the strategies The strategies of the sellers and
the bidders are encrypted with SAM’s public key and reside
in SAM after being decrypted. As a result, no one else can
have access to these secret information.

Controllable disclosure of the final result The way in
which the final result is published is specified in the auction
specification and followed by SAM. As a result, no one else
can get more information about the final result than what is
specified in the auction specification.

When digital cash, e-check or credit card number are in-
cluded in the bids for payment, the secret information is
kept inside SAM. The losers’ information is not revealed
to anybody else, while the winner’s information is only re-
vealed to related party for collecting the money.

Privacy and Anonymity: The identity and private infor-
mation of sellers and bidders are kept secret. The secret
used for authorization of sellers and bidders are also kept
secret.

Information Fairness: The information about the auc-
tion is published in the advertisement and cannot be modi-
fied by any one including the auctioneer (because the adver-
tisement is signed by SAM). No one gets more information
about others than any one else. How the final result is to
be distributed is also specified in the auction specification.
Hence it is fair in the sense that no one can get more infor-
mation than others without being specified publicly.

Time Fairness We assume that SAM has an internal clock
with a small drift rate and cannot be altered without au-
thorization. The sellers, bidders and processors within the
SAM have a way to synchronize their clocks with each
other. The SAM controls the opening time and closing time
for the auction. Hence, everybody experiences the same
opening time and closing time.

Furthermore, on-line English or Dutch auction usually
have the unfairness that different bidders experience dif-
ferent network delay time. By using SAM, we can elim-
inate this unfairness. Bidders can submit their strategies
into SAM during the bidding time and then, the strategies
are evaluated using the English or Dutch auction fashion.
Because the strategies are already inside SAM, no network
delay time interferes during evaluation time.

Moreover, some major exchanges tried to address time
fairness problems by shipping announcements encrypted to
trusted machines at geographically distributed sites; these
machines then ensure that announcements are publicly re-
vealed at the same real time. We can adopt and extend this
technique in distributed SAM marketplaces, where appro-
priate.

Opportunity Fairness A receipt is generated for every
bid that is received by SAM. If a bidder gets the receipt,
it is guaranteed that its bid will be evaluated in the evalu-
ation phase, should the auction run to completion. Should
the auction fail (e.g., because the SAM hardware experi-
enced a power failure or other catastrophe, perhaps caused
by a malicious auctioneer), SAM will handle the failed auc-
tion in accordance with the policy indicated in its original
spec. This policy can range from complete canceling to
complete re-execution, and can include provisions to pre-
vent the SAM from doing anything else until it has handled
this failure.

6 Extensions

In this section, we describe generalizations and various
applications that the “universal” nature of our approach en-
ables.

6.1 Generalization on Evaluation Algorithms

The auction evaluation algorithm can be introduced to
SAM in three ways:

� The evaluation algorithm may be built into the SAM
program.

� The SAM can contain different types of auctions such
as English auction and Dutch auction. Then for a par-
ticular auction, the auction specification includes a pa-
rameter which specifies the type of auction.
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� To be even more flexible, an evaluation algorithm (in
some specification language) can be entered with the
auction specification into the auction controller, and is
used later together with the seller’s strategy to evaluate
bids. As double auction and bundling auction are get-
ting more popular and new auctions coming out, it is
essential to have a general framework to enable the ef-
ficient deployment of new auction schemes. Any new
auction scheme, even with complicated computation
algorithms, can be specified as evaluation algorithms
and hence be easily downloaded into the SAM to per-
form.

The evaluation algorithm is published before the auc-
tion starts as part of the auction advertisement. The
signed auction advertisement needs to bind the eval-
uation algorithm to the auction. This binding can be
achieved with many techniques, such as having the
auction controller include a hash of the program, or
even the full source, in the auction specification.

The evaluation algorithm can be written in a specifi-
cation language which will then be interpreted by an
interpreter in the auction controller. Alternatively, the
evaluation algorithm can be in a real program such as
Java bytecode or C program. In any case, the language
that the evaluation algorithm is specified in needs to
be well restricted in the sense that it is guaranteed that
a valid evaluation algorithm cannot do anything bad
such as manipulate the bids table. Many solutions can
be possible, such as simple sand-boxing. Architectures
such as Java 1.2 may provide an avenue to address this
problem. We also need to make sure the correctness
of the implementation of the specification language in
the sense that the implementation matches the specifi-
cation. Covert channels can also be an issue.

Also the implementation of the evaluation algorithm
needs to be correct. This can either be checked by the
auction participants since the program is published, or
be verified by a trusted third party.

It is an interesting research question how to design this
specification language or a subset of an existing pro-
gramming language such as Java or C to evaluate bids.
(Of course, the question of how to safely and securely
sandbox downloaded programs is an area of ongoing
research in the broader community.)

6.2 Generalization on Bids

Option fields in bids

The bids sent to the SAM can include optional fields which
can be used in the following various scenarios:

� Authorization of bidders are important in many cases
such as bidding for government contract and bidding
for natural resources. In order to provide authorization
of bidders, the bids collector can contain a subcompo-
nent, an authority checker, which checks whether the
bidder is authorized. Only authorized bids can then be
inserted to the bids table. Several solutions for the au-
thorization mechanism exist. For example, an autho-
rized list can be established in the authority checker
in which each entry is a pair (bidder ID, secret). If
a bid contains the correct bidder ID and secret, it is
authorized. An even simpler solution is to establish a
shared group secret for all the authorized bidders. Any
bid which contains the correct secret is regarded as au-
thorized. Well-designed protocols can prevent these
shared secrets from leaking out without the help of any
authorized bidder. Schemes based on a PKI are also
possible.

� Digital cash can be included in the optional fields. At
the end of the auction, the winner’s digital cash can be
collected as the payment.

Some atomic transactions can be used to guarantee that
the goods is given to the winner only if the money is
transferred to the seller’s account and the bidder does
not need to pay anything if the goods is not given to
him.

� The bidder can include a secret key in the optional
fields. At the end of the auction, the goods (if it is
electronic) or some secret information about picking
up the goods can be encrypted with the secret key and
published. Hence, the winner can get the goods with-
out revealing any information about himself and hence
to be fully anonymous.

� Non-repudiation of bidders can also be a desired prop-
erty. To achieve this, either the bidders can sign the
bids, or they can include authentication secrets in the
bids.

Without the SAM to carry out the market, including sen-
sitive information such as digital cash and bidder-specified
secret keys in the bids raises various risks. For example, the
auctioneer can then get the bidder-specified secret keys and
hence get the goods without paying for anything.

Bidding strategies and programs

The bids can also take more complicated format, for exam-
ple, using a strategy specification language which can be
interpreted or even be a real executable program. The syn-
tax and the semantics of the strategy specification language
are published. Similar to the issues previously discussed
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on evaluation specification language, the strategy specifica-
tion language design bears the same security concerns as
the evaluation algorithm specification language design dis-
cussed in the previous subsection.

The bidder may also enter a meta-strategy that expresses
their strategy for some sequence of auctions. These meta-
strategies may include such features as: reselling something
that was purchased, and exchanging information with other
meta-strategy agents.

6.3 Generalization on Seller Strategies

In some auction schemes, a seller might need to enter
some secret data into the secure marketplace. For example,
a seller might want to specify a lower limit below which
he does not want to sell the goods. Bidders are allowed to
know that such a lower limit exists but cannot know what
exactly the lower limit is. In this case, the seller can input
its secret data encrypted with the SAM’s public key which
is dedicated to encryption, or establish a shared secret with
SAM to encrypt its secret data. The seller strategy needs to
be authenticated to make sure that it comes from the seller.
One solution could be that the seller’s public key is included
in the advertisement of the auction and the seller signs its
secret data with its private key before it is encrypted with
the SAM’s public key.

Similar to the strategy specification language mentioned
before, sellers can also specify their strategy or meta-
strategy of selling in the strategy specification language.
And the same security concerns also apply here.

The seller may include a pledge (or actual digital cash)
with the offer to sell; the advertised auction spec will indi-
cate how that pledge is to be disposed of should various bad
things (such as the seller not actually producing the item to
be sold) occur.

6.4 Generalization on Commodity

� The SAM can transfer ownership of an electronic com-
modity as an atomic part of the transaction.

� For some types of commodities (such as contracts,
or signed things), the SAM can transfer ownership
in such a way that the original owner need never be
involved—and the object can be resold several more
times without ever leaving the SAM network.

� For commodities that are electronically controllable,
the SAM’s coprocessor can itself directly execute the
result of a transaction.

� For some types of commodities, like encrypted net-
work links, transferring data from one link controlled
by Alice to one controlled by Bob would require a

trusted party anyway. A SAM could execute the deal
as well as performing this cryptographic transforma-
tion as a result of the deal.

6.5 More Generalizations

� Auctions can not only take the form of single seller
and multiple buyers, but also single buyer and mul-
tiple sellers, or multiple sellers and multiple buyers.
All these types can very easily fit in the framework of
SAM.

� The bidding can not only be held within a given period
of time, but also be continuous. Sellers and bidders
send in their strategies into SAM. Information about
currently available resources can be updated period-
ically, i.e. every second or every five minutes. Par-
ticipants can also change their strategies if needed,
for example, if a new demand pattern appears. SAM
is essential for carrying out this type of auction, be-
cause first, strategies reside in SAM and hence can be
evaluated efficiently and eliminate the round-trip time
for publishing information and submitting bids as in-
evitable in traditional solution; second, SAM can phys-
ically be integrated at anywhere including malicious
places and environment that is harmful for human be-
ing.

� The SAM can ensure that auction specs enforce rules
such as: a minimum number of bids must occur before
an auction can be executed, or a receipt must be re-
ceived from some number of authenticated advertising
sources.

� The SAM can require that sellers submit an (en-
crypted) “evidence of ability to provide service in
question.”

� Anomaly Detection

– A SAM can execute anomaly or fraud detection
algorithms on the otherwise anonymous data at
an auction or sequence of auctions.

– Networks of SAMs, even for different auction-
eers, can jointly and possibly concurrently exe-
cute these algorithms. They can be used to de-
tect wide-range fraud. For example, in critical
resources such as electricity power, such SAM
group can be used to detect when some single
buyer wants to buy all the resources and then be-
come a monopoly to gain profit. Some similar
enforcement policy can be deployed to prevent
fraud while preserve desired secrecy and privacy
of legitimate participants.
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� The auction spec can be constructed so that the exis-
tence (and perhaps trustworthiness, as witnessed by
some appropriate party) of these algorithms is indi-
cated, but the details of the algorithms remain secret.

7 Conclusions and Future Work

In this paper, we have argued for the use of tamper-
resistant hardware to build secure auction markets. This is a
conceptual design – performance will be a key issue in any
actual implementation. It is not only our architecture which
impacts on performance, but because trusted hardware typ-
ically lags behind off-the-shelf commercial processors. We
believe our architecture can be highly successful using ex-
isting trusted hardware platforms.

A particularly intriguing area for future research is the
actual question of how we distribute work in the case of
multiple simultaneous auctions (potentially with overlap-
ping groups of bidders and overlapping groups of sellers.)
Such a solution is complicated by the requirement that
prices be allocated fairly. (While third party arbitrage could
help ensure this, we suspect that it is possible to realize this
directly in the mechanism design.)

Regardless of the details of implementation, trusted
hardware can certainly provide a proven fair approach to
realizing auctions. The advantages extend across a wide-
range of auction types – from small, ad hoc auctions to large
ongoing auction markets. Given the degree of fraud possi-
ble with existing auction architectures, there is a clear case
for using trusted hardware to ensure fairness and security.
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